74LVC1G53 2-channel analog multiplexer/demultiplexer Rev. 11 — 16 January 2018

Product data sheet

General description 1

The 74LVC1G53 is a low-power, low-voltage, high-speed, Si-gate CMOS device.

The 74LVC1G53 provides one analog multiplexer/demultiplexer with a digital select input (S), two independent inputs/outputs (Y0 and Y1), a common input/output (Z) and an active LOW enable input (\overline{E}) . When pin \overline{E} is HIGH, the switch is turned off.

Schmitt trigger action at the select and enable inputs makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V.

Features and benefits 2

- Wide supply voltage range from 1.65 V to 5.5 V
- Very low ON resistance:
 - -7.5Ω (typical) at $V_{CC} = 2.7 V$
 - -6.5Ω (typical) at $V_{CC} = 3.3 V$
 - -6Ω (typical) at $V_{CC} = 5 V$
- · Switch current capability of 32 mA
- High noise immunity
- CMOS low power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD 78 Class I
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- · Control inputs accept voltages up to 5 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3 Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC1G53DP	-40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2
74LVC1G53DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74LVC1G53GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 x 1.95 x 0.5 mm	SOT833-1
74LVC1G53GF	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1 x 0.5 mm	SOT1089
74LVC1G53GM	-40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm	SOT902-2
74LVC1G53GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 x 1.0 x 0.35 mm	SOT1116
74LVC1G53GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1.0 x 0.35 mm	SOT1203

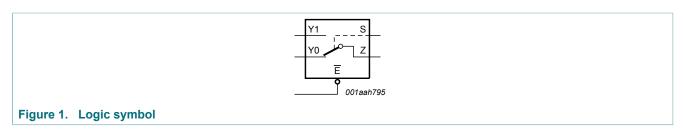
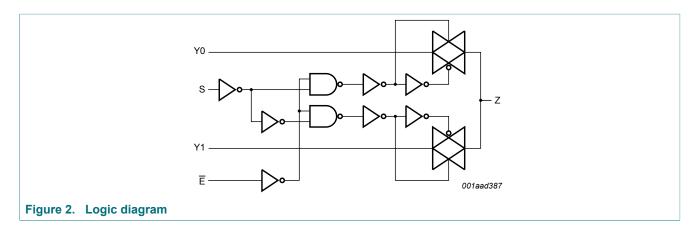

4 Marking

Table 2. Marking codes

Type number	Marking code ^[1]
74LVC1G53DC	V53
74LVC1G53DP	V53
74LVC1G53GT	V53
74LVC1G53GF	V3
74LVC1G53GM	V53
74LVC1G53GN	V3
74LVC1G53GS	V3

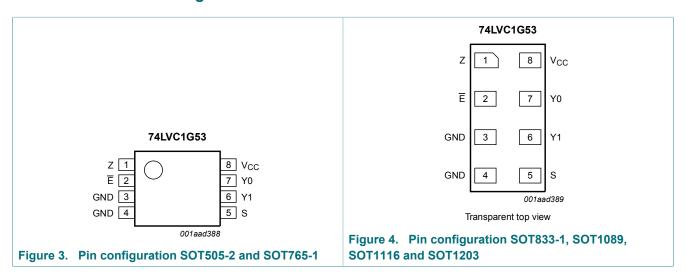
^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

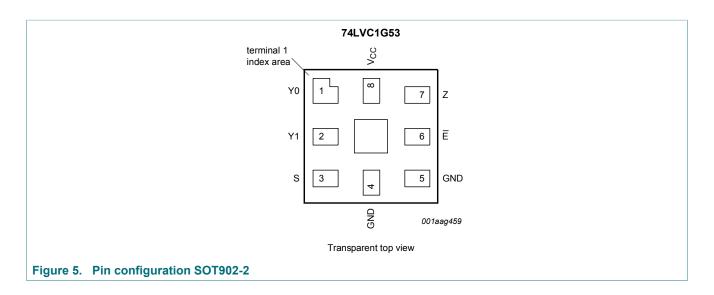
5 Functional diagram



74LVC1G53

All information provided in this document is subject to legal disclaimers.


Nexperia 74LVC1G53


2-channel analog multiplexer/demultiplexer

6 Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT505-2, SOT765-1, SOT833-1, SOT1089, SOT1116 and SOT1203	SOT902-2	
Z	1	7	common output or input
Ē	2	6	enable input (active LOW)
GND	3	5	ground (0 V)
GND	4	4	ground (0 V)
S	5	3	select input
Y1	6	2	independent input or output
Y0	7	1	independent input or output
V _{CC}	8	8	supply voltage

7 Functional description

Table 4. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care; \ Z = high-impedance \ OFF-state.$

Input		Channel on
S	E	
L	L	Y0 to Z or Z to Y0
Н	L	Y1 to Z or Z to Y1
Х	Н	Z (switch off)

Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
VI	input voltage		[1]	-0.5	+6.5	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$		-50	-	mA
I _{SK}	switch clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$		-	±50	mA
V _{SW}	switch voltage	enable and disable mode	[2]	-0.5	V _{CC} + 0.5	V
I _{SW}	switch current	$V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V}$		-	±50	mA
I _{CC}	supply current			-	100	mA
I_{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[3]	-	250	mW

Recommended operating conditions 9

Table 6. Operating conditions

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			1.65	5.5	V
VI	input voltage			0	5.5	V
V _{SW}	switch voltage	enable and disable mode	[1]	0	V_{CC}	V
T _{amb}	ambient temperature			-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 1.65 V to 2.7 V	[2]	-	20	ns/V
		V_{CC} = 2.7 V to 5.5 V	[2]	-	10	ns/V

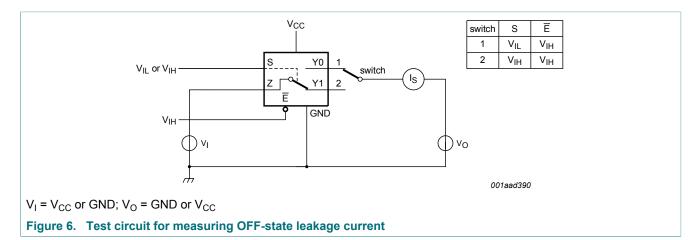
^[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch.

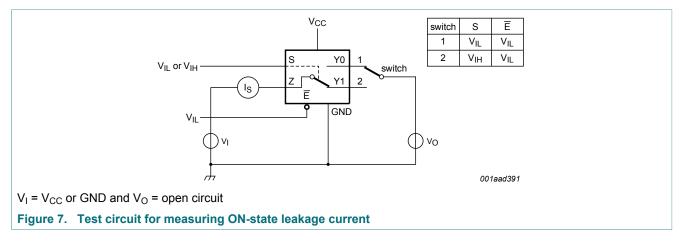
The minimum input voltage rating may be exceeded if the input current rating is observed. The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed. For TSSOP8 packages: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.

For VSSOP8 packages: above 110 °C the value of Ptot derates linearly with 8.0 mW/K. For XSON8 and XQFN8 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.

^[2] Applies to control signal levels.

10 Static characteristics


Table 7. Static characteristics


At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions		T _{amb} = -	40 °C to	+85 °C	T _{amb} = -40 °	C to +125 °C	Unit
				Min	Typ ^[1]	Max	Min	Max	
V_{IH}	HIGH-level	V _{CC} = 1.65 V to 1.95 V		0.65xV _{CC}	-	-	0.65xV _{CC}	-	V
	input voltage	V _{CC} = 2.3 V to 2.7 V		1.7	-	-	1.7	-	V
		V _{CC} = 3 V to 3.6 V		2.0	-	-	2.0	-	٧
l		V _{CC} = 4.5 V to 5.5 V		0.7xV _{CC}	-	-	0.7xV _{CC}	-	V
V_{IL}		V _{CC} = 1.65 V to 1.95 V		-	-	$0.35xV_{CC}$	-	0.35xV _{CC}	V
	voltage	V _{CC} = 2.3 V to 2.7 V		-	-	0.7	-	0.7	V
		V _{CC} = 3 V to 3.6 V		-	-	0.8	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V		-	-	0.3xV _{CC}	-	0.3xV _{CC}	V
I _I	input leakage current	pin S and pin E; V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	[2]	-	±0.1	±1	-	±1	μΑ
I _{S(OFF)}	OFF-state leakage current	V _{CC} = 5.5 V; see <u>Figure 6</u>	[2]	-	±0.1	±0.2	-	±0.5	μΑ
I _{S(ON)}	ON-state leakage current	V _{CC} = 5.5 V; see <u>Figure 7</u>	[2]	-	±0.1	±1	-	±2	μΑ
I _{CC}	supply current	V_I = 5.5 V or GND; V_{SW} = GND or V_{CC} ; V_{CC} = 1.65 V to 5.5 V	[2]	-	0.1	4	-	4	μΑ
ΔI _{CC}	additional supply current	pin S and pin \overline{E} ; $V_1 = V_{CC} - 0.6 \text{ V}$; $V_{SW} = \text{GND or } V_{CC}$; $V_{CC} = 5.5 \text{ V}$	[2]	-	5	500	-	5 00	μΑ
Cı	input capacitance			-	2.5	-	-	-	pF
C _{S(OFF)}	OFF-state capacitance			-	6.0	-	-	-	pF
C _{S(ON)}	ON-state capacitance			-	18	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C. [2] These typical values are measured at V_{CC} = 3.3 V.

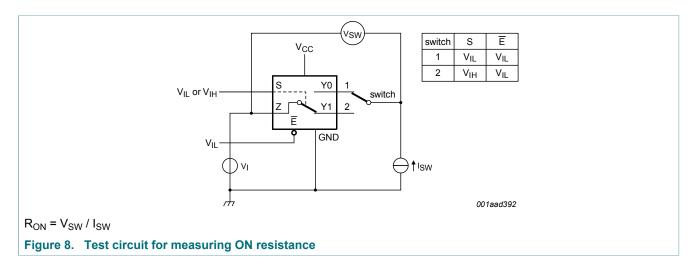
10.1 Test circuits

10.2 ON resistance

Table 8. ON resistance

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 9 to Figure 14.

Symbol	Parameter	Conditions	-40 °	°C to +8	5°C	-40 °C to	+125 °C	Unit
			Min	Typ ^[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	V _I = GND to V _{CC} ; see <u>Figure 8</u>						
		I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	34.0	130	-	195	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	12.0	30	-	45	Ω
		I _{SW} = 12 mA; V _{CC} = 2.7 V	-	10.4	25	-	38	Ω
		I _{SW} = 24 mA; V _{CC} = 3 V to 3.6 V	-	7.8	20	-	30	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	6.2	15	-	23	Ω


74LVC1G53

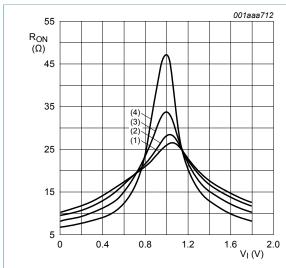
Product data sheet

All information provided in this document is subject to legal disclaimers.

Symbol	Parameter	Conditions	-40 °	°C to +8	5°C	-40 °C to	+125 °C	Unit
			Min	Typ ^[1]	Max	Min	Max	
R _{ON(rail)}	ON resistance (rail)	V _I = GND; see <u>Figure 8</u>						
		I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	8.2	18	-	27	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	7.1	16	-	24	Ω
		I _{SW} = 12 mA; V _{CC} = 2.7 V	-	6.9	14	-	21	Ω
		I _{SW} = 24 mA; V _{CC} = 3 V to 3.6 V	-	6.5	12	-	18	Ω
		I _{SW} = 32 mA; V _{CC} = 4.5 V to 5.5 V	-	5.8	10	-	15	Ω
		V _I = V _{CC} ; see <u>Figure 8</u>						
		I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	10.4	30	-	45	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	7.6	20	-	30	Ω
		I _{SW} = 12 mA; V _{CC} = 2.7 V	-	7.0	18	-	27	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	6.1	15	-	23	Ω
		I _{SW} = 32 mA; V _{CC} = 4.5 V to 5.5 V	-	4.9	10	-	15	Ω
R _{ON(flat)}	ON resistance	$V_I = GND \text{ to } V_{CC}$ [2]						
	(flatness)	I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	26.0	-	-	-	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	5.0	-	-	-	Ω
		I _{SW} = 12 mA; V _{CC} = 2.7 V	-	3.5	-	-	-	Ω
		I _{SW} = 24 mA; V _{CC} = 3 V to 3.6 V	-	2.0	-	-	-	Ω
		I _{SW} = 32 mA; V _{CC} = 4.5 V to 5.5 V	-	1.5	-	-	-	Ω


10.3 ON resistance test circuit and graphs

74LVC1G53


All information provided in this document is subject to legal disclaimers.

Typical values are measured at T_{amb} = 25 °C and nominal V_{CC}.
 Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

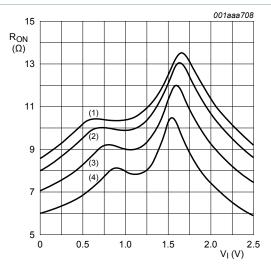

- (1) $V_{CC} = 1.8 \text{ V}$
- (2) $V_{CC} = 2.5 \text{ V}$
- $(3) V_{CC} = 2.7 V$
- (4) $V_{CC} = 3.3 \text{ V}$
- $(5) V_{CC} = 5.0 V$

Figure 9. Typical ON resistance as a function of input voltage; T_{amb} = 25 °C

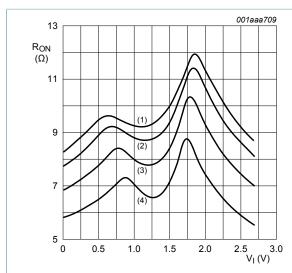

- (1) T_{amb} = 125 °C
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) T_{amb} = -40 °C

Figure 10. ON resistance as a function of input voltage; $V_{CC} = 1.8 \text{ V}$

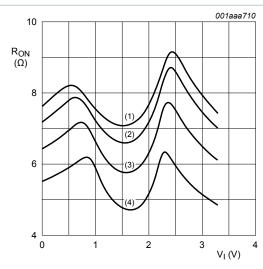

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) $T_{amb} = -40 \, ^{\circ}C$

Figure 11. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$

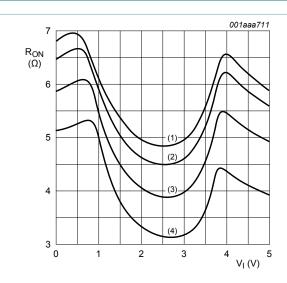

- (1) T_{amb} = 125 °C
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) $T_{amb} = -40 \, ^{\circ}C$

Figure 12. ON resistance as a function of input voltage; $V_{CC} = 2.7 \text{ V}$

- (1) T_{amb} = 125 °C
- (2) $T_{amb} = 85 \, ^{\circ}C$
- (3) T_{amb} = 25 °C
- (4) $T_{amb} = -40 \, ^{\circ}C$

Figure 13. ON resistance as a function of input voltage; V_{CC} = 3.3 V

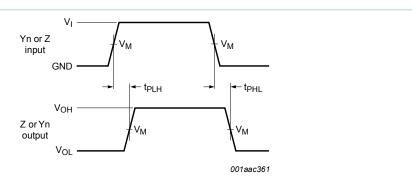
- (1) T_{amb} = 125 °C
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) T_{amb} = -40 °C

Figure 14. ON resistance as a function of input voltage; V_{CC} = 5.0 V

11 Dynamic characteristics

Table 9. Dynamic characteristics

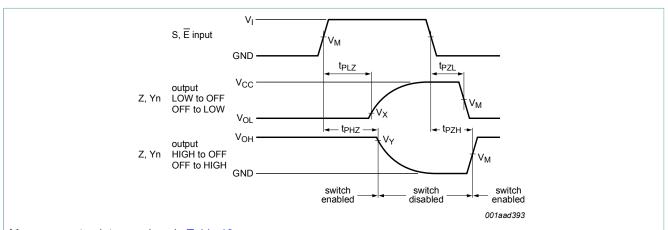
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 17.


Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ ^[1]	Max	Min	Max	
t _{pd}	propagation delay	Z to Yn or Yn to Z; see Figure 15 [2] [3]						
		V _{CC} = 1.65 V to 1.95 V	-	-	2	-	2.5	ns
		V _{CC} = 2.3 V to 2.7 V	-	-	1.2	-	1.5	ns
		V _{CC} = 2.7 V	-	-	1.0	-	1.25	ns
		V _{CC} = 3.0 V to 3.6 V	-	-	8.0	-	1.0	ns
		V _{CC} = 4.5 V to 5.5 V	-	-	0.6	-	0.8	ns
t _{en}	enable time	S to Z or Yn; see Figure 16 [2]						
		V _{CC} = 1.65 V to 1.95 V	2.6	6.7	10.3	2.6	12.9	ns
		V _{CC} = 2.3 V to 2.7 V	1.9	4.1	6.4	1.9	8.0	ns
		V _{CC} = 2.7 V	1.9	4.0	5.5	1.8	7.0	ns
		V _{CC} = 3.0 V to 3.6 V	1.8	3.4	5.0	1.8	6.3	ns
		V _{CC} = 4.5 V to 5.5 V	1.3	2.6	3.8	1.3	4.8	ns
		E to Z or Yn; see Figure 16 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.9	4.0	7.3	1.9	9.2	ns
		V _{CC} = 2.3 V to 2.7 V	1.4	2.5	4.4	1.4	5.5	ns
		V _{CC} = 2.7 V	1.1	2.6	3.9	1.1	4.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.2	2.2	3.8	1.2	4.8	ns
		V _{CC} = 4.5 V to 5.5 V	1.0	1.7	2.6	1.0	3.3	ns
t _{dis}	disable time	S to Z or Yn; see Figure 16 [2]						
		V _{CC} = 1.65 V to 1.95 V	2.1	6.8	10.0	2.1	12.5	ns
		V _{CC} = 2.3 V to 2.7 V	1.4	3.7	6.1	1.4	7.7	ns
		V _{CC} = 2.7 V	1.4	4.9	6.2	1.4	7.8	ns
		V _{CC} = 3.0 V to 3.6 V	1.1	4.0	5.4	1.1	6.8	ns
		V _{CC} = 4.5 V to 5.5 V	1.0	2.9	3.8	1.0	4.8	ns
		E to Z or Yn; see Figure 16						
		V _{CC} = 1.65 V to 1.95 V	2.3	5.6	8.6	2.3	11.0	ns
		V _{CC} = 2.3 V to 2.7 V	1.2	3.2	4.8	1.2	6.0	ns
		V _{CC} = 2.7 V	1.4	4.0	5.2	1.4	6.5	ns
		V _{CC} = 3.0 V to 3.6 V	2.0	3.7	5.0	2.0	6.3	ns
		V _{CC} = 4.5 V to 5.5 V	1.3	2.9	3.8	1.3	4.8	ns

74LVC1G53

All information provided in this document is subject to legal disclaimers.

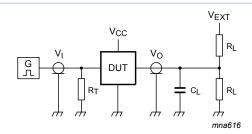
Typical values are measured at T_{amb} = 25 °C and nominal V_{CC}.
 t_{pd} is the same as t_{PLH} and t_{PHL}; t_{en} is the same as t_{PZH} and t_{PZL}; t_{dis} is the same as t_{PLZ} and t_{PHZ}
 Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).


11.1 Waveforms and test circuits

Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 15. Input (Yn or Z) to output (Z or Yn) propagation delays


Measurement points are given in Table 10.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 16. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output		
V _{CC}	V _M	V _M	V _X	V _Y
1.65 V to 2.7 V	0.5 x V _{CC}	0.5 x V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V
2.7 V to 5.5 V	0.5 x V _{CC}	0.5 x V _{CC}	V _{OL} + 0.3 V	V _{OH} - 0.3 V

Test data is given in Table 11.

Definitions test circuit:

 R_T = Termination resistance (should be equal to output impedance Z_0 of the pulse generator).

 C_L = Load capacitance (including jig and probe capacitance).

R_L = Load resistance.

 V_{EXT} = External voltage for measuring switching times.

Figure 17. Test circuit for measuring switching times

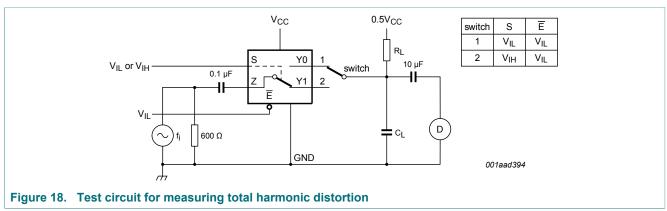
Table 11. Test data

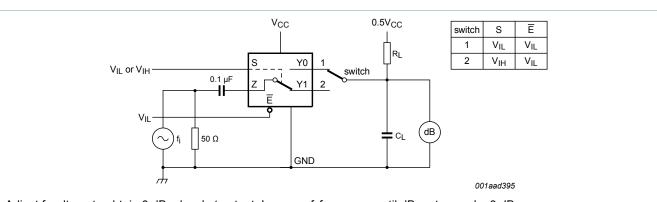
Supply voltage	Input		Load			V _{EXT}			
V _{CC}	Vı	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t_{PZL}, t_{PLZ}		
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open	GND	2 × V _{CC}		
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	GND	2 × V _{CC}		
2.7 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open	GND	2 × V _{CC}		
3 V to 3.6 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open	GND	2 × V _{CC}		
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open	GND	2 × V _{CC}		

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

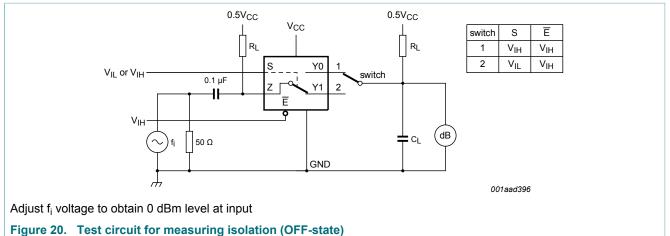

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	f_i = 600 Hz to 20 kHz; R _L = 600 Ω ; C _L = 50 pF; V _I = 0.5 V (p-p); see <u>Figure 18</u>				
		V _{CC} = 1.65 V	-	0.260	-	%
		V _{CC} = 2.3 V	-	0.078	-	%
		V _{CC} = 3.0 V	-	0.078	-	%
		V _{CC} = 4.5 V	-	0.078	-	%
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; $C_L = 5 pF$; see Figure 19				
		V _{CC} = 1.65 V	-	200	-	MHz
		V _{CC} = 2.3 V	-	300	-	MHz
		V _{CC} = 3.0 V	-	300	-	MHz
		V _{CC} = 4.5 V	-	300	-	MHz

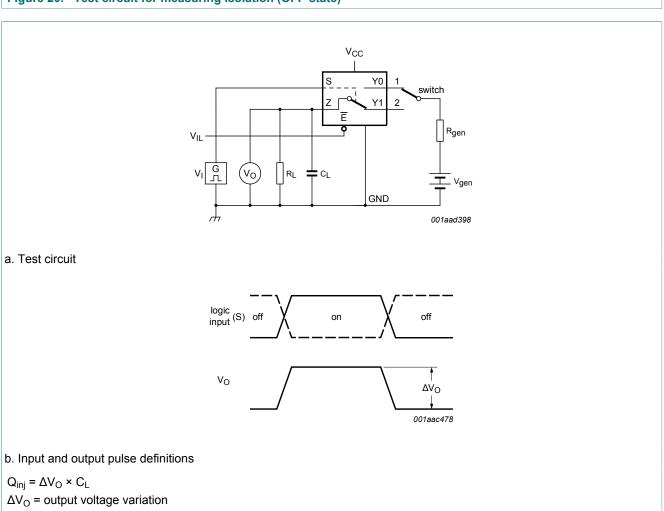

74LVC1G53

All information provided in this document is subject to legal disclaimers.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\alpha_{\rm iso}$	isolation (OFF-state)	R_L = 50 Ω ; C_L = 5 pF; f_i = 10 MHz; see Figure 20				
		V _{CC} = 1.65 V	-	-42	-	dB
		V _{CC} = 2.3 V	-	-42	-	dB
		V _{CC} = 3.0 V	-	-40	-	dB
		V _{CC} = 4.5 V	-	-40	-	dB
Q _{inj}	charge injection	C_L = 0.1 nF; V_{gen} = 0 V; R_{gen} = 0 Ω ; f_i = 1 MHz; R_L = 1 M Ω ; see <u>Figure 21</u>				
		V _{CC} = 1.8 V	-	3.3	-	pC
		V _{CC} = 2.5 V	-	4.1	-	рС
		V _{CC} = 3.3 V	-	5.0	-	рС
		V _{CC} = 4.5 V	-	6.4	-	pC
		V _{CC} = 5.5 V	-	7.5	-	pC

11.3 Test circuits





Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB Figure 19. Test circuit for measuring the frequency response when switch is in ON-state

74LVC1G53

All information provided in this document is subject to legal disclaimers.

R_{gen} = generator resistance

V_{gen} = generator voltage

Figure 21. Test circuit for measuring charge injection

12 Package outline

Figure 22. Package outline SOT505-2 (TSSOP8)

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2018. All rights reserved.

02-01-16

 \bigcirc

SOT505-2

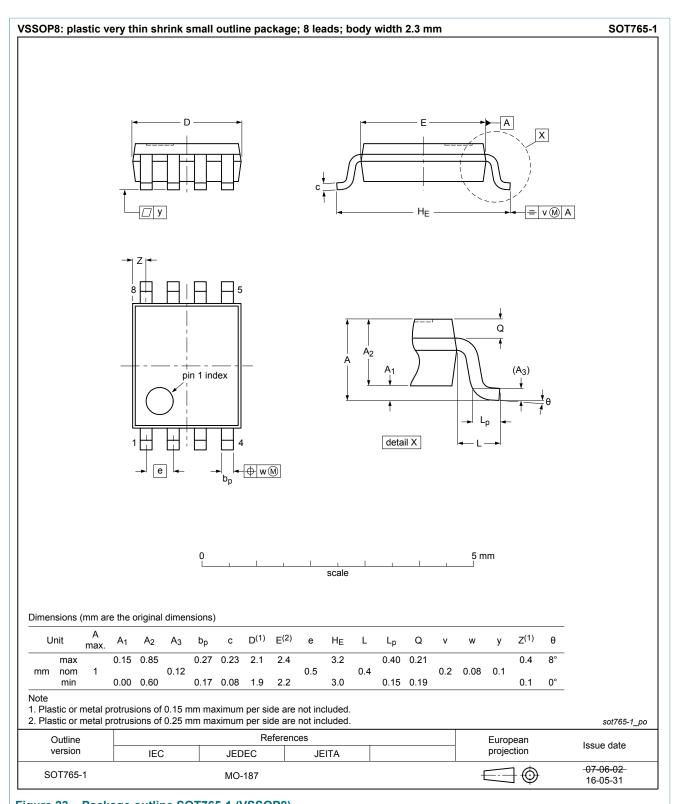


Figure 23. Package outline SOT765-1 (VSSOP8)

74LVC1G53

All information provided in this document is subject to legal disclaimers.

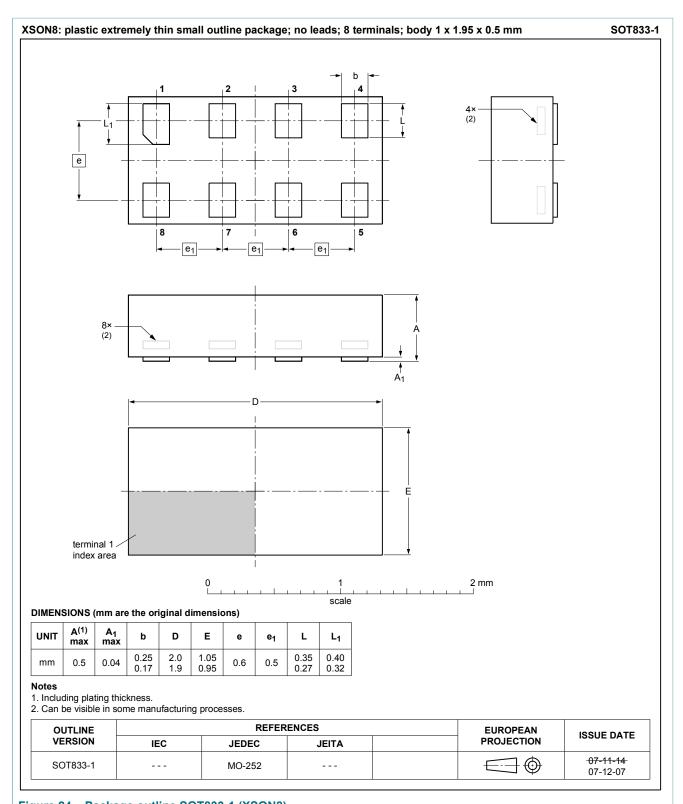
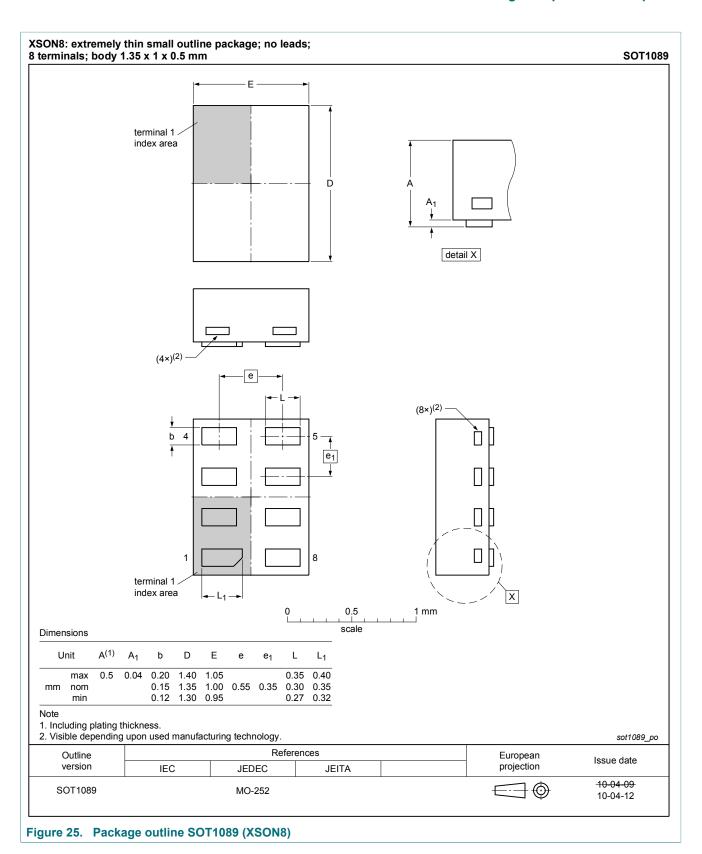
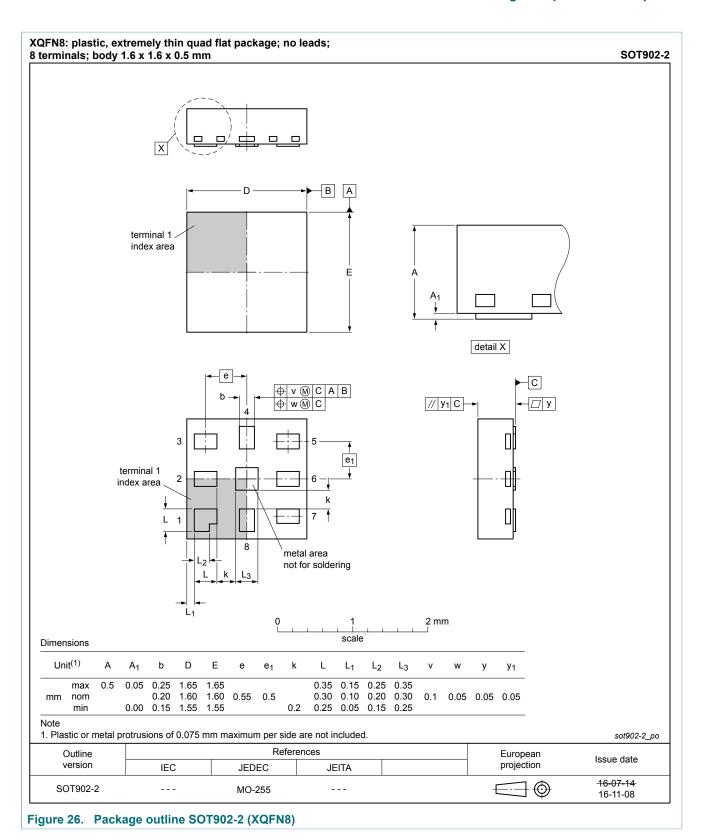
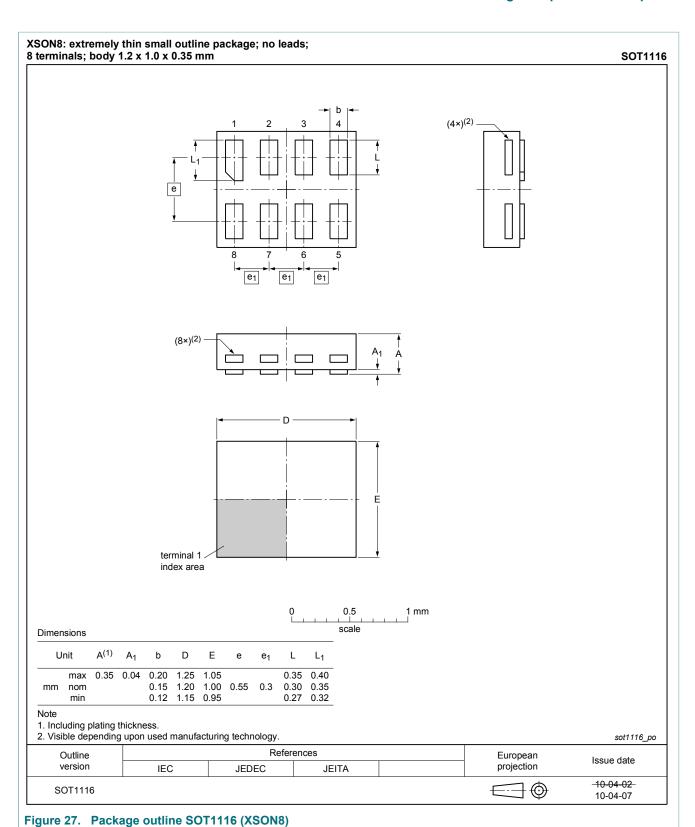
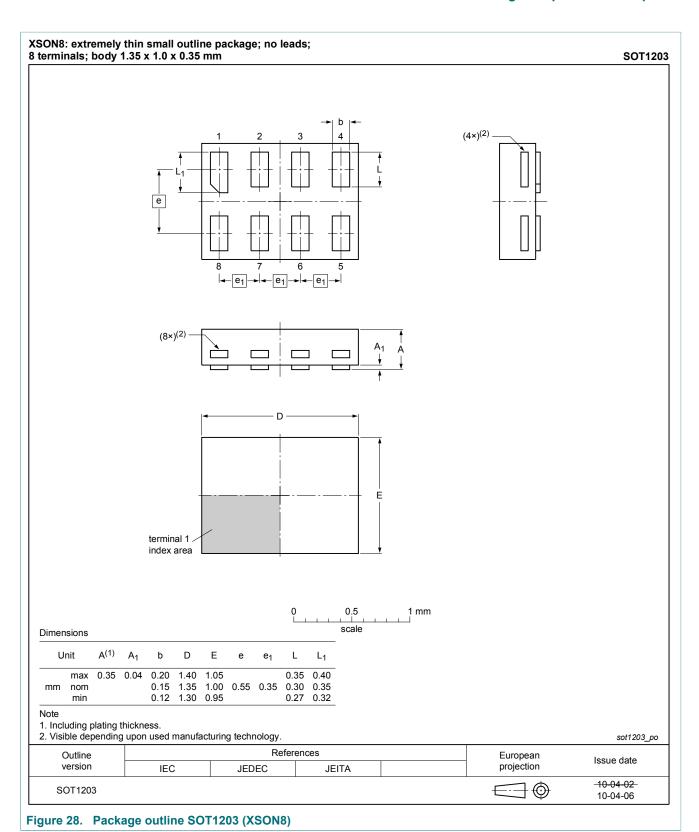




Figure 24. Package outline SOT833-1 (XSON8)


74LVC1G53

All information provided in this document is subject to legal disclaimers.


74LVC1G53

All information provided in this document is subject to legal disclaimers.

74LVC1G53

All information provided in this document is subject to legal disclaimers.

74LVC1G53

All information provided in this document is subject to legal disclaimers.

13 Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
TTL	Transistor-Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
CDM	Charged Device Model
DUT	Device Under Test

14 Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G53 v.11	20180116	Product data sheet	-	74LVC1G53 v.10
Modifications:	Nexperia. • Legal texts ha	this data sheet has been redesive been adapted to the new cor74LVC1G53GD (SOT996-2 / X	mpany name where	
74LVC1G53 v.10	20161207	Product data sheet	-	74LVC1G53 v.9
Modifications:	• Table 7: The n	naximum limits for leakage curre	ent and supply curre	nt have changed.
74LVC1G53 v.9	20130405	Product data sheet	-	74LVC1G53 v.8
Modifications:	For type numb	per 74LVC1G53GD XSON8U ha	as changed to XSON	8.
74LVC1G53 v.8	20120622	Product data sheet	-	74LVC1G53 v.7
Modifications:	For type numb	per 74LVC1G53GM the SOT co	de has changed to S	OT902-2.
74LVC1G53 v.7	20111206	Product data sheet	-	74LVC1G53 v.6
Modifications:	Legal pages u	pdated.		
74LVC1G53 v.6	20100621	Product data sheet	-	74LVC1G53 v.5
74LVC1G53 v.5	20080611	Product data sheet	-	74LVC1G53 v.4
74LVC1G53 v.4	20080303	Product data sheet	-	74LVC1G53 v.3
74LVC1G53 v.3	20070829	Product data sheet	-	74LVC1G53 v.2
74LVC1G53 v.2	20060410	Product data sheet	-	74LVC1G53 v.1
74LVC1G53 v.1	20060110	Product data sheet	-	-

15 Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions". [2] [3]
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support. life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

All information provided in this document is subject to legal disclaimers.

Nexperia 74LVC1G53

2-channel analog multiplexer/demultiplexer

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1	General description	1
2	Features and benefits	
3	Ordering information	2
4	Marking	2
5	Functional diagram	2
6	Pinning information	3
6.1	Pinning	
6.2	Pin description	
7	Functional description	4
8	Limiting values	5
9	Recommended operating conditions	5
10	Static characteristics	6
10.1	Test circuits	7
10.2	ON resistance	7
10.3	ON resistance test circuit and graphs	8
11	Dynamic characteristics	11
11.1	Waveforms and test circuits	12
11.2	Additional dynamic characteristics	13
11.3	Test circuits	
12	Package outline	16
13	Abbreviations	23
14	Revision history	23
15	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Nexperia B.V. 2018.

All rights reserved.

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com 单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)