3-to-8 line decoder/demultiplexer; inverting Rev. 10 — 12 February 2024

Product data sheet

1. General description

The 74LVC138A decodes three binary weighted address inputs (A0, A1 and A2) to eight mutually exclusive outputs (Y0 to Y7). The 74LVC138A features three enable inputs (E1, E2 and E3). Every output will be HIGH unless E1 and E2 are LOW and E3 is HIGH. This multiple enable function allows easy parallel expansion of the 74LVC138A to a 1-of-32 (5 to 32 lines) decoder with just four 74LVC138A ICs and one inverter. The 74LVC138A can be used as an eight output demultiplexer by using one of the active LOW enable inputs as the data input and the remaining enable inputs as strobes. Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments.

Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.

2. Features and benefits

- Overvoltage tolerant inputs to 5.5 V
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- Mutually exclusive outputs
- Output drive capability 50 Ω transmission lines at 125 °C
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

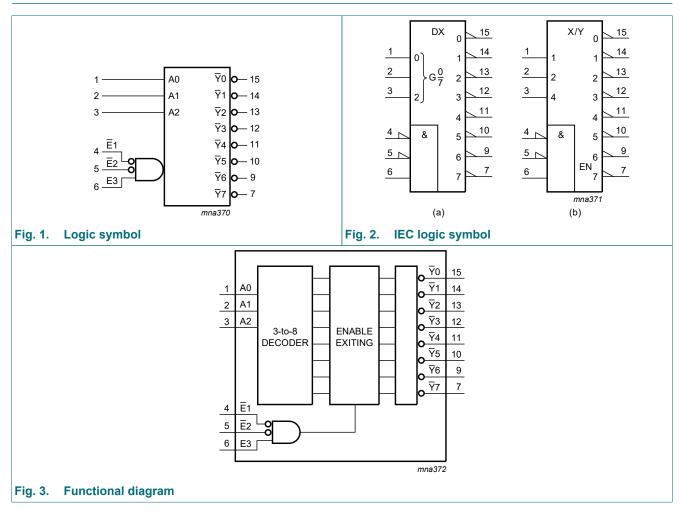
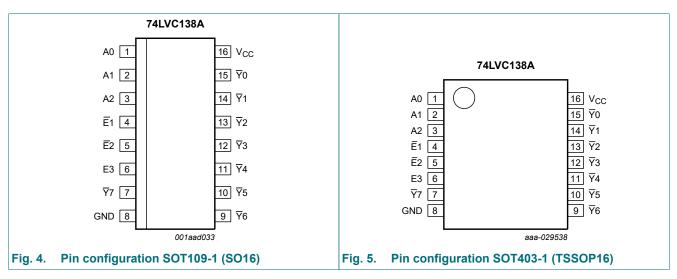
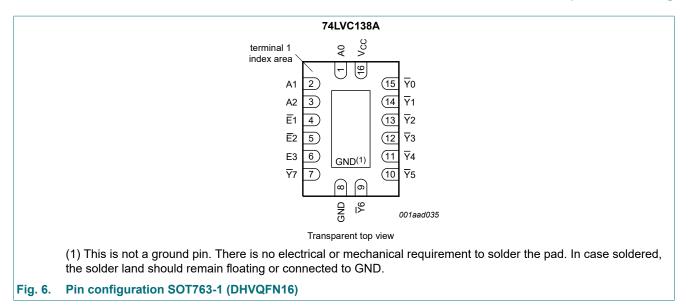

3. Ordering information

Table 1. Ordering information


Type number	Package					
Temperature range		Name	Description	Version		
74LVC138AD	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	<u>SOT109-1</u>		
74LVC138APW	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	<u>SOT403-1</u>		
74LVC138ABQ	-40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 × 3.5 × 0.85 mm	<u>SOT763-1</u>		

ne<mark>x</mark>peria

4. Functional diagram



5. Pinning information

5.1. Pinning

3-to-8 line decoder/demultiplexer; inverting

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
A0, A1, A2	1, 2, 3	address input
E1, E2	4, 5	enable input (active LOW)
E3	6	enable input (active HIGH)
GND	8	ground (0 V)
$\overline{Y}0, \overline{Y}1, \overline{Y}2, \overline{Y}3, \overline{Y}4, \overline{Y}5, \overline{Y}6, \overline{Y}7$	15, 14, 13, 12, 11, 10, 9, 7	output
V _{CC}	16	supply voltage

6. Functional description

Table 3. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care

Input	Input					Outp	Output						
Ē1	Ē2	E3	A0	A1	A2	Y 0	<u></u> Y 1	Y 2	¥ 3	<u></u> ¥4	¥5	Y 6	Y 7
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Х	L	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
			Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
			L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
			Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
			L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
			Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
			L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
			Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
Vo	output voltage	output HIGH or LOW state [2]	-0.5	V _{CC} + 0.5	V
I _O	output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$ [3]	-	500	mW

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

[2] The output voltage ratings may be exceeded if the output current ratings are observed.

For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C.
 For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C.

For SOT763-1 (DHVQFN16) package: P_{tot} derates linearly with 11.2 mW/K above 106 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW state	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	0	-	20	ns/V
		V _{CC} = 2.7 V to 3.6 V	0	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40) °C to +85	°C	-40 °C to	Unit	
			Min	Тур [1]	Мах	Min	Мах	
V _{IH}	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	0.65V _{CC}	-	-	0.65V _{CC}	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
V _{IL}	LOW-level	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	0.35V _{CC}	-	0.35V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH}$ or V_{IL}						
	output voltage	I _O = -100 μA; V _{CC} = 1.65 V to 3.6 V	V _{CC} - 0.2	-	-	V _{CC} - 0.3	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	1.2	-	-	1.05	-	V
		I _O = -8 mA; V _{CC} = 2.3 V	1.8	-	-	1.65	-	V
		I _O = -12 mA; V _{CC} = 2.7 V	2.2	-	-	2.05	-	V
		I _O = -18 mA; V _{CC} = 3.0 V	2.4	-	-	2.25	-	V
		I _O = -24 mA; V _{CC} = 3.0 V	2.2	-	-	2.0	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	output voltage	I _O = 100 μA; V _{CC} = 1.65 V to 3.6 V	-	-	0.2	-	0.3	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	-	0.65	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.6	-	0.8	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.4	-	0.6	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	-	0.8	V
I	input leakage current	V _{CC} = 3.6 V; V _I = 5.5 V or GND	-	±0.1	±5	-	±20	μA
I _{CC}	supply current	V_{CC} = 3.6 V; V_I = V_{CC} or GND; I_O = 0 A	-	0.1	10	-	40	μA
ΔI _{CC}	additional supply current	per input pin; $V_{CC} = 2.7 V \text{ to } 3.6 V;$ $V_{I} = V_{CC} - 0.6 V; I_{O} = 0 A$	-	5	500	-	5000	μA
Cı	input capacitance	$V_{CC} = 0 V \text{ to } 3.6 V;$ $V_{I} = GND \text{ to } V_{CC}$	-	4.0	-	-	-	pF

[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Fig. 9.

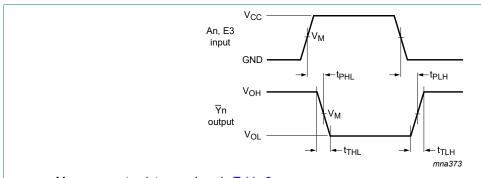
	Conditions		-40 °C to +85 °C			-40 °C to	Unit	
			Min	Тур [1]	Мах	Min	Max	
propagation delay	An to Yn; see Fig. 7	[2]						
	V _{CC} = 1.2 V		-	14	-	-	-	ns
	V _{CC} = 1.65 V to 1.95 V		0.5	5.2	11.5	0.5	12.7	ns
	V _{CC} = 2.3 V to 2.7 V		1.5	3.0	6.5	1.5	7.3	ns
	V _{CC} = 2.7 V		1.5	3.2	6.8	1.5	8.5	ns
	V _{CC} = 3.0 V to 3.6 V		1.0	2.7	5.8	1.0	7.5	ns
	E3 to Yn; see Fig. 7	[2]						
	V _{CC} = 1.2 V		-	14	-	-	-	ns
	V _{CC} = 1.65 V to 1.95 V		1.0	5.5	11.4	1.0	12.5	ns
	V _{CC} = 2.3 V to 2.7 V		1.5	3.2	6.5	1.5	7.1	ns
	V _{CC} = 2.7 V		1.5	3.3	6.8	1.5	8.5	ns
	V _{CC} = 3.0 V to 3.6 V		1.0	2.9	5.8	1.0	7.5	ns
	Ēn to Yn; see <u>Fig. 8</u>	[2]						
	V _{CC} = 1.2 V		-	15	-	-	-	ns
	V _{CC} = 1.65 V to 1.95 V		1.0	5.6	11.5	1.0	12.8	ns
	V _{CC} = 2.3 V to 2.7 V		1.8	3.3	6.5	1.8	7.3	ns
	V _{CC} = 2.7 V		1.5	3.4	6.4	1.5	8.0	ns
	V _{CC} = 3.0 V to 3.6 V		1.0	2.9	5.8	1.0	7.5	ns
output skew time		[3]	-	-	1.0	-	1.5	ns
power dissipation	V_{I} = GND to V_{CC}	[4]						
capacitance	V _{CC} = 1.65 V to 1.95 V		-	9.9	-	-	-	pF
	V _{CC} = 2.3 V to 2.7 V		-	15.8	-	-	-	pF
	V _{CC} = 3.0 V to 3.6 V		-	21.1	-	-	-	pF
	output skew time	$V_{CC} = 1.2 V$ $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.7 V$ $V_{CC} = 3.0 V \text{ to } 3.6 V$ E3 to $\overline{Y}n$; see Fig. 7 $V_{CC} = 1.2 V$ $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 3.0 V \text{ to } 3.6 V$ En to $\overline{Y}n$; see Fig. 8 $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 3.0 V \text{ to } 3.6 V$ output skew time $V_{L} = GND \text{ to } V_{CC}$ $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$	$V_{CC} = 1.2 V$ $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.7 V$ $V_{CC} = 3.0 V \text{ to } 3.6 V$ E3 to $\overline{Y}n$; see Fig. 7 [2] $V_{CC} = 1.2 V$ $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 3.0 V \text{ to } 3.6 V$ En to $\overline{Y}n$; see Fig. 8 [2] $V_{CC} = 1.2 V$ $V_{CC} = 1.65 V \text{ to } 1.95 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 2.7 V$ $V_{CC} = 2.3 V \text{ to } 3.6 V$ Soutput skew time $[3]$ power dissipation capacitance $V_{I} = \text{GND to } V_{CC} \qquad [4]$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{V_{CC} = 1.2 V}{V_{CC} = 1.65 V \text{ to } 1.95 V} \frac{-14}{0.5} \frac{-14}{5.2} \frac{-11.5}{11.5}$ $\frac{V_{CC} = 1.65 V \text{ to } 1.95 V}{V_{CC} = 2.3 V \text{ to } 2.7 V} \frac{-1.5}{1.5} \frac{-3.0}{3.0} \frac{-6.5}{3.2}$ $\frac{V_{CC} = 2.7 V}{1.5} \frac{-14}{3.2} \frac{-6.8}{5.8}$ $\frac{V_{CC} = 3.0 V \text{ to } 3.6 V}{1.0} \frac{-1.0}{2.7} \frac{-5.8}{5.8}$ $\frac{E3 \text{ to } \nabla_{\text{n}} \sec \text{ Fig. 7}{2} \frac{-2}{2} \frac{-14}{5.8}$ $\frac{V_{CC} = 1.2 V}{-5} \frac{-14}{1.4} \frac{-1}{-5}$ $\frac{V_{CC} = 1.2 V}{-5} \frac{-14}{1.5} \frac{-1}{3.2} \frac{-6.5}{5}$ $\frac{V_{CC} = 2.7 V}{1.5} \frac{-15}{3.2} \frac{-6.5}{5}$ $\frac{V_{CC} = 2.7 V}{1.5} \frac{-15}{3.3} \frac{-5}{5}$ $\frac{V_{CC} = 2.7 V}{-5} \frac{-15}{5} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.

[2]

 t_{pd} is the same as t_{PLH} and t_{PHL} . Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design. [3]

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW). [4]

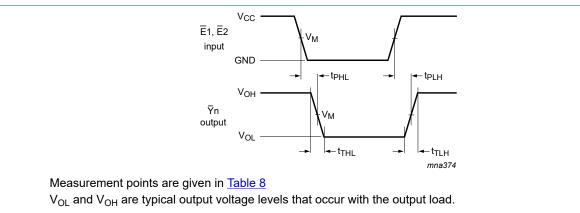

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; f_o = output frequency in MHz

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

N = number of inputs switching $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs



10.1. Waveforms and test circuit

Measurement points are given in <u>Table 8</u>

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 7. The inputs An, E3 to outputs Yn propagation delays

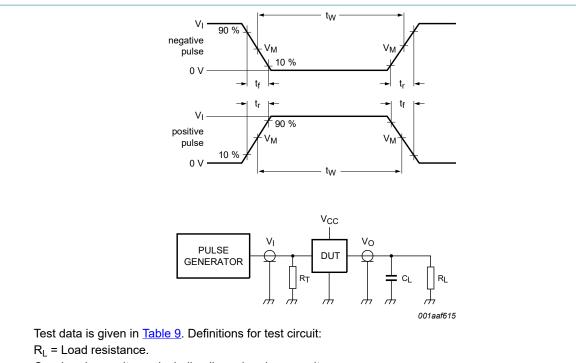


Fig. 8. The inputs En to outputs Yn propagation delays

Table 8. Measurement points

Supply voltage	Input	Input	
V _{cc}	VI	V _M	V _M
1.2 V	V _{CC}	$0.5 \times V_{CC}$	0.5 × V _{CC}
1.65 V to 1.95 V	V _{CC}	$0.5 \times V_{CC}$	0.5 × V _{CC}
2.3 V to 2.7 V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
2.7 V	2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V

3-to-8 line decoder/demultiplexer; inverting

 C_L = Load capacitance including jig and probe capacitance.

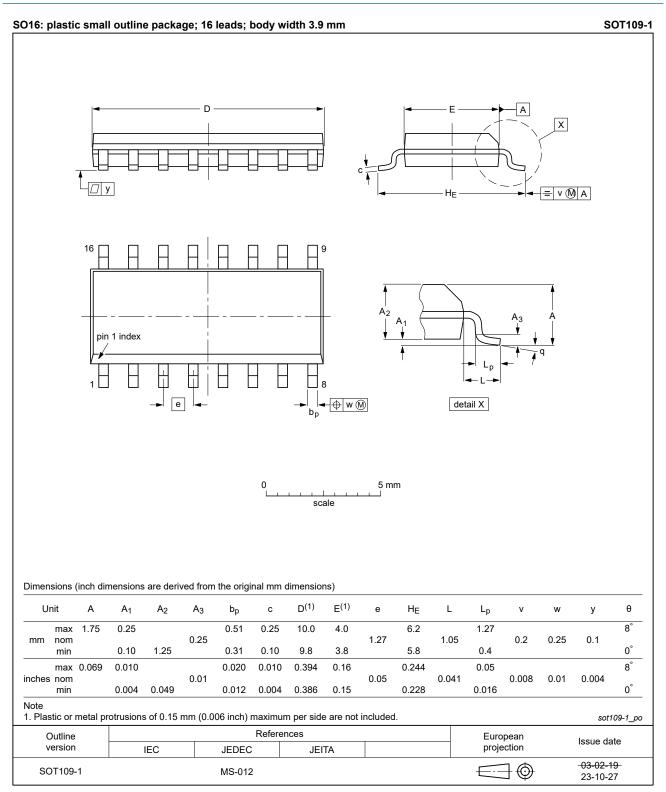

 R_{T} = Termination resistance should be equal to output impedance Z_{o} of the pulse generator.

Fig. 9. Test circuit for measuring switching times

Table 9. Test data

Supply voltage	Input		Load	
	VI	t _r , t _f	CL	RL
1.2 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ
1.65 V to 1.95 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ
2.3 V to 2.7 V	V _{CC}	≤ 2 ns	30 pF	500 Ω
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω

11. Package outline

Fig. 10. Package outline SOT109-1 (SO16)

3-to-8 line decoder/demultiplexer; inverting

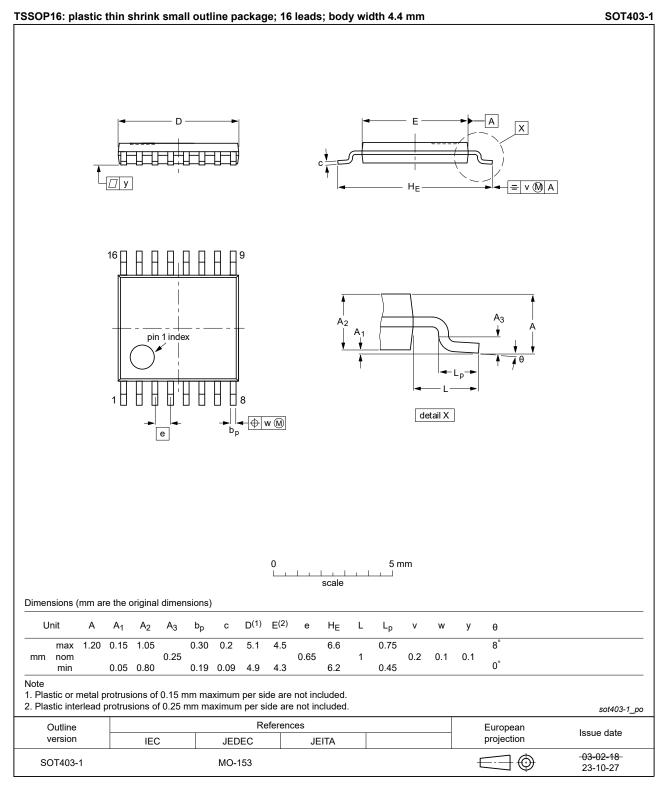


Fig. 11. Package outline SOT403-1 (TSSOP16)

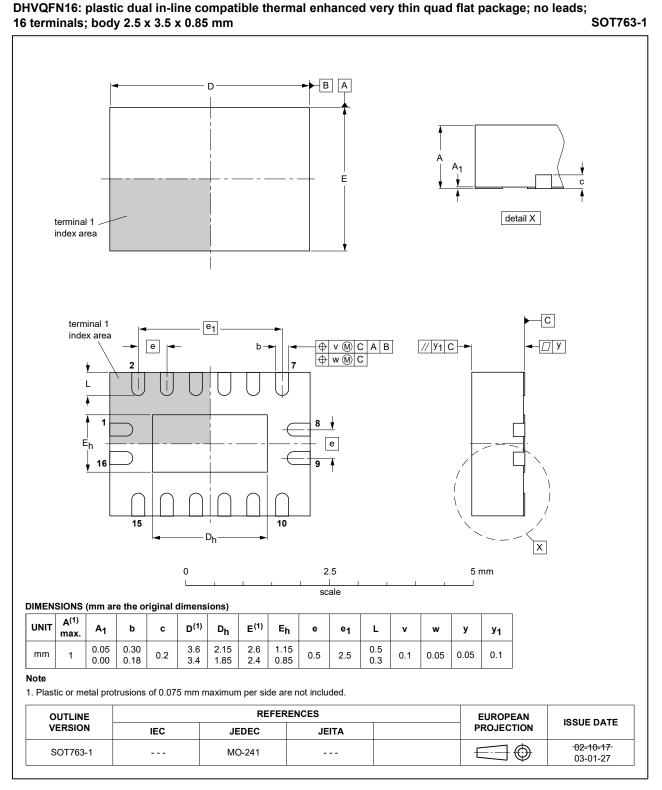


Fig. 12. Package outline SOT763-1 (DHVQFN16)

12. Abbreviations

Table 10. Abbreviati	Table 10. Abbreviations				
Acronym	Description				
CDM	Charged Device Model				
CMOS	Complementary Metal-Oxide Semiconductor				
DUT	Device Under Test				
ESD	ElectroStatic Discharge				
HBM	Human Body Model				
TTL	Transistor-Transistor Logic				

13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC138A v.10	20240212	Product data sheet	-	74LVC138A v.9
Modifications:	• <u>Fig. 10, Fig</u> and MO-1		SOP package outlin	e drawings to JEDEC MS-012
74LVC138A v.9	20230803	Product data sheet	-	74LVC138A v.8
Modifications:	<u>Section 2</u> :	ESD specification updated	d according to the la	atest JEDEC standard.
74LVC138A v.8	20210920	Product data sheet	-	74LVC138A v.7
Modifications:	Type numb	per 74LVC138ADB (SOT3	38-1/SSOP16) rem	oved.
74LVC138A v.7	20200828	Product data sheet	-	74LVC138A v.6
Modifications:	 <u>Section 1</u> (<u>Table 4</u>: De 	updated. erating values for P _{tot} total	power dissipation	updated.
74LVC138A v.6	20190123	Product data sheet	-	74LVC138A v.5
Modifications:	guidelines	of this data sheet has be of Nexperia. have been adapted to the	C C	
74LVC138A v.5	20111019	Product data sheet	-	74LVC138A v.4
Modifications:	guidelines Legal texts 	of NXP Semiconductors. have been adapted to the	e new company nar	mply with the new identity me where appropriate. dded for lower voltage ranges.
74LVC138A v.4	20030506	Product specification	-	74LVC138A v.3
74LVC138A v.3	20020312	Product specification	-	74LVC138A v.2
74LVC138A v.2	19980428	Product specification	-	74LVC138A v.1
74LVC138A v.1	-	-	-	-

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

3-to-8 line decoder/demultiplexer; inverting

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Product data sheet

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Functional diagram	2
5. Pinning information	2
5.1. Pinning	2
5.2. Pin description	3
6. Functional description	3
7. Limiting values	4
8. Recommended operating conditions	4
9. Static characteristics	5
10. Dynamic characteristics	6
10.1. Waveforms and test circuit	7
11. Package outline	9
12. Abbreviations	
13. Revision history	12
14. Legal information	

© Nexperia B.V. 2024. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 12 February 2024

74LVC138A

单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)