# 74ALVC162334A

16-bit registered driver with inverted register enable and 30  $\Omega$  termination resistors (3-state)

Rev. 03 — 13 December 2006

**Product data sheet** 

### 1. General description

The 74ALVC162334A is a 16-bit universal bus driver. Data flow is controlled by active LOW output enable  $(\overline{OE})$ , active LOW latch enable  $(\overline{LE})$ , and clock input (CP).

When  $\overline{LE}$  is LOW, the A to Y data flow is transparent. When  $\overline{LE}$  is HIGH and CP is held at LOW or HIGH, the data is latched; on the LOW to HIGH transient of CP, the A data is stored in the latch/flip-flop.

The 74ALVC162334A is designed with 30  $\Omega$  series resistors in both HIGH or LOW output stages.

When  $\overline{OE}$  is LOW, the outputs are active. When  $\overline{OE}$  is HIGH, the outputs go to the high-impedance OFF-state. Operation of the  $\overline{OE}$  input does not affect the state of the latch/flip-flop.

To ensure the high-impedance state during power-up or power-down,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

#### 2. Features

- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard 8-1A
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive: ±24 mA at 3.0 V
- MULTIBYTE flow-through standard pinout architecture
- Low inductance multiple V<sub>CC</sub> and GND pins for minimum noise and ground bounce
- Output drive capability 50 Ω transmission lines at 85 °C
- Integrated 30 Ω termination resistors
- Input diodes to accommodate strong drivers



### 3. Quick reference data

Table 1. Quick reference data

 $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ; GND = 0 V;  $t_r = t_f \le 2.5 \text{ ns}$ ;  $C_L = 50 \text{ pF}$  (see Figure 11).

| Symbol           | Parameter                     | Conditions                          | Min | Typ[1] | Max | Unit |
|------------------|-------------------------------|-------------------------------------|-----|--------|-----|------|
| t <sub>PHL</sub> | HIGH-to-LOW propagation delay | An to Yn; Figure 5                  | 1.0 | 2.8    | 4.3 | ns   |
|                  |                               | LE to Yn; Figure 6                  | 1.3 | 2.8    | 4.4 | ns   |
|                  |                               | CP to Yn; Figure 8                  | 1.4 | 3.2    | 4.9 | ns   |
| t <sub>PLH</sub> | LOW-to-HIGH propagation delay | An to Yn; Figure 5                  | 1.0 | 2.8    | 4.3 | ns   |
|                  |                               | LE to Yn; Figure 6                  | 1.3 | 2.8    | 4.4 | ns   |
|                  |                               | CP to Yn; Figure 8                  | 1.4 | 3.2    | 4.9 | ns   |
| f <sub>max</sub> | maximum input clock frequency | Figure 8                            | 150 | 240    | -   | MHz  |
| Ci               | input capacitance             |                                     | -   | 4.0    | -   | pF   |
| C <sub>io</sub>  | input/output capacitance      |                                     | -   | 8.0    | -   | pF   |
| $C_{PD}$         | power dissipation capacitance | per buffer; $V_I = GND$ to $V_{CC}$ | [2] |        |     |      |
|                  |                               | transparent mode; output enabled    | -   | 10     | -   | pF   |
|                  |                               | transparent mode; output disabled   | -   | 3      | -   | pF   |
|                  |                               | clocked mode; output enabled        | -   | 21     | -   | pF   |
|                  |                               | clocked mode; output disabled       | -   | 15     | -   | pF   |

<sup>[1]</sup> All typical values are at  $T_{amb}$  = 25 °C.

[2]  $C_{PD}$  is used to determine the dynamic power dissipation (P<sub>D</sub>) in  $\mu$ W.

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma \ (C_L \times V_{CC}^2 \times f_o), \ where:$ 

 $f_i$  = input frequency in MHz;

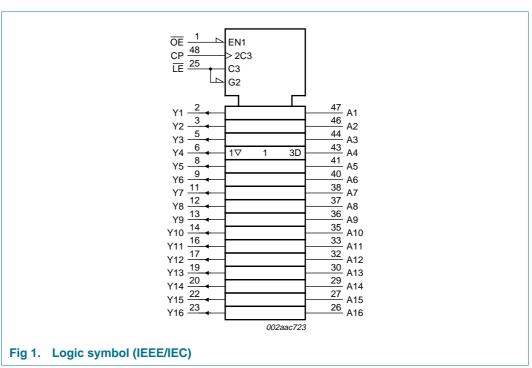
C<sub>L</sub> = output load capacitance in pF;

 $f_o$  = output frequency in MHz;

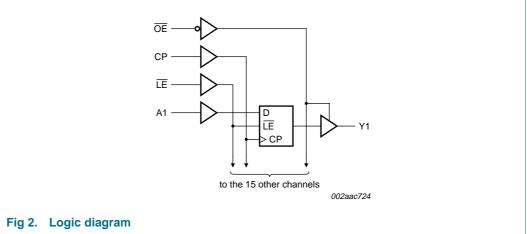
 $V_{CC}$  = supply voltage in V;

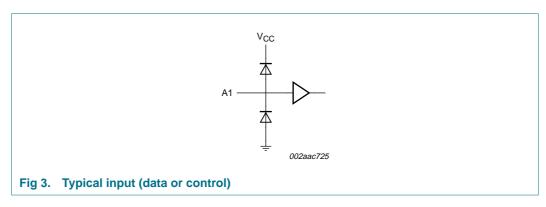
 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$ 

# 4. Ordering information


#### Table 2. Ordering information

| Type number      | Temperature      | Package |                                                                           |          |
|------------------|------------------|---------|---------------------------------------------------------------------------|----------|
|                  | range            | Name    | Description                                                               | Version  |
| 74ALVC162334ADGG | –40 °C to +85 °C | TSSOP48 | plastic thin shrink small outline package;<br>48 leads; body width 6.1 mm | SOT362-1 |


**Product data sheet** 

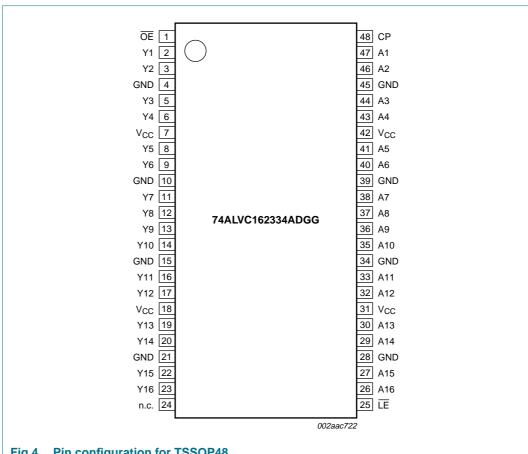

16-bit registered driver (3-state)

# 5. Functional diagram










74ALVC162334A\_3 © Nexperia B.V. 2017. All rights reserved

3 of 19

#### **Pinning information** 6.

### 6.1 Pinning



### Fig 4. Pin configuration for TSSOP48

### 6.2 Pin description

Table 3. Pin description

| Cumbal   | Pin                              | Description                      |
|----------|----------------------------------|----------------------------------|
| Symbol   | FIII                             | Description                      |
| ŌĒ       | 1                                | output enable input (active LOW) |
| Y1       | 2                                | data output 1                    |
| Y2       | 3                                | data output 2                    |
| GND      | 4, 10, 15, 21,<br>28, 34, 39, 45 | ground supply (0 V)              |
| Y3       | 5                                | data output 3                    |
| Y4       | 6                                | data output 4                    |
| $V_{CC}$ | 7, 18, 31, 42                    | positive supply voltage          |
| Y5       | 8                                | data output 5                    |
| Y6       | 9                                | data output 6                    |
| Y7       | 11                               | data output 7                    |
| Y8       | 12                               | data output 8                    |

74ALVC162334A 3

© Nexperia B.V. 2017. All rights reserved

 Table 3.
 Pin description ...continued

| Symbol | Pin | Description                     |
|--------|-----|---------------------------------|
| Y9     | 13  | data output 9                   |
| Y10    | 14  | data output 10                  |
| Y11    | 16  | data output 11                  |
| Y12    | 17  | data output 12                  |
| Y13    | 19  | data output 13                  |
| Y14    | 20  | data output 14                  |
| Y15    | 22  | data output 15                  |
| Y16    | 23  | data output 16                  |
| n.c.   | 24  | not connected                   |
| LE     | 25  | latch enable input (active LOW) |
| A16    | 26  | data input 16                   |
| A15    | 27  | data input 15                   |
| A14    | 29  | data input 14                   |
| A13    | 30  | data input 13                   |
| A12    | 32  | data input 12                   |
| A11    | 33  | data input 11                   |
| A10    | 35  | data input 10                   |
| A9     | 36  | data input 9                    |
| A8     | 37  | data input 8                    |
| A7     | 38  | data input 7                    |
| A6     | 40  | data input 6                    |
| A5     | 41  | data input 5                    |
| A4     | 43  | data input 4                    |
| A3     | 44  | data input 3                    |
| A2     | 46  | data input 2                    |
| A1     | 47  | data input 1                    |
| СР     | 48  | clock input                     |
|        |     |                                 |

Downloaded From Oneyac.com

**Product data sheet** 

16-bit registered driver (3-state)

6 of 19

## **Functional description**

Refer to Figure 1 "Logic symbol (IEEE/IEC)" and Figure 2 "Logic diagram".

### 7.1 Function selection

Table 4. **Function selection** 

H = HIGH voltage level; L = LOW voltage level; X = Don't care; Z = high-impedance OFF-state;  $\uparrow$  = LOW to HIGH level transition.

| Inputs | Inputs |            |    |                    |  |  |
|--------|--------|------------|----|--------------------|--|--|
| OE     | LE     | СР         | An | Yn                 |  |  |
| Н      | X      | X          | X  | Z                  |  |  |
| L      | L      | X          | L  | L                  |  |  |
| L      | L      | X          | Н  | Н                  |  |  |
| L      | Н      | $\uparrow$ | L  | L                  |  |  |
| L      | Н      | 1          | Н  | Н                  |  |  |
| L      | Н      | Н          | X  | Y <sub>0</sub> [1] |  |  |
| L      | Н      | L          | X  | Y <sub>0</sub> [2] |  |  |

<sup>[1]</sup> Output level before the indicated steady-state input conditions were established, provided that CP is HIGH before LE goes LOW.

Downloaded From Oneyac.com

<sup>[2]</sup> Output level before the indicated steady-state input conditions were established.

7 of 19

### 8. Limiting values

#### Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| J                           | 10                                  | ,                                                                                 |                 |                |      |
|-----------------------------|-------------------------------------|-----------------------------------------------------------------------------------|-----------------|----------------|------|
| Symbol                      | Parameter                           | Conditions                                                                        | Min             | Max            | Unit |
| $V_{CC}$                    | supply voltage                      |                                                                                   | -0.5            | +4.6           | V    |
| I <sub>IK</sub>             | input clamping current              | V <sub>I</sub> < 0 V                                                              | -               | -50            | mA   |
| $V_{I}$                     | input voltage                       |                                                                                   | <u>[1]</u> –0.5 | +4.6           | V    |
| I <sub>OK</sub>             | output clamping current             | $V_O > V_{CC}$ or $V_O < 0 V$                                                     | -               | ±50            | mA   |
| Vo                          | output voltage                      |                                                                                   | <u>[1]</u> –0.5 | $V_{CC} + 0.5$ | V    |
| I <sub>O(sink/source)</sub> | output sink or source current       | $V_O = 0 V \text{ to } V_{CC}$                                                    | -               | ±50            | mA   |
| I <sub>CC</sub>             | supply current                      |                                                                                   | -               | ±100           | mA   |
| $I_{GND}$                   | ground current                      |                                                                                   | -               | ±100           | mA   |
| T <sub>stg</sub>            | storage temperature                 |                                                                                   | -65             | +150           | °C   |
| P <sub>tot</sub> /pack      | total power dissipation per package | for temperature range –40 °C to +125 °C; above +55 °C derate linearly with 8 mW/K | -               | 600            | mW   |
|                             |                                     |                                                                                   |                 |                |      |

<sup>[1]</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

### 9. Recommended operating conditions

Table 6. Operating conditions

**Product data sheet** 

| Symbol           | Parameter           | Conditions                                                     | Min | Тур | Max      | Unit |
|------------------|---------------------|----------------------------------------------------------------|-----|-----|----------|------|
| V <sub>CC</sub>  | supply voltage      | 2.5 V range for maximum speed performance at 30 pF output load | 2.3 | -   | 2.7      | V    |
|                  |                     | 3.3 V range for maximum speed performance at 50 pF output load | 3.0 | -   | 3.6      | V    |
|                  |                     | for low-voltage applications                                   | 1.2 | -   | 3.6      | V    |
| $V_{I}$          | input voltage       |                                                                | 0   | -   | $V_{CC}$ | V    |
| Vo               | output voltage      |                                                                | 0   | -   | $V_{CC}$ | V    |
| T <sub>amb</sub> | ambient temperature | operating in free-air                                          | -40 | -   | +85      | °C   |
| t <sub>r</sub>   | rise time           | V <sub>CC</sub> = 2.3 V to 3.0 V                               | 0   | -   | 20       | ns/V |
|                  |                     | V <sub>CC</sub> = 3.0 V to 3.6 V                               | 0   | -   | 10       | ns/V |
| t <sub>f</sub>   | fall time           | V <sub>CC</sub> = 2.3 V to 3.0 V                               | 0   | -   | 20       | ns/V |
|                  |                     | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                     | 0   | -   | 10       | ns/V |

Rev. 03 — 13 December 2006

### 10. Static characteristics

Table 7. Static characteristics

 $T_{amb} = -40 \,^{\circ}\text{C}$  to +85  $^{\circ}\text{C}$ ; over recommended operating conditions; voltages are referenced to GND (ground = 0 V); unless otherwise specified.

| Symbol           | Parameter                 | Conditions                                                                                            | Min                   | Typ[1]                 | Max  | Unit |
|------------------|---------------------------|-------------------------------------------------------------------------------------------------------|-----------------------|------------------------|------|------|
| $V_{IH}$         | HIGH-level input voltage  | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                                            | 1.7                   | 1.2                    | -    | V    |
|                  |                           | V <sub>CC</sub> = 2.7 V to 3.6 V                                                                      | 2.0                   | 1.5                    | -    | V    |
| V <sub>IL</sub>  | LOW-level input voltage   | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                      | -                     | 1.2                    | 0.7  | V    |
|                  |                           | V <sub>CC</sub> = 2.7 V to 3.6 V                                                                      | -                     | 1.5                    | 8.0  | V    |
| V <sub>OH</sub>  | HIGH-level output voltage | $V_I = V_{IH}$ or $V_{IL}$                                                                            |                       |                        |      |      |
|                  |                           | $V_{CC}$ = 2.3 V to 3.6 V; $I_{O}$ = -100 $\mu A$                                                     | $V_{CC}-0.2$          | $V_{CC}$               | -    | V    |
|                  |                           | $V_{CC} = 2.3 \text{ V}; I_{O} = -4 \text{ mA}$                                                       | $V_{CC}-0.4$          | V <sub>CC</sub> – 0.11 | -    | V    |
|                  |                           | $V_{CC} = 2.3 \text{ V}; I_{O} = -6 \text{ mA}$                                                       | $V_{CC}-0.6$          | $V_{CC} - 0.17$        | -    | V    |
|                  |                           | $V_{CC} = 2.7 \text{ V}; I_{O} = -4 \text{ mA}$                                                       | $V_{CC}-0.5$          | $V_{CC} - 0.09$        | -    | V    |
|                  |                           | $V_{CC} = 2.7 \text{ V}; I_{O} = -8 \text{ mA}$                                                       | $V_{CC}-0.7$          | $V_{CC} - 0.19$        | -    | V    |
|                  |                           | $V_{CC} = 3.0 \text{ V}; I_{O} = -6 \text{ mA}$                                                       | $V_{CC}-0.6$          | $V_{CC} - 0.13$        | -    | V    |
|                  |                           | $V_{CC} = 3.0 \text{ V}; I_{O} = -12 \text{ mA}$                                                      | V <sub>CC</sub> - 1.0 | $V_{CC} - 0.27$        | -    | V    |
| V <sub>OL</sub>  | LOW-level output voltage  | $V_I = V_{IH}$ or $V_{IL}$                                                                            |                       |                        |      |      |
|                  |                           | $V_{CC}$ = 2.3 V to 3.6 V; $I_{O}$ = 100 $\mu A$                                                      | -                     | GND                    | 0.20 | V    |
|                  |                           | $V_{CC} = 2.3 \text{ V; } I_{O} = 4 \text{ mA}$                                                       | -                     | 0.07                   | 0.40 | V    |
|                  |                           | $V_{CC} = 2.3 \text{ V}; I_{O} = 6 \text{ mA}$                                                        | -                     | 0.11                   | 0.55 | V    |
|                  |                           | $V_{CC} = 2.7 \text{ V}; I_{O} = 4 \text{ mA}$                                                        | -                     | 0.06                   | 0.40 | V    |
|                  |                           | $V_{CC} = 2.7 \text{ V; } I_{O} = 8 \text{ mA}$                                                       | -                     | 0.13                   | 0.60 | V    |
|                  |                           | $V_{CC} = 3.0 \text{ V}; I_{O} = 6 \text{ mA}$                                                        | -                     | 0.09                   | 0.55 | V    |
|                  |                           | $V_{CC} = 3.0 \text{ V}; I_{O} = 12 \text{ mA}$                                                       | -                     | 0.19                   | 0.80 | V    |
| ILI              | input leakage current     | $V_{CC}$ = 2.3 V to 3.6 V;<br>$V_I$ = $V_{CC}$ or GND                                                 | -                     | 0.1                    | 5    | μΑ   |
| loz              | off-state output current  | 3-state; $V_{CC}$ = 2.3 V to 3.6 V;<br>$V_I$ = $V_{IH}$ or $V_{IL}$ ; $V_O$ = $V_{CC}$ or GND         | -                     | 0.1                    | 10   | μΑ   |
| lcc              | supply current            | $V_{CC}$ = 2.3 V to 3.6 V;<br>$V_I$ = $V_{CC}$ or GND; $I_O$ = 0 mA                                   | -                     | 0.2                    | 40   | μΑ   |
| Δl <sub>CC</sub> | additional supply current | $V_{CC} = 2.3 \text{ V to } 3.6 \text{ V};$<br>$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ mA}$ | -                     | 150                    | 750  | μΑ   |
| Ci               | input capacitance         |                                                                                                       | -                     | 4.0                    | -    | pF   |
| Cio              | input/output capacitance  |                                                                                                       | -                     | 8.0                    | -    | pF   |
| C <sub>PD</sub>  | power dissipation         | per buffer; $V_I = GND$ to $V_{CC}$                                                                   | [2]                   |                        |      |      |
|                  | capacitance               | transparent mode; output enabled                                                                      | -                     | 10                     | -    | pF   |
|                  |                           | transparent mode; output disabled                                                                     | -                     | 3                      | -    | pF   |
|                  |                           | clocked mode; output enabled                                                                          | -                     | 21                     | -    | pF   |
|                  |                           | clocked mode; output disabled                                                                         | -                     | 15                     | -    | pF   |

<sup>[1]</sup> All typical values are at  $T_{amb}$  = 25 °C.

**Product data sheet** 

<sup>[2]</sup>  $C_{PD}$  is used to determine the dynamic power dissipation (P<sub>D</sub>) in  $\mu$ W.  $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma \ (C_L \times V_{CC}^2 \times f_o), \ where: f_i = input \ frequency \ in \ MHz;$ 

$$\begin{split} &C_L = \text{output load capacitance in pF;} \\ &f_o = \text{output frequency in MHz;} \\ &V_{CC} = \text{supply voltage in V;} \\ &\Sigma \left(C_L \times V_{CC}^2 \times f_o\right) = \text{sum of outputs.} \end{split}$$

### 11. Dynamic characteristics

Table 8. Dynamic characteristics for  $V_{CC}$  = 2.3 V to 2.7 V range  $V_{CC}$  = 2.3 V to 2.7 V; GND = 0 V;  $t_f = t_f \le 2.0$  ns;  $C_L = 30$  pF (see Figure 11).

| Symbol           | Parameter                           | Conditions               | Min                | Typ[1] | Max | Unit |
|------------------|-------------------------------------|--------------------------|--------------------|--------|-----|------|
| t <sub>PHL</sub> | HIGH-to-LOW propagation delay       | An to Yn; Figure 5       | 1.0                | 3.5    | 5.0 | ns   |
|                  |                                     | LE to Yn; Figure 6       | 1.3                | 3.5    | 5.0 | ns   |
|                  |                                     | CP to Yn; Figure 8       | 1.4                | 3.7    | 5.4 | ns   |
| t <sub>PLH</sub> | LOW-to-HIGH propagation delay       | An to Yn; Figure 5       | 1.0                | 3.5    | 5.0 | ns   |
|                  |                                     | LE to Yn; Figure 6       | 1.3                | 3.5    | 5.0 | ns   |
|                  |                                     | CP to Yn; Figure 8       | 1.4                | 3.7    | 5.4 | ns   |
| $t_{PZH}$        | OFF-state to HIGH propagation delay | OE to Yn; Figure 10      | <sup>[2]</sup> 1.4 | 3.5    | 5.0 | ns   |
| $t_{PZL}$        | OFF-state to LOW propagation delay  | OE to Yn; Figure 10      | <sup>[2]</sup> 1.4 | 3.5    | 5.0 | ns   |
| $t_{\text{PHZ}}$ | HIGH to OFF-state propagation delay | OE to Yn; Figure 10      | [ <u>3</u> ] 1.0   | 2.8    | 4.5 | ns   |
| $t_{PLZ}$        | LOW to OFF-state propagation delay  | OE to Yn; Figure 10      | [ <u>3</u> ] 1.0   | 2.8    | 4.5 | ns   |
| $t_{w}$          | pulse width                         | CP HIGH or LOW; Figure 8 | 3.3                | 1.0    | -   | ns   |
|                  |                                     | LE HIGH; Figure 6        | 3.3                | 0.7    | -   | ns   |
| $t_{su}$         | set-up time                         | An to CP; Figure 9       | 1.0                | -      | -   | ns   |
|                  |                                     | An to LE; Figure 7       | 1.5                | -      | -   | ns   |
| t <sub>h</sub>   | hold time                           | An to CP; Figure 9       | 0.4                | 0.4    | -   | ns   |
|                  |                                     | An to LE; Figure 7       | 1.4                | 0.4    | -   | ns   |
| f <sub>max</sub> | maximum input clock frequency       | Figure 8                 | 150                | 190    | -   | MHz  |

<sup>[1]</sup> All typical values are at  $V_{CC}$  = 2.5 V and  $T_{amb}$  = 25 °C.

Table 9. Dynamic characteristics for  $V_{CC} = 2.7 \text{ V}$ 

 $V_{CC} = 2.7 \text{ V; GND} = 0 \text{ V; } t_f = t_f \le 2.5 \text{ ns; } C_L = 50 \text{ pF (see } \frac{\text{Figure 11}}{\text{Mode of } 1.00 \text{ ps}}).$ 

| Symbol           | Parameter                           | Conditions          | Min                | Typ <mark>[1]</mark> | Max | Unit |
|------------------|-------------------------------------|---------------------|--------------------|----------------------|-----|------|
| $t_{PHL}$        | HIGH-to-LOW propagation delay       | An to Yn; Figure 5  | 1.0                | 3.3                  | 4.6 | ns   |
|                  |                                     | LE to Yn; Figure 6  | 1.3                | 3.4                  | 4.8 | ns   |
|                  |                                     | CP to Yn; Figure 8  | 1.4                | 3.8                  | 6.2 | ns   |
| t <sub>PLH</sub> | LOW-to-HIGH propagation delay       | An to Yn; Figure 5  | 1.0                | 3.3                  | 4.6 | ns   |
|                  |                                     | LE to Yn; Figure 6  | 1.3                | 3.4                  | 4.8 | ns   |
|                  |                                     | CP to Yn; Figure 8  | 1.4                | 3.8                  | 6.2 | ns   |
| $t_{PZH}$        | OFF-state to HIGH propagation delay | OE to Yn; Figure 10 | <sup>[2]</sup> 1.1 | 3.7                  | 6.0 | ns   |
| $t_{PZL}$        | OFF-state to LOW propagation delay  | OE to Yn; Figure 10 | 2 1.1              | 3.7                  | 6.0 | ns   |
| $t_{\text{PHZ}}$ | HIGH to OFF-state propagation delay | OE to Yn; Figure 10 | <b>3</b> 1.3       | 3.5                  | 4.9 | ns   |
| $t_{PLZ}$        | LOW to OFF-state propagation delay  | OE to Yn; Figure 10 | <b>3</b> 1.3       | 3.5                  | 4.9 | ns   |

<sup>[2] 3-</sup>state output enable time.

<sup>[3] 3-</sup>state output disable time.

Table 9. Dynamic characteristics for  $V_{CC} = 2.7 \text{ V}$  ... continued  $V_{CC} = 2.7 \text{ V}$ ; GND = 0 V;  $t_r = t_f \le 2.5 \text{ ns}$ ;  $C_L = 50 \text{ pF}$  (see Figure 11).

| Symbol           | Parameter                     | Conditions               | Min | Typ[1] | Max | Unit |
|------------------|-------------------------------|--------------------------|-----|--------|-----|------|
| $t_w$            | pulse width                   | CP HIGH or LOW; Figure 8 | 3.3 | 1.2    | -   | ns   |
|                  |                               | LE HIGH; Figure 6        | 3.3 | 0.6    | -   | ns   |
| t <sub>su</sub>  | set-up time                   | An to CP; Figure 9       | 1.0 | -      | -   | ns   |
|                  |                               | An to LE; Figure 7       | 1.5 | -      | -   | ns   |
| t <sub>h</sub>   | hold time                     | An to CP; Figure 9       | 0.6 | 0.3    | -   | ns   |
|                  |                               | An to LE; Figure 7       | 1.7 | 0.4    | -   | ns   |
| f <sub>max</sub> | maximum input clock frequency | Figure 8                 | 150 | 190    | -   | MHz  |

<sup>[1]</sup> All typical values are measured at  $T_{amb}$  = 25 °C.

Table 10. Dynamic characteristics for  $V_{CC}$  = 3.0 V to 3.6 V range  $V_{CC}$  = 3.3 V  $\pm$  0.3 V; GND = 0 V;  $t_r$  =  $t_f$   $\leq$  2.5 ns;  $C_L$  = 50 pF (see Figure 11).

| Symbol           | Parameter                           | Conditions               | Min          | Typ[1] | Max | Unit |
|------------------|-------------------------------------|--------------------------|--------------|--------|-----|------|
| t <sub>PHL</sub> | HIGH-to-LOW propagation delay       | An to Yn; Figure 5       | 1.0          | 2.8    | 4.3 | ns   |
|                  |                                     | LE to Yn; Figure 6       | 1.3          | 2.8    | 4.4 | ns   |
|                  |                                     | CP to Yn; Figure 8       | 1.4          | 3.2    | 4.9 | ns   |
| t <sub>PLH</sub> | LOW-to-HIGH propagation delay       | An to Yn; Figure 5       | 1.0          | 2.8    | 4.3 | ns   |
|                  |                                     | LE to Yn; Figure 6       | 1.3          | 2.8    | 4.4 | ns   |
|                  |                                     | CP to Yn; Figure 8       | 1.4          | 3.2    | 4.9 | ns   |
| t <sub>PZH</sub> | OFF-state to HIGH propagation delay | OE to Yn; Figure 10      | 2 1.1        | 2.4    | 4.5 | ns   |
| $t_{PZL}$        | OFF-state to LOW propagation delay  | OE to Yn; Figure 10      | 2 1.1        | 2.4    | 4.5 | ns   |
| t <sub>PHZ</sub> | HIGH to OFF-state propagation delay | OE to Yn; Figure 10      | <b>3</b> 1.3 | 2.4    | 4.8 | ns   |
| $t_{PLZ}$        | LOW to OFF-state propagation delay  | OE to Yn; Figure 10      | <b>3</b> 1.3 | 2.4    | 4.8 | ns   |
| t <sub>w</sub>   | pulse width                         | CP HIGH or LOW; Figure 8 | 3.3          | 0.7    | -   | ns   |
|                  |                                     | LE HIGH; Figure 6        | 3.3          | 0.6    | -   | ns   |
| t <sub>su</sub>  | set-up time                         | An to CP; Figure 9       | 1.0          | -      | -   | ns   |
|                  |                                     | An to LE; Figure 7       | 1.5          | -      | -   | ns   |
| t <sub>h</sub>   | hold time                           | An to CP; Figure 9       | 0.9          | 0.3    | -   | ns   |
|                  |                                     | An to LE; Figure 7       | 1.4          | 0.4    | -   | ns   |
| f <sub>max</sub> | maximum input clock frequency       | Figure 8                 | 150          | 240    | -   | MHz  |

<sup>[1]</sup> All typical values are measured at  $V_{CC}$  = 3.3 V,  $T_{amb}$  = 25  $^{\circ}C.$ 

<sup>[2] 3-</sup>state output enable time.

<sup>[3] 3-</sup>state output disable time.

<sup>[2] 3-</sup>state output enable time.

<sup>[3] 3-</sup>state output disable time.

#### 11.1 AC waveforms

 $V_{CC} = 3.0 \text{ V}$  to 3.6 V and  $V_{CC} = 2.7 \text{ V}$  range:

$$V_M = 1.5 \text{ V}$$
;  $V_X = V_{OL} + 0.3 \text{ V}$ ;  $V_Y = V_{OH} - 0.3 \text{ V}$ ;  $V_I = 2.7 \text{ V}$ .

V<sub>OL</sub> and V<sub>OH</sub> are the typical output voltage drop that occur with the output load.

 $V_{CC}$  = 2.3 V to 2.7 V and  $V_{CC}$  < 2.3 V range:

$$V_{M} = 0.5 \text{ V}; V_{X} = V_{OL} + 0.15 \text{ V}; V_{Y} = V_{OH} - 0.15 \text{ V}; V_{I} = V_{CC}.$$

V<sub>OL</sub> and V<sub>OH</sub> are the typical output voltage drop that occur with the output load.

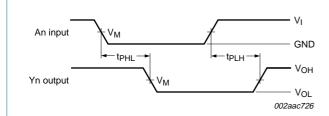



Fig 5. Input (An) to output (Yn) propagation delay

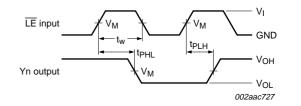
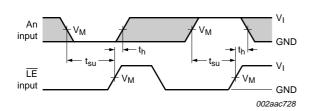
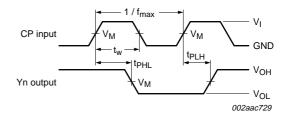
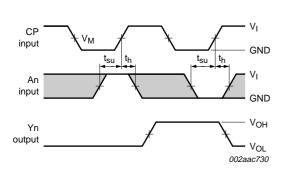



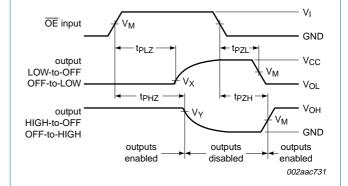

Fig 6. LE input pulse width, LE input to Yn output propagation delays



The shaded areas indicate when the input is permitted to change for predictable output performance.

Data set-up and hold times, An input to Fig 7. **LE** input

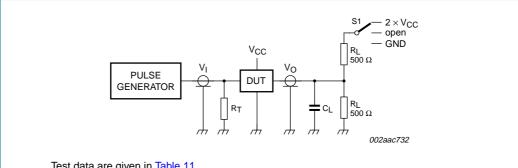


Fig 8. CP to Yn propagation delays, clock pulse width, and maximum clock frequency



The shaded areas indicate when the input is permitted to change for predictable output

Fig 9. Data set-up and hold times, An input to **CP** input

**Product data sheet** 




11 of 19

Fig 10. 3-state enable and disable times

74ALVC162334A 3 © Nexperia B.V. 2017. All rights reserved Rev. 03 — 13 December 2006

### 12. Test information



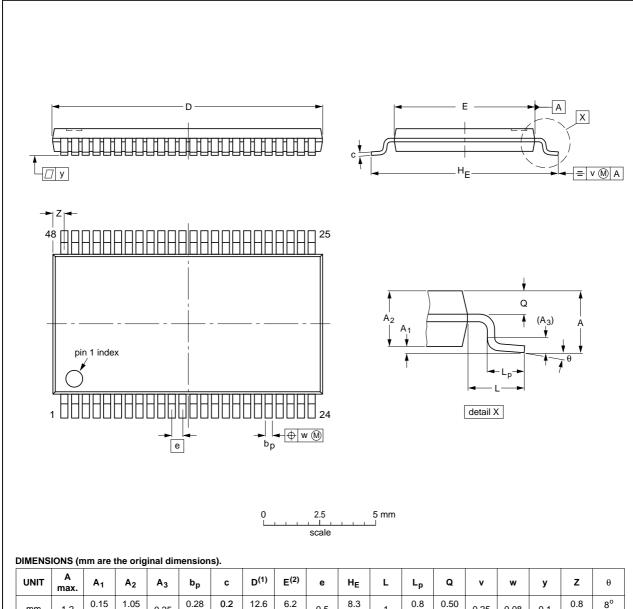
Test data are given in Table 11.

 $R_L$  = load resistance.

 $C_L$  = load capacitance includes jig and probe capacitance.

 $R_T$  = termination resistance should be equal to  $Z_o$  of pulse generators.

Fig 11. Test circuitry for switching times


Table 11. Test data

| Supply voltage V <sub>CC</sub> | Input    |                                 | Load  |                | Switch S1                           |                                     |                    |
|--------------------------------|----------|---------------------------------|-------|----------------|-------------------------------------|-------------------------------------|--------------------|
|                                | VI       | t <sub>r</sub> , t <sub>f</sub> | CL    | R <sub>L</sub> | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | $t_{PZL}, t_{PLZ}$ |
| 2.3 V to 2.7 V                 | $V_{CC}$ | ≤ 2.0 ns                        | 30 pF | $500 \Omega$   | open                                | GND (0 V)                           | $2\times V_{CC}$   |
| 2.7 V                          | 2.7 V    | ≤ 2.5 ns                        | 50 pF | $500 \Omega$   | open                                | GND (0 V)                           | $2\times V_{CC}$   |
| 3.0 V to 3.6 V                 | 2.7 V    | ≤ 2.5 ns                        | 50 pF | $500 \Omega$   | open                                | GND (0 V)                           | $2\times V_{CC}$   |

### 13. Package outline

### TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1



#### 0.15 1.05 1.2 mm 0.25 0.05 0.85

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

0.17

0.1

12.4

2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  | REFERENCES |        |       | EUROPEAN | ICCUE DATE |                                 |
|----------|------------|--------|-------|----------|------------|---------------------------------|
| VERSION  | IEC        | JEDEC  | JEITA |          | PROJECTION | ISSUE DATE                      |
| SOT362-1 |            | MO-153 |       |          |            | <del>99-12-27</del><br>03-02-19 |

0.5

7.9

0.4

0.25

0.08

0.1

0°

13 of 19

Fig 12. Package outline SOT362-1 (TSSOP48)

**Product data sheet** 

74ALVC162334A\_3 © Nexperia B.V. 2017. All rights reserved Rev. 03 — 13 December 2006

### 14. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

### 14.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

### 14.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus PbSn soldering

### 14.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

### 14.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 13</u>) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

| Package thickness (mm) | Package reflow temperature (°C) |       |  |
|------------------------|---------------------------------|-------|--|
|                        | Volume (mm³)                    |       |  |
|                        | < 350                           | ≥ 350 |  |
| < 2.5                  | 235                             | 220   |  |
| ≥ 2.5                  | 220                             | 220   |  |

Table 13. Lead-free process (from J-STD-020C)

| Package thickness (mm) | Package reflow temperature (°C) |             |        |  |  |
|------------------------|---------------------------------|-------------|--------|--|--|
|                        | Volume (mm³)                    |             |        |  |  |
|                        | < 350                           | 350 to 2000 | > 2000 |  |  |
| < 1.6                  | 260                             | 260         | 260    |  |  |
| 1.6 to 2.5             | 260                             | 250         | 245    |  |  |
| > 2.5                  | 250                             | 245         | 245    |  |  |

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 13.



For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

### 15. Abbreviations

Table 14. Abbreviations

| Acronym | Description                             |
|---------|-----------------------------------------|
| CMOS    | Complementary Metal Oxide Semiconductor |
| TTL     | Transistor-Transistor Logic             |

### 16. Revision history

Table 15. Revision history

| Document ID     | Release date                                                                                                                      | Data sheet status               | Change notice        | Supersedes        |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------------|--|--|
| 74ALVC162334A_3 | 20061213                                                                                                                          | Product data sheet              | -                    | 74ALVC162334A_2   |  |  |
| Modifications:  | <ul> <li>The format of this data sheet has been redesigned to comply with the new identity guidelines of<br/>Nexperia.</li> </ul> |                                 |                      |                   |  |  |
|                 | <ul> <li>Legal texts have been adapted to the new company name where appropriate.</li> </ul>                                      |                                 |                      |                   |  |  |
|                 | <ul> <li>Section 1 "General description", 1st paragraph, 2nd sentence: changed "OE" to "OE"</li> </ul>                            |                                 |                      |                   |  |  |
|                 | <ul> <li><u>Table 2 "Ordering information"</u>: changed (SOT364-1; TSSOP56) package to (SOT362-1;<br/>TSSOP48) package</li> </ul> |                                 |                      |                   |  |  |
|                 | • Table 3 "Pin description" corrected:                                                                                            |                                 |                      |                   |  |  |
|                 | <ul> <li>changed "Y<sub>1</sub> to Y<sub>18</sub>" to (Y1 to Y16, noted separately)</li> </ul>                                    |                                 |                      |                   |  |  |
|                 | <ul> <li>GND pins: added pins 4 and 39</li> <li>V<sub>CC</sub> pins changed from "7, 22, 35, 50" to "7, 18, 31, 42"</li> </ul>    |                                 |                      |                   |  |  |
|                 |                                                                                                                                   |                                 |                      |                   |  |  |
|                 | <ul> <li>changed "A<sub>1</sub> to A<sub>18</sub>" to (A1 to A16, noted separately)</li> </ul>                                    |                                 |                      |                   |  |  |
|                 | • Figure 1 "Logi                                                                                                                  | c symbol (IEEE/IEC)": corrected | I pin number for Y15 | from "21" to "22" |  |  |

 Table 15.
 Revision history ...continued

| Document ID                         | Release date                                                                                                                                                                                                                                               | Data sheet status                                          | Change notice            | Supersedes                    |  |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|-------------------------------|--|--|--|
| Modifications: (continued)          | <ul> <li>Figure 1 "Logic symbol (IEEE/IEC)": corrected pin number for Y15 from "21" to "22"</li> </ul>                                                                                                                                                     |                                                            |                          |                               |  |  |  |
|                                     | • Figure 2 "Logic diagram":                                                                                                                                                                                                                                |                                                            |                          |                               |  |  |  |
|                                     | <ul><li>changed signal "A<sub>0</sub>" to "A1"</li></ul>                                                                                                                                                                                                   |                                                            |                          |                               |  |  |  |
|                                     | <ul><li>changed signal "Y<sub>0</sub>" to "Y1"</li></ul>                                                                                                                                                                                                   |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li>changed "to the 17 other channels" to "to the 15 other channels"</li> </ul>                                                                                                                                                                       |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li><u>Table 5 "Limiting values"</u> (title changed from "Absolute maximum ratings"):</li> </ul>                                                                                                                                                      |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li>parameter definition of I<sub>IK</sub> changed from "DC input diode current" to "input clamping current"</li> </ul>                                                                                                                               |                                                            |                          |                               |  |  |  |
|                                     | <ul><li>paramete<br/>current"</li></ul>                                                                                                                                                                                                                    | er definition of I <sub>OK</sub> changed for               | om "DC output diode cu   | rrent" to "output clamping    |  |  |  |
|                                     | <ul> <li>symbol "I source cu</li> </ul>                                                                                                                                                                                                                    | O" (DC output source or sink<br>urrent)                    | current) changed to "IO( | sink/source)" (output sink or |  |  |  |
|                                     | <ul> <li>removed P<sub>tot</sub>/pack information for SSOP package</li> </ul>                                                                                                                                                                              |                                                            |                          |                               |  |  |  |
|                                     | • Table 7 "Static characteristics" (title changed from "DC electrical characteristics"):                                                                                                                                                                   |                                                            |                          |                               |  |  |  |
|                                     | <ul><li>changed symbol "I<sub>I</sub>" to "I<sub>LI</sub>"</li></ul>                                                                                                                                                                                       |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li>parameter definition of I<sub>OZ</sub> changed from "3-State output OFF-state current" to "OFF-state output current" (moved "3-state" to Conditions column)</li> </ul>                                                                            |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li>parameter definition of I<sub>CC</sub> changed from "quiescent supply current" to "supply current"</li> </ul>                                                                                                                                     |                                                            |                          |                               |  |  |  |
|                                     | – parameter definition of $\Delta I_{CC}$ changed from "additional quiescent supply current" to "additional supply current"                                                                                                                                |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li>added C<sub>i</sub>, C<sub>io</sub>, and C<sub>PD</sub> parameters</li> </ul>                                                                                                                                                                     |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li>Section 11 "Dynamic characteristics": table "AC characteristics for V<sub>CC</sub> = 3.0 V to 3.6 V range<br/>and V<sub>CC</sub> = 2.7 V" separated into 2 tables</li> </ul>                                                                      |                                                            |                          |                               |  |  |  |
|                                     | • Section 11.1 "AC waveforms":                                                                                                                                                                                                                             |                                                            |                          |                               |  |  |  |
|                                     | – 1st paragraph, $2^{nd}$ line: changed " $V_M = 1.5 V_{CC}$ " to " $V_M = 1.5 V$ "                                                                                                                                                                        |                                                            |                          |                               |  |  |  |
|                                     | <ul> <li>removed statement "V<sub>M</sub> = 0.5V<sub>CC</sub> at V<sub>CC</sub> = 2.3 V to 2.7 V." from Figure 5, Figure 6, Figure 7,</li> <li>Figure 8, Figure 9 and Figure 10 as redundant (depends on voltage as stated above these figures)</li> </ul> |                                                            |                          |                               |  |  |  |
|                                     |                                                                                                                                                                                                                                                            | Package outline": replaced S<br>ackage outline SOT362-1 (T |                          | ckage outline drawing with    |  |  |  |
| 74ALVC162334A_2<br>(9397 750 07246) | 20000620                                                                                                                                                                                                                                                   | Product specification                                      | 853-2197 23931           | 74ALVC162334A_1               |  |  |  |
| 74ALVC162334A_1<br>(9397 750 06963) | 20000314                                                                                                                                                                                                                                                   | Product specification                                      | 853-2197 23314           | -                             |  |  |  |

### 17. Legal information

#### 17.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

#### 17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

### 17.3 Disclaimers

**General** — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

**Suitability for use** — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

#### 17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 18. Contact information

For additional information, please visit: http://www.nexperia.com

For sales office addresses, send an email to: <a href="mailto:salesaddresses@nexperia.com">salesaddresses@nexperia.com</a>

### 19. Contents

| 1    | General description 1              |
|------|------------------------------------|
| 2    | Features                           |
| 3    | Quick reference data 2             |
| 4    | Ordering information 2             |
| 5    | Functional diagram 3               |
| 6    | Pinning information 4              |
| 6.1  | Pinning                            |
| 6.2  | Pin description 4                  |
| 7    | Functional description 6           |
| 7.1  | Function selection                 |
| 8    | Limiting values 7                  |
| 9    | Recommended operating conditions 7 |
| 10   | Static characteristics 8           |
| 11   | Dynamic characteristics 9          |
| 11.1 | AC waveforms                       |
| 12   | Test information                   |
| 13   | Package outline                    |
| 14   | Soldering                          |
| 14.1 | Introduction to soldering          |
| 14.2 | Wave and reflow soldering          |
| 14.3 | Wave soldering                     |
| 14.4 | Reflow soldering                   |
| 15   | Abbreviations                      |
| 16   | Revision history                   |
| 17   | Legal information 18               |
| 17.1 | Data sheet status                  |
| 17.2 | Definitions                        |
| 17.3 | Disclaimers                        |
| 17.4 | Trademarks18                       |
| 18   | Contact information                |
|      | Contact information                |

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 13 December 2006

<sup>©</sup> Nexperia B.V. 2017. All rights reserved

# 单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)