# 74AUP1G74-Q100

Low-power D-type flip-flop with set and reset; positive-edge trigger

Rev. 4.1 — 9 August 2024

**Product data sheet** 

## 1. General description

The 74AUP1G74-Q100 is a single positive edge triggered D-type flip-flop with individual data (D), clock (CP), set ( $\overline{SD}$ ) and reset ( $\overline{RD}$ ) inputs, and complementary Q and  $\overline{Q}$  outputs. Data at the D-input that meets the set-up and hold time requirements on the LOW-to-HIGH clock transition will be stored in the flip-flop and appear at the Q output.

Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.

This device ensures very low static and dynamic power consumption across the entire  $V_{CC}$  range from 0.8 V to 3.6 V.

This device is fully specified for partial power down applications using  $I_{OFF}$ . The  $I_{OFF}$  circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

#### 2. Features and benefits

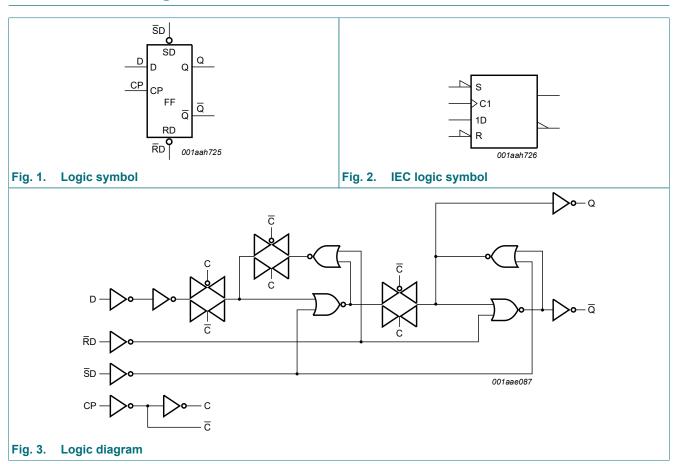
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
  - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 0.8 V to 3.6 V
- CMOS low power dissipation
- High noise immunity
- Overvoltage tolerant inputs to 3.6 V
- Low static power consumption; I<sub>CC</sub> = 0.9 μA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Low noise overshoot and undershoot < 10 % of V<sub>CC</sub>
- I<sub>OFF</sub> circuitry provides partial Power-down mode operation
- Complies with JEDEC standards:
  - JESD8-12 (0.8 V to 1.3 V)
  - JESD8-11 (0.9 V to 1.65 V)
  - JESD8-7 (1.2 V to 1.95 V)
  - JESD8-5 (1.8 V to 2.7 V)
  - JESD8C (2.7 V to 3.6 V)
- ESD protection:
  - HBM: ANSI/ESDA/JEDEC JS-001 class 3A exceeds 5000 V
  - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V



# 3. Ordering information

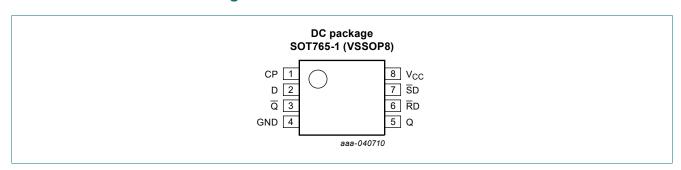
**Table 1. Ordering information** 

| Type number      | Package                            | ckage |                                                                               |          |  |  |  |  |  |  |
|------------------|------------------------------------|-------|-------------------------------------------------------------------------------|----------|--|--|--|--|--|--|
|                  | Temperature range Name Description |       |                                                                               |          |  |  |  |  |  |  |
| 74AUP1G74DC-Q100 | -40 °C to +125 °C                  |       | plastic very thin shrink small outline package;<br>8 leads; body width 2.3 mm | SOT765-1 |  |  |  |  |  |  |


# 4. Marking

### Table 2. Marking codes

| Type number      | Marking code[1] |
|------------------|-----------------|
| 74AUP1G74DC-Q100 | p74             |


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

# 5. Functional diagram



# 6. Pinning information

### 6.1. Pinning



## 6.2. Pin description

Table 3. Pin description

| Symbol          | Pin | Description                           |  |  |  |
|-----------------|-----|---------------------------------------|--|--|--|
| СР              | 1   | clock input                           |  |  |  |
| D               | 2   | data input                            |  |  |  |
| Q               | 3   | complement output                     |  |  |  |
| GND             | 4   | ground (0 V)                          |  |  |  |
| Q               | 5   | true output                           |  |  |  |
| RD              | 6   | asynchronous reset input (active LOW) |  |  |  |
| SD              | 7   | asynchronous set input (active LOW)   |  |  |  |
| V <sub>CC</sub> | 8   | supply voltage                        |  |  |  |

# 7. Functional description

#### Table 4. Function table for asynchronous operation

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care.$ 

| Input |   |    |   | Output |   |  |
|-------|---|----|---|--------|---|--|
| SD RD |   | СР | D | Q      | Q |  |
| L     | Н | X  | Х | Н      | L |  |
| Н     | L | Х  | Х | L      | Н |  |
| L     | L | X  | Х | Н      | Н |  |

### Table 5. Function table for synchronous operation

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ \uparrow = LOW - to - HIGH \ CP \ transition;$ 

 $\overline{Q}_{n+1}$ ,  $Q_{n+1}$  = state after the next LOW-to-HIGH CP transition.

| Input |   | Output   |   |                  |                  |
|-------|---|----------|---|------------------|------------------|
| SD RD |   | СР       | D | Q <sub>n+1</sub> | Q <sub>n+1</sub> |
| Н     | Н | <b>↑</b> | L | L                | Н                |
| Н     | Н | 1        | Н | Н                | L                |

# 8. Limiting values

#### Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                              | Min  | Max  | Unit |
|------------------|-------------------------|-----------------------------------------|------|------|------|
| V <sub>CC</sub>  | supply voltage          |                                         | -0.5 | +4.6 | V    |
| VI               | input voltage           | [1]                                     | -0.5 | +4.6 | V    |
| Vo               | output voltage          | Active mode and Power-down mode [1]     | -0.5 | +4.6 | V    |
| I <sub>IK</sub>  | input clamping current  | V <sub>I</sub> < 0 V                    | -50  | -    | mA   |
| I <sub>OK</sub>  | output clamping current | V <sub>O</sub> < 0 V                    | -50  | -    | mA   |
| Io               | output current          | V <sub>O</sub> = 0 V to V <sub>CC</sub> | -    | ±20  | mA   |
| I <sub>CC</sub>  | supply current          |                                         | -    | +50  | mA   |
| I <sub>GND</sub> | ground current          |                                         | -50  | -    | mA   |
| T <sub>stg</sub> | storage temperature     |                                         | -65  | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | T <sub>amb</sub> = -40 °C to +125 °C    |      |      |      |
|                  |                         | SOT765-1 (VSSOP8) [2]                   | -    | 250  | mW   |

<sup>[1]</sup> The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

# 9. Recommended operating conditions

**Table 7. Operating conditions** 

| Symbol           | Parameter                           | Conditions                             | Min | Max             | Unit |
|------------------|-------------------------------------|----------------------------------------|-----|-----------------|------|
| V <sub>CC</sub>  | supply voltage                      |                                        | 0.8 | 3.6             | V    |
| VI               | input voltage                       |                                        | 0   | 3.6             | V    |
| Vo               | output voltage                      | Active mode                            | 0   | V <sub>CC</sub> | V    |
|                  |                                     | Power-down mode; V <sub>CC</sub> = 0 V | 0   | 3.6             | V    |
| T <sub>amb</sub> | ambient temperature                 |                                        | -40 | +125            | °C   |
| Δt/ΔV            | input transition rise and fall rate | V <sub>CC</sub> = 0.8 V to 3.6 V       | -   | 200             | ns/V |

## 10. Static characteristics

#### **Table 8. Static characteristics**

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                  | Parameter                | Conditions                                                                                                                       | Min                    | Тур | Max                    | Unit |
|-------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|------------------------|------|
| T <sub>amb</sub> = 25   | °C                       |                                                                                                                                  |                        |     |                        |      |
| T <sub>amb</sub> = 25 ° | HIGH-level input voltage | V <sub>CC</sub> = 0.8 V                                                                                                          | 0.70 × V <sub>CC</sub> | -   | -                      | V    |
|                         |                          | $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $0.65 \times V_{CC}$ $0.65 \times V_{CC}$ |                        | -   | V                      |      |
|                         |                          | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                                                 | 1.6                    | -   | -                      | V    |
|                         |                          | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                                                 | 2.0                    | -   | -                      | V    |
| $V_{IL}$                | LOW-level input voltage  | V <sub>CC</sub> = 0.8 V                                                                                                          | -                      | -   | 0.30 × V <sub>CC</sub> | V    |
|                         |                          | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                                                | -                      | -   | 0.35 × V <sub>CC</sub> | V    |
|                         |                          | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                                                 | -                      | -   | 0.7                    | V    |
|                         |                          | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                                                 | -                      | -   | 0.9                    | V    |

<sup>[2]</sup> For SOT765-1 (VSSOP8) package: Ptot derates linearly with 4.9 mW/K above 99 °C.

| Symbol            | Parameter                               | Conditions                                                                                       | Min                    | Тур                                                            | Max                   | Unit |
|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------|-----------------------|------|
| V <sub>OH</sub>   | HIGH-level output voltage               | $V_I = V_{IH}$ or $V_{IL}$                                                                       |                        |                                                                |                       |      |
| V <sub>OL</sub>   |                                         | $I_{O}$ = -20 $\mu$ A; $V_{CC}$ = 0.8 $V$ to 3.6 $V$                                             | V <sub>CC</sub> - 0.1  | -                                                              | -                     | V    |
|                   |                                         | I <sub>O</sub> = -1.1 mA; V <sub>CC</sub> = 1.1 V                                                | 0.75 × V <sub>CC</sub> | -                                                              | -                     | V    |
|                   |                                         | I <sub>O</sub> = -1.7 mA; V <sub>CC</sub> = 1.4 V                                                | 1.11                   | -                                                              | -                     | V    |
|                   |                                         | $I_{O}$ = -1.9 mA; $V_{CC}$ = 1.65 V                                                             | 1.32                   | -                                                              | -                     | V    |
|                   |                                         | $I_{O}$ = -2.3 mA; $V_{CC}$ = 2.3 V                                                              | 2.05                   | -                                                              | -                     | V    |
|                   |                                         | $I_{O}$ = -3.1 mA; $V_{CC}$ = 2.3 V                                                              | 1.9                    | -                                                              | -                     | V    |
|                   |                                         | $I_{O}$ = -2.7 mA; $V_{CC}$ = 3.0 V                                                              | 2.72                   | -                                                              | -                     | V    |
|                   |                                         | $I_{O}$ = -4.0 mA; $V_{CC}$ = 3.0 V                                                              | 2.6                    | -                                                              | -                     | V    |
| V <sub>OL</sub>   | LOW-level output voltage                | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>                                              |                        | $75 \times V_{CC}$ V<br>1.11 V<br>1.32 V<br>2.05 V<br>2.72 - V |                       |      |
|                   |                                         | $I_{O}$ = 20 $\mu$ A; $V_{CC}$ = 0.8 V to 3.6 V                                                  | -                      | -                                                              | 0.1                   | V    |
|                   |                                         | I <sub>O</sub> = 1.1 mA; V <sub>CC</sub> = 1.1 V                                                 | -                      | -                                                              | 0.3 × V <sub>CC</sub> | V    |
|                   |                                         | I <sub>O</sub> = 1.7 mA; V <sub>CC</sub> = 1.4 V                                                 | -                      | -                                                              | 0.31                  | V    |
|                   |                                         | I <sub>O</sub> = 1.9 mA; V <sub>CC</sub> = 1.65 V                                                | -                      | -                                                              | 0.31                  | V    |
|                   |                                         | $I_{O}$ = 2.3 mA; $V_{CC}$ = 2.3 V                                                               | -                      | -                                                              | 0.31                  | V    |
|                   |                                         | I <sub>O</sub> = 3.1 mA; V <sub>CC</sub> = 2.3 V                                                 | -                      | -                                                              | 0.44                  | V    |
|                   |                                         | I <sub>O</sub> = 2.7 mA; V <sub>CC</sub> = 3.0 V                                                 | -                      | -                                                              | 0.31                  | V    |
|                   |                                         | I <sub>O</sub> = 4.0 mA; V <sub>CC</sub> = 3.0 V                                                 | -                      | -                                                              | 0.44                  | V    |
| l <sub>l</sub>    | input leakage current                   | $V_I$ = GND to 3.6 V; $V_{CC}$ = 0 V to 3.6 V                                                    | -                      | -                                                              | ±0.1                  | μΑ   |
| l <sub>OFF</sub>  | power-off leakage current               | $V_{I}$ or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$                                | -                      | -                                                              | ±0.2                  | μΑ   |
| Δl <sub>OFF</sub> | additional power-off<br>leakage current | V <sub>I</sub> or V <sub>O</sub> = 0 V to 3.6 V;<br>V <sub>CC</sub> = 0 V to 0.2 V               | -                      | -                                                              | ±0.2                  | μΑ   |
| I <sub>CC</sub>   | supply current                          | $V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$<br>$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$ | -                      | -                                                              | 0.5                   | μΑ   |
| ΔI <sub>CC</sub>  | additional supply current               | $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ [1] $V_{CC} = 3.3 \text{ V}; \text{ per pin}$ | -                      | -                                                              | 40                    | μΑ   |
| Cı                | input capacitance                       | $V_{CC}$ = 0 V to 3.6 V; $V_I$ = GND or $V_{CC}$                                                 | -                      | 0.6                                                            | -                     | pF   |
| Co                | output capacitance                      | V <sub>O</sub> = GND; V <sub>CC</sub> = 0 V                                                      | -                      | 1.3                                                            | -                     | pF   |

| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parameter                            | Conditions                                                                                       | Min                    | Тур | Max                    | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|-----|------------------------|------|
| T <sub>amb</sub> = -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 °C to +85 °C                       |                                                                                                  |                        |     |                        |      |
| V <sub>IH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HIGH-level input voltage             | V <sub>CC</sub> = 0.8 V                                                                          | 0.70 × V <sub>CC</sub> | -   | -                      | V    |
| V <sub>IL</sub> VOH VOL VOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                | 0.65 × V <sub>CC</sub> | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                 | 1.6                    | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | input voltage $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                            | -                      | V   |                        |      |
| V <sub>IL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOW-level input voltage              | V <sub>CC</sub> = 0.8 V                                                                          | -                      | -   | 0.30 × V <sub>CC</sub> | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                | -                      | -   | 0.35 × V <sub>CC</sub> | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                 | -                      | -   | 0.7                    | V    |
| V <sub>ОН</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                 | -                      | -   | 0.9                    | V    |
| $\begin{array}{c} V_{IL} \\ V_{CC} = 0.8 \ V \\ V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.8 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.8 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.8 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.1 \ V_{CC} = 0.8 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.1 \ V_{CC} = 0.1 $ |                                      |                                                                                                  |                        |     |                        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = -20 $\mu$ A; $V_{CC}$ = 0.8 V to 3.6 V                                                 | V <sub>CC</sub> - 0.1  | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = -1.1 mA; $V_{CC}$ = 1.1 V                                                              | $0.7 \times V_{CC}$    | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = -1.7 mA; $V_{CC}$ = 1.4 V                                                              | 1.03                   | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = -1.9 mA; $V_{CC}$ = 1.65 V                                                             | 1.30                   | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = -2.3 mA; $V_{CC}$ = 2.3 V                                                              | 1.97                   | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_O = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                  | 1.85                   | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = -2.7 mA; $V_{CC}$ = 3.0 V                                                              | 2.67                   | -   | -                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                  | 2.55                   | -   | -                      | V    |
| V <sub>OL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOW-level output voltage             | $V_{I} = V_{IH}$ or $V_{IL}$                                                                     |                        |     |                        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = 20 $\mu$ A; $V_{CC}$ = 0.8 V to 3.6 V                                                  | -                      | -   | 0.1                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | I <sub>O</sub> = 1.1 mA; V <sub>CC</sub> = 1.1 V                                                 | -                      | -   | $0.3 \times V_{CC}$    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | I <sub>O</sub> = 1.7 mA; V <sub>CC</sub> = 1.4 V                                                 | -                      | -   | 0.37                   | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | I <sub>O</sub> = 1.9 mA; V <sub>CC</sub> = 1.65 V                                                | -                      | -   | 0.35                   | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                   | -                      | -   | 0.33                   | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = 3.1 mA; $V_{CC}$ = 2.3 V                                                               | -                      | -   | 0.45                   | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = 2.7 mA; $V_{CC}$ = 3.0 V                                                               | -                      | -   | 0.33                   | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $I_{O}$ = 4.0 mA; $V_{CC}$ = 3.0 V                                                               | -                      | -   | 0.45                   | V    |
| l <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | input leakage current                | $V_{I}$ = GND to 3.6 V; $V_{CC}$ = 0 V to 3.6 V                                                  | -                      | -   | ±0.5                   | μΑ   |
| I <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | power-off leakage current            | $V_{I}$ or $V_{O} = 0$ V to 3.6 V; $V_{CC} = 0$ V                                                | -                      | -   | ±0.5                   | μA   |
| ΔI <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | additional power-off leakage current | $V_1$ or $V_0 = 0$ V to 3.6 V;<br>$V_{CC} = 0$ V to 0.2 V                                        | -                      | -   | ±0.6                   | μΑ   |
| I <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | supply current                       | $V_{I}$ = GND or $V_{CC}$ ; $I_{O}$ = 0 A; $V_{CC}$ = 0.8 V to 3.6 V                             | -                      | -   | 0.9                    | μΑ   |
| ΔI <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | additional supply current            | $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ [1] $V_{CC} = 3.3 \text{ V}; \text{ per pin}$ | -                      | -   | 50                     | μΑ   |

| Symbol                | Parameter                               | Conditions                                                                                       | Min                                                                                                                                                                     | Тур | Max                    | Unit |
|-----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------|------|
| T <sub>amb</sub> = -4 | 0 °C to +125 °C                         |                                                                                                  |                                                                                                                                                                         |     |                        | 1    |
| V <sub>IH</sub>       | HIGH-level input voltage                | V <sub>CC</sub> = 0.8 V                                                                          | 0.75 × V <sub>CC</sub>                                                                                                                                                  | -   | -                      | V    |
|                       |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                | 0.70 × V <sub>CC</sub>                                                                                                                                                  | -   | -                      | V    |
|                       |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                 | 1.6                                                                                                                                                                     | -   | -                      | V    |
|                       |                                         | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                 | 0.75 × V <sub>CC</sub>   -                                                                                                                                              | V   |                        |      |
| V <sub>IL</sub>       | LOW-level input voltage                 | V <sub>CC</sub> = 0.8 V                                                                          | -                                                                                                                                                                       | -   | 0.25 × V <sub>CC</sub> | V    |
|                       |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                | -                                                                                                                                                                       | -   | 0.30 × V <sub>CC</sub> | V    |
|                       |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                 | -                                                                                                                                                                       | -   | 0.7                    | V    |
|                       |                                         | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                 | -                                                                                                                                                                       | -   | 0.9                    | V    |
| V <sub>ОН</sub>       | HIGH-level output voltage               | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>                                              |                                                                                                                                                                         |     |                        |      |
|                       |                                         | $I_{O}$ = -20 $\mu$ A; $V_{CC}$ = 0.8 $V$ to 3.6 $V$                                             | V <sub>CC</sub> - 0.11                                                                                                                                                  | -   | -                      | V    |
|                       |                                         | I <sub>O</sub> = -1.1 mA; V <sub>CC</sub> = 1.1 V                                                | 0.6 × V <sub>CC</sub>                                                                                                                                                   | -   | -                      | V    |
|                       |                                         | I <sub>O</sub> = -1.7 mA; V <sub>CC</sub> = 1.4 V                                                | 0.93                                                                                                                                                                    | -   | -                      | V    |
|                       |                                         | I <sub>O</sub> = -1.9 mA; V <sub>CC</sub> = 1.65 V                                               | 1.17                                                                                                                                                                    | -   | -                      | V    |
|                       |                                         | $I_{O}$ = -2.3 mA; $V_{CC}$ = 2.3 V                                                              | 1.77                                                                                                                                                                    | -   | -                      | V    |
|                       |                                         | $I_{O}$ = -3.1 mA; $V_{CC}$ = 2.3 V                                                              | 1.67                                                                                                                                                                    | -   | -                      | V    |
|                       |                                         | $I_{O}$ = -2.7 mA; $V_{CC}$ = 3.0 V                                                              | 2.40                                                                                                                                                                    | -   | -                      | V    |
|                       |                                         | $I_{O}$ = -4.0 mA; $V_{CC}$ = 3.0 V                                                              | 2.30                                                                                                                                                                    | -   | -                      | V    |
| V <sub>OL</sub>       | LOW-level output voltage                | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>                                              |                                                                                                                                                                         |     |                        |      |
|                       |                                         | $I_{O}$ = 20 $\mu$ A; $V_{CC}$ = 0.8 V to 3.6 V                                                  | -                                                                                                                                                                       | -   | 0.11                   | V    |
|                       |                                         | I <sub>O</sub> = 1.1 mA; V <sub>CC</sub> = 1.1 V                                                 | -                                                                                                                                                                       | -   | 0.33 × V <sub>CC</sub> | V    |
|                       |                                         | I <sub>O</sub> = 1.7 mA; V <sub>CC</sub> = 1.4 V                                                 | -                                                                                                                                                                       | -   | 0.41                   | V    |
|                       |                                         | I <sub>O</sub> = 1.9 mA; V <sub>CC</sub> = 1.65 V                                                | -                                                                                                                                                                       | -   | 0.39                   | V    |
|                       |                                         | $I_{O}$ = 2.3 mA; $V_{CC}$ = 2.3 V                                                               | -                                                                                                                                                                       | -   | 0.36                   | V    |
|                       |                                         | I <sub>O</sub> = 3.1 mA; V <sub>CC</sub> = 2.3 V                                                 | -                                                                                                                                                                       | -   | 0.50                   | V    |
|                       |                                         | I <sub>O</sub> = 2.7 mA; V <sub>CC</sub> = 3.0 V                                                 | -                                                                                                                                                                       | -   | 0.36                   | V    |
|                       |                                         | I <sub>O</sub> = 4.0 mA; V <sub>CC</sub> = 3.0 V                                                 | -                                                                                                                                                                       | -   | 0.50                   | V    |
| I <sub>I</sub>        | input leakage current                   | V <sub>I</sub> = GND to 3.6 V; V <sub>CC</sub> = 0 V to 3.6 V                                    | -                                                                                                                                                                       | -   | ±0.75                  | μΑ   |
| I <sub>OFF</sub>      | power-off leakage current               | $V_{I}$ or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$                                | -                                                                                                                                                                       | -   | ±0.75                  | μA   |
| ΔI <sub>OFF</sub>     | additional power-off<br>leakage current | V <sub>1</sub> or V <sub>O</sub> = 0 V to 3.6 V;<br>V <sub>CC</sub> = 0 V to 0.2 V               | $_{CC} = 3.0 \text{ V}$ 0.36<br>$_{CC} = 3.0 \text{ V}$ 0.50<br>$_{VCC} = 0 \text{ V to } 3.6 \text{ V}$ $\pm 0.75$<br>.6 V; $_{VCC} = 0 \text{ V}$ $\pm 0.75$<br>.6 V; |     | μΑ                     |      |
| I <sub>CC</sub>       | supply current                          | $V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$<br>$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$ | -                                                                                                                                                                       | -   | 1.4                    | μΑ   |
| Δl <sub>CC</sub>      | additional supply current               | $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ [1] $V_{CC} = 3.3 \text{ V}; \text{ per pin}$ | -                                                                                                                                                                       | -   | 75                     | μΑ   |

<sup>[1]</sup> One input at  $V_{CC}$  - 0.6 V, other input at  $V_{CC}$  or GND.

# 11. Dynamic characteristics

### **Table 9. Dynamic characteristics**

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6.

| Symbol               | Parameter | Conditions                                                            | T   | <sub>amb</sub> = 25 | °C   | T <sub>an</sub><br>-40 °C te | <sub>nb</sub> =<br>o +85 °C | T <sub>ar</sub> | <sub>ոь</sub> =<br>o +125 °C | Unit |
|----------------------|-----------|-----------------------------------------------------------------------|-----|---------------------|------|------------------------------|-----------------------------|-----------------|------------------------------|------|
|                      |           |                                                                       | Min | Typ[1]              | Max  | Min                          | Max                         | Min             | Max                          |      |
| C <sub>L</sub> = 5 p | F         |                                                                       |     |                     |      |                              |                             |                 |                              |      |
| t <sub>pd</sub>      |           | CP to Q, $\overline{Q}$ ; see Fig. 4. [2]                             |     |                     |      |                              |                             |                 |                              |      |
|                      | delay     | V <sub>CC</sub> = 0.8 V                                               | -   | 25.4                | -    | -                            | -                           | -               | -                            | ns   |
|                      |           | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | 2.9 | 6.7                 | 14.0 | 2.6                          | 14.2                        | 2.6             | 14.2                         | ns   |
|                      |           | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | 2.4 | 4.5                 | 7.6  | 2.3                          | 8.3                         | 2.3             | 8.6                          | ns   |
|                      |           | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | 1.9 | 3.5                 | 5.7  | 1.7                          | 6.5                         | 1.7             | 6.8                          | ns   |
|                      |           | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | 1.7 | 2.6                 | 3.8  | 1.4                          | 4.4                         | 1.4             | 4.7                          | ns   |
|                      |           | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | 1.5 | 2.2                 | 3.1  | 1.2                          | 3.4                         | 1.2             | 3.7                          | ns   |
|                      |           | $\overline{SD}$ to Q, $\overline{Q}$ ; see $\underline{Fig. 5}$ . [2] |     |                     |      |                              |                             |                 |                              |      |
|                      |           | V <sub>CC</sub> = 0.8 V                                               | -   | 19.6                | -    | -                            | -                           | -               | -                            | ns   |
|                      |           | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | 2.7 | 5.6                 | 11.0 | 2.5                          | 11.4                        | 2.5             | 11.5                         | ns   |
|                      |           | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | 2.4 | 4.0                 | 6.3  | 2.2                          | 6.9                         | 2.2             | 7.3                          | ns   |
|                      |           | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | 2.0 | 3.3                 | 4.9  | 1.7                          | 5.6                         | 1.7             | 5.9                          | ns   |
|                      |           | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | 1.9 | 2.7                 | 3.7  | 1.7                          | 4.0                         | 1.7             | 4.2                          | ns   |
|                      |           | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | 1.8 | 2.5                 | 3.2  | 1.5                          | 3.6                         | 1.5             | 3.8                          | ns   |
|                      |           | $\overline{R}D$ to Q, $\overline{Q}$ ; see $\underline{Fig. 5}$ . [2] |     |                     |      |                              |                             |                 |                              |      |
|                      |           | V <sub>CC</sub> = 0.8 V                                               | -   | 19.2                | -    | -                            | -                           | -               | -                            | ns   |
|                      |           | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | 2.6 | 5.5                 | 11.0 | 2.5                          | 11.3                        | 2.5             | 11.5                         | ns   |
|                      |           | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | 2.3 | 3.9                 | 6.3  | 2.2                          | 6.8                         | 2.2             | 7.3                          | ns   |
|                      |           | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | 1.9 | 3.2                 | 5.0  | 1.8                          | 5.6                         | 1.8             | 5.9                          | ns   |
|                      |           | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | 1.9 | 2.6                 | 3.6  | 1.7                          | 4.1                         | 1.7             | 4.3                          | ns   |
|                      |           | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | 1.8 | 2.4                 | 3.3  | 1.5                          | 3.6                         | 1.5             | 3.8                          | ns   |
| f <sub>max</sub>     | maximum   | CP; see Fig. 4.                                                       |     |                     |      |                              |                             |                 |                              |      |
|                      | frequency | V <sub>CC</sub> = 0.8 V                                               | -   | 53                  | -    | -                            | -                           | -               | -                            | MHz  |
|                      |           | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | -   | 203                 | -    | 170                          | -                           | 170             | -                            | MHz  |
|                      |           | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | -   | 347                 | -    | 310                          | -                           | 300             | -                            | MHz  |
|                      |           | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | -   | 435                 | -    | 400                          | -                           | 390             | -                            | MHz  |
|                      |           | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | -   | 550                 | -    | 490                          | -                           | 480             | -                            | MHz  |
|                      |           | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | -   | 619                 | -    | 550                          | -                           | 510             | -                            | MHz  |

| Symbol                                | Parameter       | Conditions                                                        |     | T <sub>amb</sub> = 25 °C |        |      | T <sub>amb</sub> = -40 °C to +85 °C |      | T <sub>amb</sub> = -40 °C to +125 °C |      | Unit |
|---------------------------------------|-----------------|-------------------------------------------------------------------|-----|--------------------------|--------|------|-------------------------------------|------|--------------------------------------|------|------|
|                                       |                 |                                                                   |     | Min                      | Typ[1] | Max  | Min                                 | Max  | Min                                  | Max  |      |
| C <sub>L</sub> = 10                   | pF              |                                                                   |     |                          |        |      |                                     |      | <u> </u>                             |      |      |
| t <sub>pd</sub>                       |                 | CP to Q, Q; see Fig. 4.                                           | [2] |                          |        |      |                                     |      |                                      |      |      |
|                                       | delay           | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 28.9   | -    | -                                   | -    | -                                    | -    | ns   |
|                                       |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | 3.1                      | 7.5    | 15.8 | 2.9                                 | 16.1 | 2.9                                  | 16.1 | ns   |
|                                       |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | 2.7                      | 5.1    | 8.7  | 2.4                                 | 9.4  | 2.4                                  | 9.8  | ns   |
|                                       |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | 2.5                      | 4.1    | 6.5  | 2.2                                 | 7.2  | 2.2                                  | 7.6  | ns   |
|                                       |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | 2.0                      | 3.2    | 4.6  | 1.8                                 | 5.3  | 1.8                                  | 5.6  | ns   |
|                                       |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | 1.8                      | 2.8    | 3.8  | 1.6                                 | 4.1  | 1.6                                  | 4.4  | ns   |
|                                       |                 | SD to Q, Q; see Fig. 5.                                           | [2] |                          |        |      |                                     |      |                                      |      |      |
|                                       |                 | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 23.2   | -    | -                                   | -    | -                                    | -    | ns   |
|                                       |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | 2.9                      | 6.5    | 12.9 | 2.8                                 | 13.3 | 2.8                                  | 13.5 | ns   |
|                                       |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | 2.7                      | 4.6    | 7.5  | 2.3                                 | 7.9  | 2.3                                  | 8.3  | ns   |
|                                       |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | 2.6                      | 3.9    | 5.6  | 2.3                                 | 6.3  | 2.3                                  | 6.6  | ns   |
|                                       |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | 2.3                      | 3.2    | 4.4  | 2.0                                 | 4.8  | 2.0                                  | 5.2  | ns   |
|                                       |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | 2.2                      | 3.0    | 3.9  | 1.9                                 | 4.2  | 1.9                                  | 4.4  | ns   |
|                                       |                 | $\overline{R}D$ to Q, $\overline{Q}$ ; see $\underline{Fig. 5}$ . | [2] |                          |        |      |                                     |      |                                      |      |      |
|                                       |                 | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 22.7   | -    | -                                   | -    | -                                    | -    | ns   |
|                                       |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | 2.8                      | 6.4    | 12.8 | 2.7                                 | 13.2 | 2.7                                  | 13.4 | ns   |
|                                       |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | 2.6                      | 4.5    | 7.5  | 2.3                                 | 8.1  | 2.3                                  | 8.4  | ns   |
|                                       |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | 2.5                      | 3.3    | 5.8  | 2.3                                 | 6.3  | 2.3                                  | 6.7  | ns   |
|                                       |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | 2.2                      | 3.2    | 4.4  | 2.0                                 | 4.9  | 2.0                                  | 5.2  | ns   |
|                                       |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | 2.0                      | 2.9    | 4.0  | 1.9                                 | 4.3  | 1.9                                  | 4.5  | ns   |
| f <sub>max</sub> maximum<br>frequency | CP; see Fig. 4. |                                                                   |     |                          |        |      |                                     |      |                                      |      |      |
|                                       | frequency       | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 52     | -    | -                                   | -    | -                                    | -    | MHz  |
|                                       |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | -                        | 192    | -    | 150                                 | -    | 150                                  | -    | MHz  |
|                                       |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | -                        | 324    | -    | 280                                 | -    | 230                                  | -    | MHz  |
|                                       |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | -                        | 421    | -    | 310                                 | -    | 250                                  | -    | MHz  |
|                                       |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | -                        | 486    | -    | 370                                 | -    | 360                                  | -    | MHz  |
|                                       |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | -                        | 550    | -    | 410                                 | -    | 360                                  | -    | MHz  |

**Product data sheet** 

| Symbol                             | Parameter       | Conditions                                                        |     | T <sub>amb</sub> = 25 °C |        |      | T <sub>amb</sub> = -40 °C to +85 °C |      | T <sub>amb</sub> = -40 °C to +125 °C |      | Unit |
|------------------------------------|-----------------|-------------------------------------------------------------------|-----|--------------------------|--------|------|-------------------------------------|------|--------------------------------------|------|------|
|                                    |                 |                                                                   |     | Min                      | Typ[1] | Max  | Min                                 | Max  | Min                                  | Max  |      |
| C <sub>L</sub> = 15                | pF              |                                                                   |     |                          |        |      |                                     |      | '                                    |      |      |
| t <sub>pd</sub>                    |                 | CP to Q, Q; see Fig. 4.                                           | [2] |                          |        |      |                                     |      |                                      |      |      |
|                                    | delay           | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 32.4   | -    | -                                   | -    | -                                    | -    | ns   |
|                                    |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | 3.5                      | 8.3    | 17.6 | 3.3                                 | 17.8 | 3.3                                  | 18.0 | ns   |
|                                    |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | 3.2                      | 5.6    | 9.5  | 2.8                                 | 10.5 | 2.8                                  | 11.1 | ns   |
|                                    |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | 2.7                      | 4.6    | 7.2  | 2.5                                 | 8.1  | 2.5                                  | 8.6  | ns   |
|                                    |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | 2.4                      | 3.6    | 5.2  | 2.2                                 | 5.8  | 2.2                                  | 6.2  | ns   |
|                                    |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | 2.2                      | 3.2    | 4.4  | 2.0                                 | 4.9  | 2.0                                  | 5.2  | ns   |
|                                    |                 | SD to Q, Q; see Fig. 5.                                           | [2] |                          |        |      |                                     |      |                                      |      |      |
|                                    |                 | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 26.7   | -    | -                                   | -    | -                                    | -    | ns   |
|                                    |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | 3.3                      | 7.3    | 14.7 | 3.1                                 | 15.2 | 3.1                                  | 15.4 | ns   |
|                                    |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | 3.2                      | 5.2    | 8.3  | 2.9                                 | 9.0  | 2.9                                  | 9.5  | ns   |
|                                    |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | 2.8                      | 4.3    | 6.4  | 2.5                                 | 7.1  | 2.5                                  | 7.5  | ns   |
|                                    |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | 2.8                      | 3.7    | 5.1  | 2.2                                 | 5.5  | 2.2                                  | 5.8  | ns   |
|                                    |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | 2.5                      | 3.5    | 4.6  | 2.4                                 | 5.0  | 2.4                                  | 5.2  | ns   |
|                                    |                 | $\overline{RD}$ to Q, $\overline{Q}$ ; see $\underline{Fig. 5}$ . | [2] |                          |        |      |                                     |      |                                      |      |      |
|                                    |                 | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 26.1   | -    | -                                   | -    | -                                    | -    | ns   |
|                                    |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | 3.2                      | 7.2    | 14.5 | 3.1                                 | 15.0 | 3.1                                  | 15.2 | ns   |
|                                    |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | 3.1                      | 5.1    | 8.4  | 2.7                                 | 9.2  | 2.7                                  | 9.7  | ns   |
|                                    |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | 2.7                      | 4.3    | 6.5  | 2.6                                 | 7.3  | 2.6                                  | 7.7  | ns   |
|                                    |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | 2.6                      | 3.6    | 5.0  | 2.4                                 | 5.5  | 2.4                                  | 5.8  | ns   |
|                                    |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | 2.4                      | 3.4    | 4.6  | 2.3                                 | 5.0  | 2.3                                  | 5.2  | ns   |
| f <sub>max</sub> maximum frequency | CP; see Fig. 4. |                                                                   |     |                          |        |      |                                     |      |                                      |      |      |
|                                    | frequency       | V <sub>CC</sub> = 0.8 V                                           |     | -                        | 50     | -    | -                                   | -    | -                                    | -    | MHz  |
|                                    |                 | V <sub>CC</sub> = 1.1 V to 1.3 V                                  |     | -                        | 181    | -    | 120                                 | -    | 120                                  | -    | MHz  |
|                                    |                 | V <sub>CC</sub> = 1.4 V to 1.6 V                                  |     | -                        | 301    | -    | 190                                 | -    | 160                                  | -    | MHz  |
|                                    |                 | V <sub>CC</sub> = 1.65 V to 1.95 V                                |     | -                        | 407    | -    | 240                                 | -    | 190                                  | -    | MHz  |
|                                    |                 | V <sub>CC</sub> = 2.3 V to 2.7 V                                  |     | -                        | 422    | -    | 300                                 | -    | 270                                  | -    | MHz  |
|                                    |                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                  |     | -                        | 481    | -    | 320                                 | -    | 300                                  | -    | MHz  |

| Symbol              | Parameter   | Conditions                                                            | T,  | <sub>amb</sub> = 25 | °C   | T <sub>amb</sub> = -40 °C to +85 °C |      | T <sub>amb</sub> = -40 °C to +125 °C |      | Unit |
|---------------------|-------------|-----------------------------------------------------------------------|-----|---------------------|------|-------------------------------------|------|--------------------------------------|------|------|
|                     |             |                                                                       | Min | Typ[1]              | Max  | Min                                 | Max  | Min                                  | Max  |      |
| C <sub>L</sub> = 30 | pF          |                                                                       |     |                     |      |                                     |      | <u> </u>                             | -    |      |
| t <sub>pd</sub>     | propagation | CP to Q, $\overline{Q}$ ; see Fig. 4. [2]                             |     |                     |      |                                     |      |                                      |      |      |
|                     | delay       | V <sub>CC</sub> = 0.8 V                                               | -   | 42.7                | -    | _                                   | -    | -                                    | -    | ns   |
|                     |             | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | 4.2 | 10.6                | 22.5 | 4.0                                 | 23.0 | 4.0                                  | 23.3 | ns   |
|                     |             | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | 3.7 | 7.2                 | 12.0 | 3.7                                 | 13.3 | 3.7                                  | 14.0 | ns   |
|                     |             | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | 3.5 | 5.8                 | 9.2  | 3.4                                 | 10.4 | 3.4                                  | 11.0 | ns   |
|                     |             | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | 3.3 | 4.7                 | 6.6  | 3.0                                 | 7.3  | 3.0                                  | 7.8  | ns   |
|                     |             | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | 3.0 | 4.3                 | 5.8  | 2.8                                 | 6.8  | 2.8                                  | 7.3  | ns   |
|                     |             | $\overline{SD}$ to Q, $\overline{Q}$ ; see $\underline{Fig. 5}$ . [2] |     |                     |      |                                     |      |                                      |      |      |
|                     |             | V <sub>CC</sub> = 0.8 V                                               | -   | 37.0                | -    | -                                   | -    | -                                    | -    | ns   |
|                     |             | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | 4.0 | 9.5                 | 19.8 | 3.8                                 | 20.8 | 3.8                                  | 21.1 | ns   |
|                     |             | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | 3.8 | 6.7                 | 10.9 | 3.7                                 | 12.0 | 3.7                                  | 12.7 | ns   |
|                     |             | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | 3.7 | 5.6                 | 8.4  | 3.5                                 | 9.3  | 3.5                                  | 9.9  | ns   |
|                     |             | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | 3.7 | 4.8                 | 6.6  | 3.2                                 | 7.2  | 3.2                                  | 7.6  | ns   |
|                     |             | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | 3.4 | 4.6                 | 6.0  | 3.1                                 | 6.8  | 3.1                                  | 7.1  | ns   |
|                     |             | $\overline{RD}$ to Q, $\overline{Q}$ ; see $\underline{Fig. 5}$ . [2] |     |                     |      |                                     |      |                                      |      |      |
|                     |             | V <sub>CC</sub> = 0.8 V                                               | -   | 36.4                | -    | -                                   | -    | -                                    | -    | ns   |
|                     |             | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | 3.9 | 9.4                 | 19.5 | 3.8                                 | 20.2 | 3.8                                  | 20.5 | ns   |
|                     |             | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | 3.6 | 6.6                 | 10.9 | 3.7                                 | 12.0 | 3.7                                  | 12.6 | ns   |
|                     |             | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | 3.5 | 5.5                 | 8.5  | 3.5                                 | 9.5  | 3.5                                  | 10.1 | ns   |
|                     |             | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | 3.5 | 4.7                 | 6.5  | 3.2                                 | 7.1  | 3.2                                  | 7.6  | ns   |
|                     |             | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | 3.3 | 4.4                 | 6.1  | 3.1                                 | 7.1  | 3.1                                  | 7.5  | ns   |
| f <sub>max</sub>    | maximum     | CP; see Fig. 4.                                                       |     |                     |      |                                     |      |                                      |      |      |
|                     | frequency   | V <sub>CC</sub> = 0.8 V                                               | -   | 28                  | -    | -                                   | -    | -                                    | -    | MHz  |
|                     |             | V <sub>CC</sub> = 1.1 V to 1.3 V                                      | -   | 145                 | -    | 70                                  | -    | 70                                   | -    | MHz  |
|                     |             | V <sub>CC</sub> = 1.4 V to 1.6 V                                      | -   | 185                 | -    | 120                                 | -    | 110                                  | -    | MHz  |
|                     |             | V <sub>CC</sub> = 1.65 V to 1.95 V                                    | -   | 270                 | -    | 150                                 | -    | 120                                  | -    | MHz  |
|                     |             | V <sub>CC</sub> = 2.3 V to 2.7 V                                      | -   | 290                 | -    | 190                                 | -    | 170                                  | -    | MHz  |
| 1                   |             | V <sub>CC</sub> = 3.0 V to 3.6 V                                      | -   | 315                 | -    | 200                                 | -    | 190                                  | -    | MHz  |

| Symbol               | Parameter      | Conditions                         | T,  | <sub>amb</sub> = 25 | °C  | T <sub>amb</sub> = -40 °C to +85 °C |     | T <sub>amb</sub> = -40 °C to +125 °C |     | Unit |
|----------------------|----------------|------------------------------------|-----|---------------------|-----|-------------------------------------|-----|--------------------------------------|-----|------|
|                      |                |                                    | Min | Typ[1]              | Max | Min                                 | Max | Min                                  | Max |      |
| C <sub>L</sub> = 5 p | F, 10 pF, 15 p | F and 30 pF                        |     |                     | '   |                                     |     |                                      |     |      |
| t <sub>su</sub>      | set-up time    | D to CP HIGH; see Fig. 4.          |     |                     |     |                                     |     |                                      |     |      |
|                      |                | V <sub>CC</sub> = 0.8 V            | -   | 3.4                 | -   | -                                   | -   | -                                    | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.1 V to 1.3 V   | -   | 0.6                 | -   | 1.2                                 | -   | 1.2                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.4 V to 1.6 V   | -   | 0.3                 | -   | 0.6                                 | -   | 0.6                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.65 V to 1.95 V | -   | 0.4                 | -   | 0.5                                 | -   | 0.5                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 2.3 V to 2.7 V   | -   | 0.2                 | -   | 0.4                                 | -   | 0.4                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 3.0 V to 3.6 V   | -   | 0.3                 | -   | 0.4                                 | -   | 0.4                                  | -   | ns   |
|                      |                | D to CP LOW; see Fig. 4.           |     |                     |     |                                     |     |                                      |     |      |
|                      |                | V <sub>CC</sub> = 0.8 V            | -   | 3.0                 | -   | -                                   | -   | -                                    | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.1 V to 1.3 V   | -   | 0.5                 | -   | 1.2                                 | -   | 1.2                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.4 V to 1.6 V   | -   | 0.3                 | -   | 0.7                                 | -   | 0.7                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.65 V to 1.95 V | -   | 0.4                 | -   | 0.7                                 | -   | 0.7                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 2.3 V to 2.7 V   | -   | 0.5                 | -   | 0.7                                 | -   | 0.7                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 3.0 V to 3.6 V   | -   | 0.6                 | -   | 0.8                                 | -   | 0.8                                  | -   | ns   |
| t <sub>h</sub>       | hold time      | D to CP; see Fig. 4.               |     |                     |     |                                     |     |                                      |     |      |
|                      |                | V <sub>CC</sub> = 0.8 V            | -   | -1.9                | -   | -                                   | -   | -                                    | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.1 V to 1.3 V   | -   | -0.3                | -   | 0.5                                 | -   | 0.5                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.4 V to 1.6 V   | -   | -0.2                | -   | 0.2                                 | -   | 0.2                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.65 V to 1.95 V | -   | -0.2                | -   | 0.1                                 | -   | 0.1                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 2.3 V to 2.7 V   | -   | -0.2                | -   | 0.1                                 | -   | 0.1                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 3.0 V to 3.6 V   | -   | -0.2                | -   | 0.1                                 | -   | 0.1                                  | -   | ns   |
| t <sub>rec</sub>     | recovery       | RD; see Fig. 5                     |     |                     |     |                                     |     |                                      |     |      |
|                      | time           | V <sub>CC</sub> = 1.1 V to 1.3 V   | -   | -0.5                | -   | -0.9                                | -   | -0.9                                 | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.4 V to 1.6 V   | -   | -0.2                | -   | -0.6                                | -   | -0.6                                 | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.65 V to 1.95 V | -   | -0.2                | -   | -0.4                                | -   | -0.4                                 | -   | ns   |
|                      |                | V <sub>CC</sub> = 2.3 V to 2.7 V   | -   | -0.1                | -   | -0.1                                | -   | -0.1                                 | -   | ns   |
|                      |                | V <sub>CC</sub> = 3.0 V to 3.6 V   | -   | -0.1                | -   | -0.1                                | -   | -0.1                                 | -   | ns   |
|                      |                | SD; see Fig. 5.                    |     |                     |     |                                     |     |                                      |     |      |
|                      |                | V <sub>CC</sub> = 1.1 V to 1.3 V   | -   | -0.5                | -   | -0.3                                | -   | -0.3                                 | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.4 V to 1.6 V   | -   | -0.4                | -   | -0.1                                | -   | -0.1                                 | -   | ns   |
|                      |                | V <sub>CC</sub> = 1.65 V to 1.95 V | -   | -0.3                | -   | 0                                   | -   | 0                                    | -   | ns   |
|                      |                | V <sub>CC</sub> = 2.3 V to 2.7 V   | -   | -0.2                | -   | 0.1                                 | -   | 0.1                                  | -   | ns   |
|                      |                | V <sub>CC</sub> = 3.0 V to 3.6 V   | -   | -0.1                | _   | 0.1                                 | -   | 0.1                                  | -   | ns   |

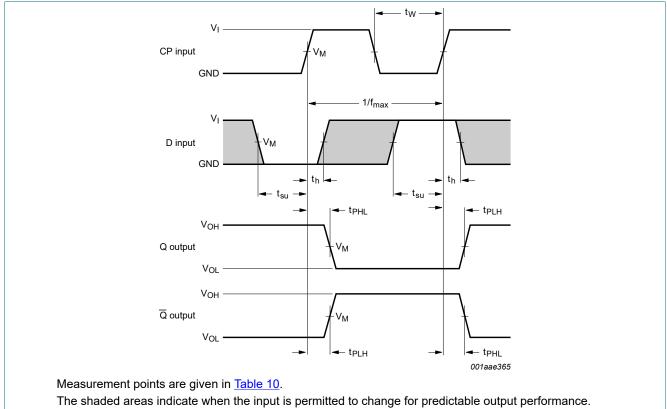
| Symbol          | Parameter            | Conditions                                    | T <sub>amb</sub> = 25 °C |     |     | T <sub>amb</sub> = -40 °C to +85 °C |     | T <sub>amb</sub> = -40 °C to +125 °C |   | Unit |
|-----------------|----------------------|-----------------------------------------------|--------------------------|-----|-----|-------------------------------------|-----|--------------------------------------|---|------|
|                 |                      | Min                                           | Typ[1]                   | Max | Min | Max                                 | Min | Max                                  |   |      |
| t <sub>W</sub>  | pulse width          | CP HIGH or LOW;<br>see Fig. 4.                |                          |     |     |                                     |     |                                      |   |      |
|                 |                      | V <sub>CC</sub> = 1.1 V to 1.3 V              | -                        | 2.1 | -   | 2.7                                 | -   | 2.7                                  | - | ns   |
|                 |                      | V <sub>CC</sub> = 1.4 V to 1.6 V              | -                        | 1.1 | -   | 1.5                                 | -   | 1.5                                  | - | ns   |
|                 |                      | V <sub>CC</sub> = 1.65 V to 1.95 V            | -                        | 0.9 | -   | 1.6                                 | -   | 1.6                                  | - | ns   |
|                 |                      | V <sub>CC</sub> = 2.3 V to 2.7 V              | -                        | 0.6 | -   | 1.7                                 | -   | 1.7                                  | - | ns   |
|                 |                      | V <sub>CC</sub> = 3.0 V to 3.6 V              | -                        | 0.6 | -   | 1.9                                 | -   | 1.9                                  | - | ns   |
|                 |                      | SD or RD LOW; see Fig. 5.                     |                          |     |     |                                     |     |                                      |   |      |
|                 |                      | V <sub>CC</sub> = 1.1 V to 1.3 V              | -                        | 4.2 | -   | 11.3                                | -   | 11.5                                 | - | ns   |
|                 |                      | V <sub>CC</sub> = 1.4 V to 1.6 V              | -                        | 2.3 | -   | 6.2                                 | -   | 6.4                                  | - | ns   |
|                 |                      | V <sub>CC</sub> = 1.65 V to 1.95 V            | -                        | 1.8 | -   | 4.8                                 | -   | 5.0                                  | - | ns   |
|                 |                      | V <sub>CC</sub> = 2.3 V to 2.7 V              | -                        | 1.2 | -   | 3.3                                 | -   | 3.5                                  | - | ns   |
|                 |                      | V <sub>CC</sub> = 3.0 V to 3.6 V              | -                        | 1.1 | -   | 2.6                                 | -   | 2.8                                  | - | ns   |
| C <sub>PD</sub> | power<br>dissipation | $f_i$ = 1 MHz; [3]<br>$V_I$ = GND to $V_{CC}$ |                          |     |     |                                     |     |                                      |   |      |
|                 | capacitance          | V <sub>CC</sub> = 0.8 V                       | -                        | 2.8 | -   | -                                   | -   | -                                    | - | pF   |
|                 |                      | V <sub>CC</sub> = 1.1 V to 1.3 V              | -                        | 2.9 | -   | -                                   | -   | -                                    | - | pF   |
|                 |                      | V <sub>CC</sub> = 1.4 V to 1.6 V              | -                        | 3.0 | -   | -                                   | -   | -                                    | - | pF   |
|                 |                      | V <sub>CC</sub> = 1.65 V to 1.95 V            | -                        | 3.0 | -   | -                                   | -   | -                                    | - | pF   |
|                 |                      | V <sub>CC</sub> = 2.3 V to 2.7 V              | -                        | 3.5 | -   | -                                   | -   | -                                    | - | pF   |
|                 |                      | V <sub>CC</sub> = 3.0 V to 3.6 V              | -                        | 3.9 | -   | -                                   | -   | -                                    | - | pF   |

All typical values are measured at nominal V<sub>CC</sub>.

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where

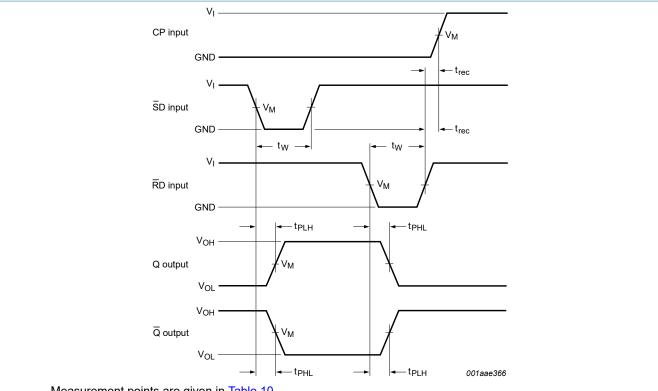
 $f_i$  = input frequency in MHz;

f<sub>o</sub> = output frequency in MHz;


C<sub>L</sub> = output load capacitance in pF;

V<sub>CC</sub> = supply voltage in V;

N = number of inputs switching;  $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$ 


 $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu$ W).  $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:

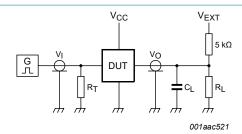
### 11.1. Waveforms and test circuit



V<sub>OL</sub> and V<sub>OH</sub> are typical output voltage levels that occur with the output load.

Fig. 4. The clock input (CP) to output  $(Q, \overline{Q})$  propagation delays, the data input (D) to clock input (CP) set-up and hold times and the clock input (CP) pulse width and maximum frequency




Measurement points are given in Table 10.

V<sub>OL</sub> and V<sub>OH</sub> are typical output voltage levels that occur with the output load.

Fig. 5. The set input ( $\overline{SD}$ ) and reset input ( $\overline{RD}$ ) to output ( $\overline{Q}$ ,  $\overline{Q}$ ) propagation delays, the set input ( $\overline{SD}$ ) and reset input (RD) pulse widths and the reset input (RD) to clock input (CP) recovery time

**Table 10. Measurement points** 

| Supply voltage  | Output                | Input                 |                 |             |
|-----------------|-----------------------|-----------------------|-----------------|-------------|
| V <sub>CC</sub> | V <sub>M</sub>        | V <sub>M</sub>        | VI              | $t_r = t_f$ |
| 0.8 V to 3.6 V  | 0.5 × V <sub>CC</sub> | 0.5 × V <sub>CC</sub> | V <sub>CC</sub> | ≤ 3.0 ns    |



Test data is given in Table 11.

Definitions for test circuit:

R<sub>L</sub> = Load resistance;

C<sub>L</sub> = Load capacitance including jig and probe capacitance;

R<sub>T</sub> = Termination resistance should be equal to the output impedance Zo of the pulse generator;

V<sub>EXT</sub> = External voltage for measuring switching times.

#### Fig. 6. Test circuit for measuring switching times

#### Table 11. Test data

| Supply voltage  | Load                         |                    | V <sub>EXT</sub>                    |                                     |                                     |  |
|-----------------|------------------------------|--------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|
| V <sub>CC</sub> | C <sub>L</sub>               | R <sub>L</sub> [1] | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> |  |
| 0.8 V to 3.6 V  | 5 pF, 10 pF, 15 pF and 30 pF | 5 kΩ or 1 MΩ       | open                                | GND                                 | 2 × V <sub>CC</sub>                 |  |

[1] For measuring enable and disable times  $R_L$  = 5 k $\Omega$ . For measuring propagation delays, setup and hold times and pulse width  $R_L$  = 1 M $\Omega$ .

# 12. Package outline

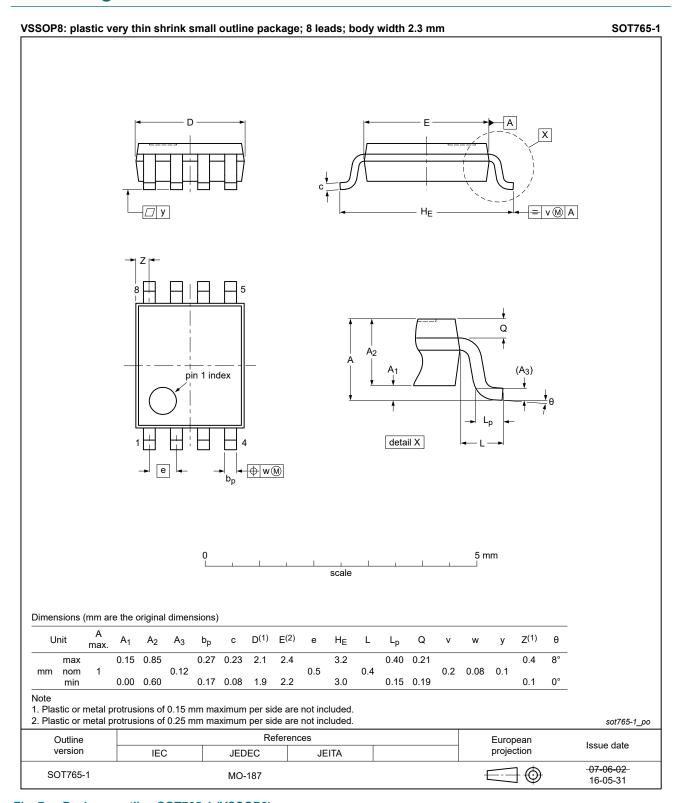



Fig. 7. Package outline SOT765-1 (VSSOP8)

# 13. Abbreviations

#### **Table 12. Abbreviations**

| Acronym | Description                               |
|---------|-------------------------------------------|
| ANSI    | American National Standards Institute     |
| CDM     | Charged Device Model                      |
| DUT     | Device Under Test                         |
| ESD     | ElectroStatic Discharge                   |
| ESDA    | ElectroStatic Discharge Association       |
| НВМ     | Human Body Model                          |
| JEDEC   | Joint Electron Device Engineering Council |

# 14. Revision history

#### Table 13. Revision history

| Document ID          | Release date                                                                                                                                                                                                | Data sheet status  | Change notice | Supersedes         |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--------------------|--|--|--|--|
| 74AUP1G74_Q100 v.4.1 | 20240809                                                                                                                                                                                                    | Product data sheet | -             | 74AUP1G74_Q100 v.3 |  |  |  |  |
| 74AUP1G74_Q100 v.4   | 20230714                                                                                                                                                                                                    | Product data sheet | -             | 74AUP1G74_Q100 v.3 |  |  |  |  |
| Modifications:       | Section 2 updated.: ESD specification updated according to the latest JEDEC standard.                                                                                                                       |                    |               |                    |  |  |  |  |
| 74AUP1G74_Q100 v.3   | 20220620                                                                                                                                                                                                    | Product data sheet | -             | 74AUP1G74_Q100 v.2 |  |  |  |  |
| Modifications:       | <ul> <li><u>Section 1</u> and <u>Section 2</u> updated.</li> <li><u>Table 6</u>: Derating values for P<sub>tot</sub> total power dissipation have been updated.</li> </ul>                                  |                    |               |                    |  |  |  |  |
| 74AUP1G74_Q100 v.2   | 20170410                                                                                                                                                                                                    | Product data sheet | -             | 74AUP1G74_Q100 v.1 |  |  |  |  |
| Modifications:       | <ul> <li>The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia.</li> <li>Legal texts have been adapted to the new company name where appropriate.</li> </ul> |                    |               |                    |  |  |  |  |
| 74AUP1G74_Q100 v.1   | 20150527                                                                                                                                                                                                    | Product data sheet | -             | -                  |  |  |  |  |

## 15. Legal information

#### **Data sheet status**

| Document status [1][2]         | Product<br>status [3] | Definition                                                                            |
|--------------------------------|-----------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development           | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification         | This document contains data from the preliminary specification.                       |
| Product [short]<br>data sheet  | Production            | This document contains the product specification.                                     |

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <a href="https://www.nexperia.com">https://www.nexperia.com</a>.

#### **Definitions**

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own tiple.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### **Trademarks**

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74AUP1G74\_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2024. All rights reserved

## **Contents**

| 1.  | General description              | 1  |
|-----|----------------------------------|----|
| 2.  | Features and benefits            | 1  |
| 3.  | Ordering information             | 2  |
| 4.  | Marking                          | 2  |
| 5.  | Functional diagram               | 2  |
| 6.  | Pinning information              | 3  |
| 6.1 | . Pinning                        | 3  |
| 6.2 | Pin description                  | 3  |
| 7.  | Functional description           | 3  |
| 8.  | Limiting values                  | 4  |
| 9.  | Recommended operating conditions | 4  |
| 10  | Static characteristics           | 4  |
| 11. | Dynamic characteristics          | 8  |
| 11. | Waveforms and test circuit       | 14 |
| 12  | Package outline                  | 17 |
| 13  | Abbreviations                    | 18 |
| 14  | Revision history                 | 18 |
| 15  |                                  |    |
| . • | Legal information                | 19 |

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 9 August 2024

<sup>©</sup> Nexperia B.V. 2024. All rights reserved

# 单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)