

74HC4351-Q100; 74HCT4351-Q100 8-channel analog multiplexer/demultiplexer with latch

Product data sheet

1. General description

The 74HC4351-Q100; 74HCT4351-Q100 is a single-pole octal-throw analog switch (SP8T) suitable for use in analog or digital 8:1 multiplexer/demultiplexer applications. The switch features three digital select inputs (S0 to S2), eight independent inputs/outputs (Yn), a common input/output (Z) and two digital enable inputs (E1 and E2). With E1 LOW and E2 HIGH, one of the eight switches is selected (low impedance ON-state) by S0 to S2. The data at the select inputs may be latched by using the latch enable input (LE). When LE is HIGH the latch is transparent. When E1 is HIGH or E2 is LOW all 8 analog switches are turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

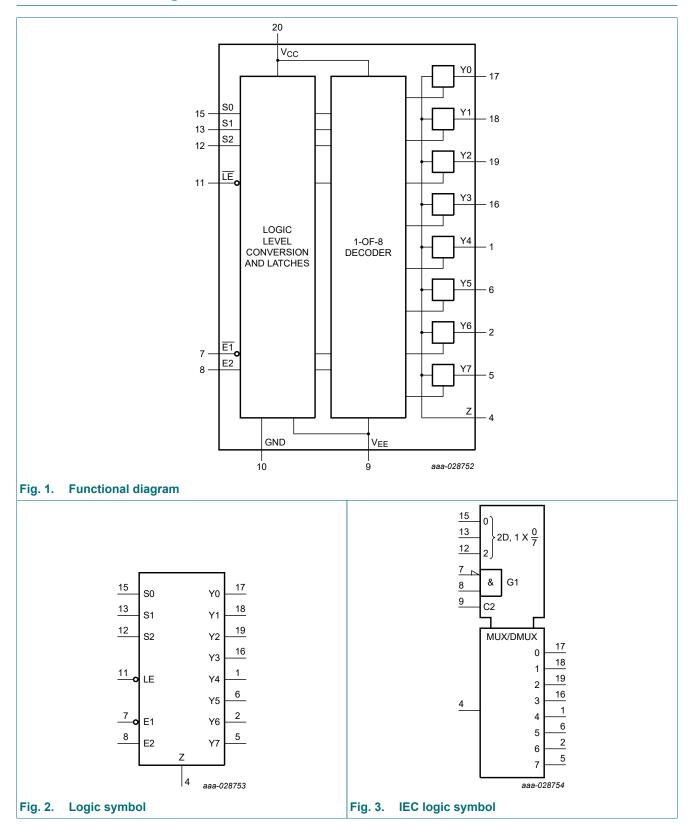
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

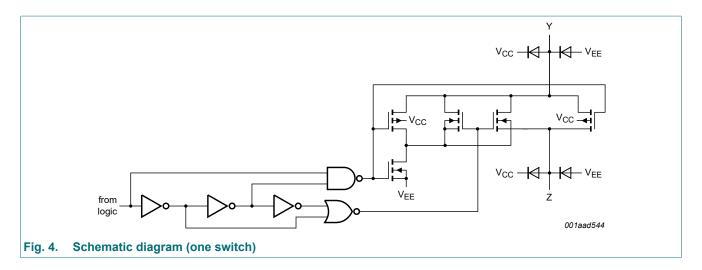
2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide analog input voltage range from -5 V to +5 V
- Complies with JEDEC standard no. 7A
- Low ON resistance:
 - 80 Ω (typical) at V_{CC} V_{EE} = 4.5 V
 - 70 Ω (typical) at V_{CC} V_{EE} = 6.0 V
 - 60 Ω (typical) at V_{CC} V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ±5 V analog signals
- Typical 'break before make' built-in
- Address latches provided
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V

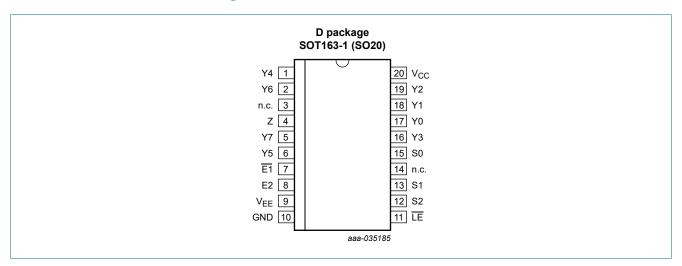
3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating


4. Ordering information


Table 1. Ordering information

Type number	Package	'ackage										
	Temperature range	Name	Description	Version								
74HC4351D-Q100 74HCT4351D-Q100	-40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1								


5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
E1	7	enable input (active LOW)
E2	8	enable input (active HIGH)
LE	11	latch enable input (active LOW)
S0, S1, S2	15, 13, 12	select inputs
Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7	17, 18, 19, 16, 1, 6, 2, 5	independent input or output
Z	4	common output or input
V _{EE}	9	supply voltage
GND	10	ground (0 V)
V _{CC}	20	supply voltage
n.c.	3, 14	not connected

7. Functional description

Table 3. Function table

 $H = HIGH \text{ voltage level}; L = LOW \text{ voltage level}; X = don't \text{ care}; \downarrow = HIGH\text{-to-LOW }\overline{LE} \text{ transition}.$

Input						Channel ON
E1	E2	LE	S2	S1	S0	
Н	Х	Х	Х	Х	X	none
X	L	Х	Х	X	Х	none
L	Н	Н	L	L	L	Y0
L	Н	Н	L	L	Н	Y1
L	Н	Н	L	Н	L	Y2
L	Н	Н	L	Н	Н	Y3
L	Н	Н	Н	L,	L	Y4
L	Н	Н	Н	L	Н	Y5
L	Н	Н	Н	Н	L	Y6
L	Н	Н	Н	Н	Н	Y7
L	Н	L	Х	Х	X	last selected channel "ON"
Χ	Х	Ţ	Х	Х	Х	select channels latched

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage	[1]	-0.5	+11.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{SK}	switch clamping current	V_{SW} < -0.5 V or V_{SW} > V_{CC} + 0.5 V	-	±20	mA
I _{SW}	switch current	-0.5 V < V _{SW} < V _{CC} + 0.5 V	-	±25	mA
I _{EE}	supply current		-	±20	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2]	-	500	mW
Р	power dissipation	per switch	-	100	mW

^[1] To avoid drawing V_{CC} current out of terminal Z, when switch current flows into terminals Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Yn. In this case there is no limit for the voltage drop across the switch, but the voltages at Yn and Z may not exceed V_{CC} or V_{EE}.

[2] For SOT163-1 (SO20) package: Ptot derates linearly with 12.3 mW/K above 109 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	74H	C4351-C	100	74H	CT4351-0	Q100	Unit
			Min	Тур	Max	Min	Тур	Max	1
V _{CC}	supply voltage	see <u>Fig. 5</u> and <u>Fig. 6</u>							
		V _{CC} - GND	2.0	5.0	10.0	4.5	5.0	5.5	V
		V _{CC} - V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V
VI	input voltage		GND	-	V _{CC}	GND	-	V _{CC}	V
V _{SW}	switch voltage		V _{EE}	-	V _{CC}	V _{EE}	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
	and fall rate	V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V
		V _{CC} = 10.0 V	-	-	31	-	-	-	ns/V

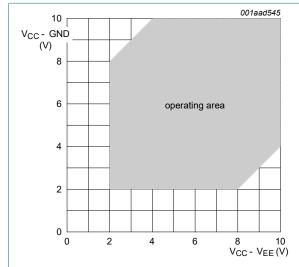


Fig. 5. Guaranteed operating area as a function of the supply voltages for 74HC4351-Q100

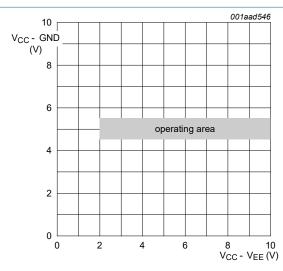


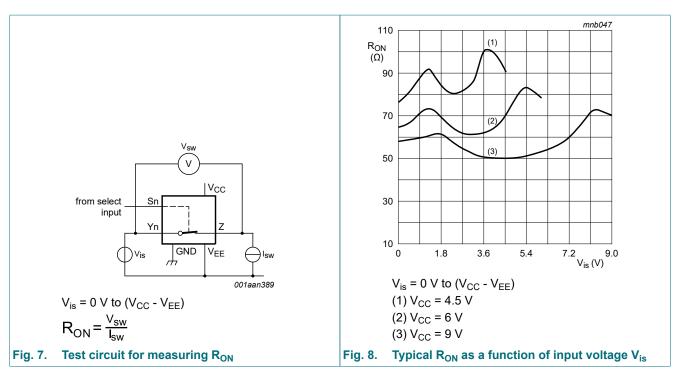
Fig. 6. Guaranteed operating area as a function of the supply voltages for 74HCT4351-Q100

10. Static characteristics

Table 6. R_{ON} resistance per latch for 74HC4351-Q100 and 74HCT4351-Q100

For test circuit, see Fig. 7

For 74HC4351-Q100: $V_I = V_{IH}$ or V_{IL} ; V_{CC} - GND or V_{CC} - V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.


For 74HCT4351-Q100: $V_l = V_{lH}$ or V_{lL} ; V_{CC} - GND = 4.5 V and 5.5 V, V_{CC} - V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

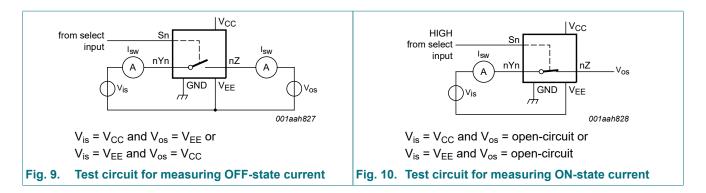
Symbol	Parameter	Conditions			25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
R _{ON(peak)}		$V_{is} = V_{CC}$ to V_{EE}	[1]								
	(peak)	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 100 \mu\text{A}$	[2]	-	-	-	-	-	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	100	180	-	225	-	270	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	90	160	-	200	-	240	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μA		-	70	130	-	165	-	195	Ω
R _{ON(rail)}	ON resistance	$V_{is} = V_{EE}$	[1]								
	(rail)	V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μ A	[2]	-	150	-	-	-	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	80	140	-	175	-	210	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μ A		-	70	120	-	150	-	180	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μ A		-	60	105	-	130	-	160	Ω
		$V_{is} = V_{CC}$	[1]								
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μ A	[2]	-	150	-	-	-	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μ A		-	90	160	-	200	-	240	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μ A		-	80	140	-	175	-	210	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μ A		-	65	120	-	150	-	180	Ω
ΔR_{ON}	ON resistance	$V_{is} = V_{CC}$ to V_{EE}	[1]								
	mismatch between	V _{CC} = 2.0 V; V _{EE} = 0 V	[2]	-	-	-	-	-	-	-	Ω
	channels	V _{CC} = 4.5 V; V _{EE} = 0 V		-	9	-	-	-	-	-	Ω
		V _{CC} = 6.0 V; V _{EE} = 0 V		-	8	-	-	-	-	_	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V		-	6	-	-	-	-	-	Ω

^[1] V_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as an input.

74HC_HCT4351_Q100

^[2] When supply voltages (V_{CC} - V_{EE}) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V, it is recommended to use these devices only for transmitting digital signals.

Table 7. Static characteristics


Voltages are referenced to GND (ground = 0 V);

V_{is} is the input voltage at pins Yn or Z, whichever is assigned as an input;

 V_{os} is the output voltage at pins Z or Yn, whichever is assigned as an output.

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC43	51-Q100									
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
		V _{CC} = 9.0 V	6.3	4.7	-	6.3	-	6.3	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
		V _{CC} = 9.0 V	-	4.3	2.7	-	2.7	-	2.7	V
I _I	input leakage	V _{EE} = 0 V; V _I = V _{CC} or GND								
	current	V _{CC} = 6.0 V	-	-	±0.1	-	±1.0	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±0.2	-	±2.0	-	±2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V};$ $V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{ see } Fig. 9$								
		per channel	-	-	±0.1	-	±1.0	-	±1.0	μΑ
		all channels	-	-	±0.4	-	±4.0	-	±4.0	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see <u>Fig. 10</u>	-	-	±0.4	-	±4.0	-	±4.0	μA

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
C _I in care C _{SW} strain C _I in C _I			Min	Тур	Max	Min	Max	Min	Max	
I _{CC}	supply current	$\begin{aligned} &V_{EE} = 0 \text{ V; } V_{I} = V_{CC} \text{ or GND;} \\ &V_{is} = V_{EE} \text{ or } V_{CC;} \\ &V_{os} = V_{CC} \text{ or } V_{EE} \end{aligned}$								
		V _{CC} = 6.0 V	-	-	8.0	-	80.0	-	160.0	μΑ
		V _{CC} = 10.0 V	-	-	16.0	-	160.0	-	320.0	μΑ
C _I	input capacitance		-	3.5	-	-	-	-	-	pF
C _{sw}	switch	independent pins Yn	-	5	-	-	-	-	-	pF
	capacitance	common pins Z	-	25	-	-	-	-	-	pF
74HCT4	351-Q100					'	'		'	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $V_{EE} = 0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V};$ $V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{ see } Fig. 9$								
		per channel	-	-	±0.1	-	±1.0	-	±1.0	μΑ
		all channels	-	-	±0.4	-	±4.0	-	±4.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V};$ $V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{ see } Fig. 10$	-	-	±0.4	-	±4.0	-	±4.0	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}								
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	8.0	-	80.0	-	160.0	μΑ
		V _{CC} = 5.0 V; V _{EE} = -5.0 V	-	-	16.0	-	160.0	-	320.0	μΑ
ΔI _{CC}	additional supply current	per input; other inputs at V_{CC} or GND; $V_1 = V_{CC} - 2.1 \text{ V};$ $V_{CC} = 4.5 \text{ V}$ to 5.5 V ; $V_{EE} = 0 \text{ V}$								
		inputs E1, E2 and Sn	-	50	180	-	225	-	245	μΑ
		input LE	-	150	540	-	675	-	735	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
C _{sw}	switch	independent pins Yn	-	5	-	-	-	-	-	pF
	capacitance	common pins Z	-	25	-	-	-	-	-	pF

11. Dynamic characteristics

Table 8. Dynamic characteristics

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF; for test circuit see Fig. 14.

V_{is} is the input voltage at pins Yn or Z, whichever is assigned as an input;

Vos is the output voltage at pins Z or Yn, whichever is assigned as an output.

Symbol	Parameter	Conditions		25 °C		-40 °C to	+85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC43	51-Q100		•					,		
t _{pd}	propagation	V_{is} to V_{os} ; $R_L = \infty \Omega$; see <u>Fig. 11</u> [1]								
	delay	V _{CC} = 2.0 V; V _{EE} = 0 V	-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	4	10	-	13	-	15	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	4	8	-	10	-	12	ns
t _{on}	turn-ON	$\overline{\text{E1}}$ to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\underline{\text{Fig. 12}}$								
	time	V _{CC} = 2.0 V; V _{EE} = 0 V	-	85	300	-	375	-	450	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	31	60	-	75	-	90	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	25	51	-	64	-	77	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	28	55	-	69	-	83	ns
		E2 to V_{os} ; $R_L = 1 kΩ$; see Fig. 12								
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	85	300	-	375	-	450	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	31	60	-	75	-	90	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	25	51	-	64	-	77	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	25	55	-	69	-	83	ns
		$\overline{\text{LE}}$ to V _{os} ; R _L = 1 kΩ; see <u>Fig. 12</u>								
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	91	300	-	375	-	450	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	33	60	-	75	-	90	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	26	51	-	64	-	77	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	27	55	-	69	-	83	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Fig. 12								
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	88	300	-	375	-	450	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	32	60	-	75	-	90	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	26	51	-	64	-	77	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	25	50	-	63	-	75	ns

Symbol	Parameter	Conditions		25 °C		-40 °C to	+85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _{off}	turn-OFF	$\overline{\text{E1}}$ to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\overline{\text{Fig. 12}}$								
	time	V _{CC} = 2.0 V; V _{EE} = 0 V	-	69	250	-	315	-	375	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	25	50	-	63	-	75	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	20	43	-	54	-	64	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	20	40	-	50	-	60	ns
		E2 to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Fig. 12								
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	72	250	-	315	-	375	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	26	50	-	63	-	75	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	21	43	-	54	-	64	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	19	40	-	50	-	60	ns
		$\overline{\text{LE}}$ to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\underline{\text{Fig. } 12}$								
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	83	275	-	345	-	415	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	30	55	-	69	-	83	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	24	47	-	59	-	71	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	26	45	-	56	-	68	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Fig. 12								
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	80	275	-	345	-	415	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	29	55	-	69	-	83	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	23	47	-	59	-	71	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	24	48	-	60	-	72	ns
t _{su}	set-up time	Sn to \overline{LE} ; R _L = 1 k Ω ; see Fig. 13								
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	60	17	-	-	75	-	90	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	12	6	-	-	15	-	18	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	10	5	-	-	13	-	15	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	18	9	-	-	23	-	27	ns
t_{hold}	hold time	Sn to \overline{LE} ; $R_L = 1 \text{ k}\Omega$; see Fig. 13								
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	5	-8	-	-	5	-	5	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	5	-3	-	-	5	-	5	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	5	-2	-	-	5	-	5	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	5	-4	-	-	5	-	5	ns
$t_{WH(min)}$	minimum	$\overline{\text{LE}}$; R _L = 1 k Ω ; see Fig. 13								
	pulse width HIGH	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	100	11	-	-	125	-	150	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	20	1	-	-	25	-	30	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	17	3	-	-	21	-	26	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	25	7	-	-	31	-	38	ns
C _{pd}	power dissipation capacitance	per switch; $V_1 = GND$ to V_{CC} [2]	-	25	-	-	-	-	-	pF
C _{sw}	switch	maximum								
	capacitance	independent (Yn)	-	5	-	-	-	-	-	pF
		common (Z)	-	25	-	-	-	-	-	pF
		` '		_						1.

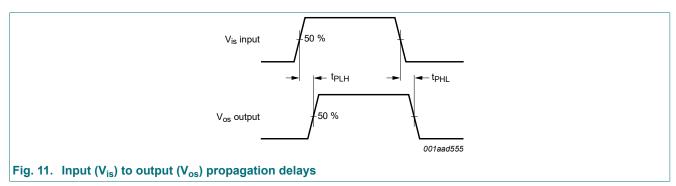
Symbol	Parameter	Conditions		25 °C		-40 °C to	+85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT4	351-Q100									
t _{pd}	propagation	V_{is} to V_{os} ; $R_L = \infty \Omega$; see <u>Fig. 11</u> [1]								
	delay	V _{CC} = 4.5 V; V _{EE} = 0 V	-	6	12	-	15	-	18	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	4	8	-	10	-	12	ns
t _{on}	turn-ON	$\overline{\text{E1}}$ to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\overline{\text{Fig. 12}}$								
	time	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	40	75	-	94	-	113	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	31	60	-	75	-	90	ns
		E2 to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Fig. 12								
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	35	70	-	88	-	105	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	26	50	-	63	-	75	ns
		$\overline{\text{LE}}$ to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\overline{\text{Fig. 12}}$								
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	42	75	-	94	-	113	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	37	60	-	75	-	90	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Fig. 12								
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	39	75	-	94	-	113	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	30	60	-	75	-	90	ns
0	turn-OFF	$\overline{E1}$ to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\underline{Fig. 12}$								
	time	V _{CC} = 4.5 V; V _{EE} = 0 V	-	27	55	-	69	-	83	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	20	40	-	50	-	60	ns
		E2 to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Fig. 12								
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	32	60	-	75	-	90	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	26	50	-	63	-	75	ns
		$\overline{\text{LE}}$ to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\overline{\text{Fig. } 12}$								
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	33	60	-	75	-	90	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	30	55	-	69	-	83	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Fig. 12								
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	33	65	-	81	-	98	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	29	55	-	69	-	83	ns
t _{su}	set-up time	Sn to \overline{LE} ; R _L = 1 k Ω ; see $\overline{Fig. 13}$								
		V _{CC} = 4.5 V; V _{EE} = 0 V	12	6	-	-	15	-	18	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	14	7	-	-	18	-	21	ns
t _{hold}	hold time	Sn to \overline{LE} ; R _L = 1 k Ω ; see Fig. 13								
		V _{CC} = 4.5 V; V _{EE} = 0 V	5	-1	-	-	5	-	5	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	5	-2	-	-	5	-	5	ns
t _{WH(min)}	minimum	$\overline{\text{LE}}$; R _L = 1 kΩ; see Fig. 13								
	pulse width	V _{CC} = 4.5 V; V _{EE} = 0 V	25	13	-	-	31	-	38	ns
	HIGH	V _{CC} = 4.5 V; V _{EE} = -4.5 V	25	13	-	-	31	-	38	ns
C _{pd}	power dissipation capacitance	per switch; [2] V _I = GND to V _{CC} - 1.5 V	-	25	-	-	-	-	-	pF

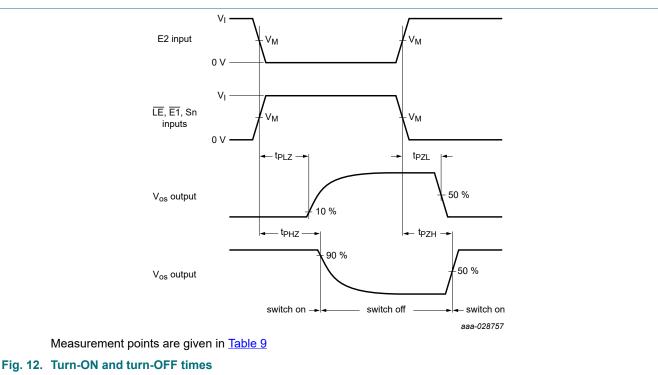
Symbol	Parameter	Conditions	25 °C		25 °C -40 °C to +85 °		+85 °C	C -40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
C _{sw}		maximum								
	capacitance	independent (Yn)	-	5	-	-	-	-	-	pF
		common (Z)	-	25	-	-	-	-	-	pF

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

N = number of inputs switching;


 $\Sigma\{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = \text{sum of outputs};$


C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

V_{CC} = supply voltage in V.

11.1. Waveforms and test circuit

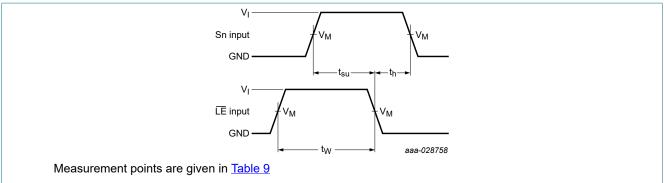
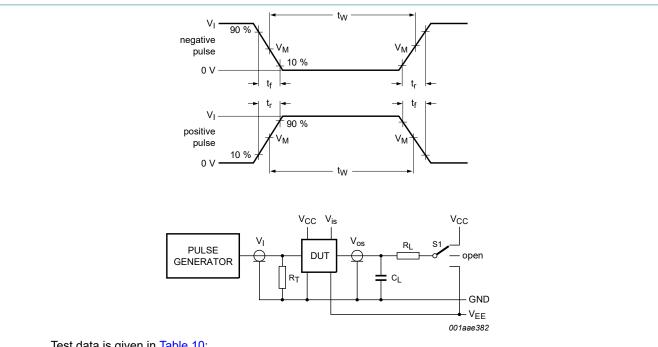



Fig. 13. Set-up and hold times from Sn inputs to LE input, and minimum pulse width of LE.

Table 9. Measurement points

Туре	Input	Output	
	V _I	V _M	V _M
74HC4351-Q100	GND to V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
74HCT4351-Q100	GND to 3 V	1.3 V	1.3 V

Test data is given in Table 10:

Definitions test circuit:

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator;

C_L = Load capacitance including jig and probe capacitance;

R_L = Load resistance;

S1 = Test selection switch.

Fig. 14. Test circuit for measuring switching times

Table 10. Test data

Test	Input			Load	Load		
	VI	V _I V _{is}			CL	R _L	
			at f _{max}	other [1]			
t _{PZH} , t _{PHZ}	[2]	V _{CC}	< 2 ns	6 ns	50 pF	1 kΩ	V _{EE}
t _{PZL} , t _{PLZ}	[2]	V _{EE}	< 2 ns	6 ns	50 pF	1 kΩ	V _{CC}
Other	[2]	pulse	< 2 ns	6 ns	50 pF	1 kΩ	open

^[1] $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r and t_f with 50 % duty factor.

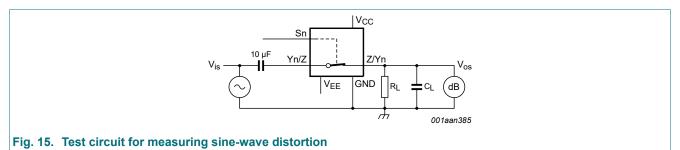
For 74HC4351-Q100: $V_I = V_{CC}$ For 74HCT4351-Q100: $V_I = 3 V$

14 / 21

^[2] V_I values:

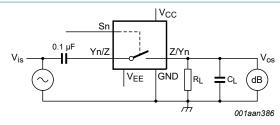
11.2. Additional dynamic characteristics

Table 11. Additional dynamic characteristics

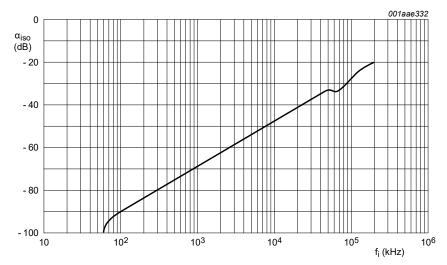

Recommended conditions and typical values; GND = 0 V; T_{amb} = 25 °C; C_L = 50 pF unless stated otherwise.

 V_{is} is the input voltage at pins Yn or Z, whichever is assigned as an input.

 V_{os} is the output voltage at pins Yn or Z, whichever is assigned as an output.


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
d _{sin}	sine-wave distortion	f_i = 1 kHz; R_L = 10 k Ω ; see Fig. 15					
		V _{is} = 4.0 V (p-p); V _{CC} = 2.25 V; V _{EE} = -2.25 V		-	0.04	-	%
		V_{is} = 8.0 V (p-p); V_{CC} = 4.5 V; V_{EE} = -4.5 V		-	0.02	-	%
		f_i = 10 kHz; R_L = 10 k Ω ; see Fig. 15					
		V_{is} = 4.0 V (p-p); V_{CC} = 2.25 V; V_{EE} = -2.25 V		-	0.12	-	%
		V_{is} = 8.0 V (p-p); V_{CC} = 4.5 V; V_{EE} = -4.5 V		-	0.06	-	%
α_{iso} isolation (OFF-state)	$R_L = 600 \Omega$; $f_i = 1 MHz$; see Fig. 16						
		V _{CC} = 2.25 V; V _{EE} = -2.25 V	[1]	-	-50	-	dB
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	[1]	-	-50	-	dB
V _{ct}	crosstalk voltage	between control and any switch (peak-to-peak value); $R_L = 600 \Omega$; $f_i = 1 MHz$; $\overline{E1}$, E2 or Sn square wave between V_{CC} and GND; $t_r = t_f = 6$ ns; see Fig. 17					
		V _{CC} = 4.5 V; V _{EE} = 0 V		-	120	-	mV
		V _{CC} = 4.5 V; V _{EE} = -4.5 V		-	220	-	mV
f _(-3dB)	-3 dB frequency	$R_L = 50 \Omega$; $C_L = 10 pF see Fig. 18$					
	response	V _{CC} = 2.25 V; V _{EE} = -2.25 V	[2]	-	160	-	MHz
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	[2]	-	170	-	MHz

- [1] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- [2] Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).


Product data sheet

15 / 21

 V_{CC} = 4.5 V; GND = 0 V; V_{EE} = -4.5 V; R_L = 600 Ω ; R_S = 1 k Ω

a. Test circuit

b. Isolation (OFF-state) as a function of frequency

Fig. 16. Test circuit for measuring isolation (OFF-state)

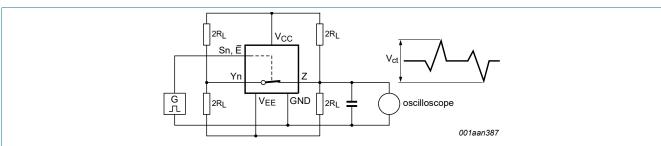
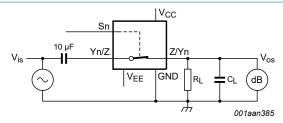
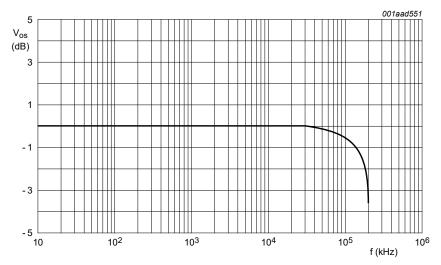




Fig. 17. Test circuit for measuring crosstalk between control input and any switch

 V_{CC} = 4.5 V; GND = 0 V; V_{EE} = -4.5 V; R_L = 50 $\Omega;$ R_S = 1 $k\Omega$

a. Test circuit

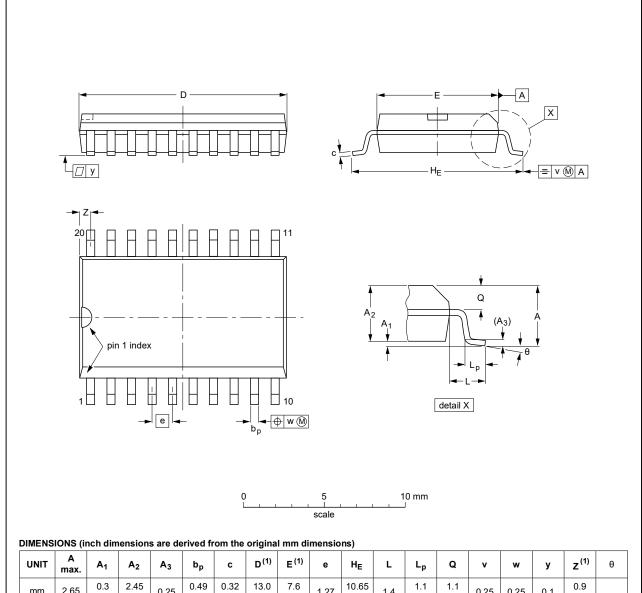

b. Typical frequency response

Fig. 18. Test circuit for frequency response

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013				99-12-27 03-02-19

Fig. 19. Package outline SOT163-1 (SO20)

74HC_HCT4351_Q100

13. Abbreviations

Table 12. Abbreviations

Acronym	Description
ANSI	American National Standards Institute
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
ESDA	ElectroStatic Discharge Association
НВМ	Human Body Model
JEDEC	Joint Electron Device Engineering Council

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4351_Q100 v.2	20240725	Product data sheet	-	74HC_HCT4351_Q100 v.1
Modifications:	Section 2: ESD	t JEDEC standard.		
74HC_HCT4351_Q100 v.1	20231102	Product data sheet	-	-

Downloaded From Oneyac.com

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own title.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74HC_HCT4351_Q100

Product data sheet

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2024. All rights reserved

20 / 21

Contents

1. General description	<i>'</i>
2. Features and benefits	<i>'</i>
3. Applications	
4. Ordering information	
5. Functional diagram	
6. Pinning information	
6.1. Pinning	
6.2. Pin description	
7. Functional description	
8. Limiting values	
9. Recommended operating conditions	
10. Static characteristics	
11. Dynamic characteristics	
11.1. Waveforms and test circuit	12
11.2. Additional dynamic characteristics	15
12. Package outline	18
13. Abbreviations	19
14. Revision history	19
15. Legal information	20

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 25 July 2024

[©] Nexperia B.V. 2024. All rights reserved

单击下面可查看定价,库存,交付和生命周期等信息

>>Nexperia(安世)