

System Reset IC with Watchdog Timer

■FEATURES

•Full compatible with NJM2102

Detection voltage
 V_{SI} =4.2V±1.0%

Watchdog timer function

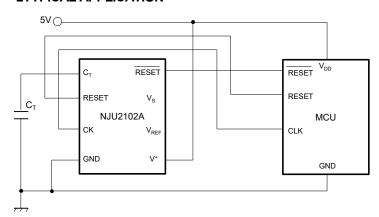
Reset output of both positive and negative logic

•Operating temperature Ta=-40 to 125°C

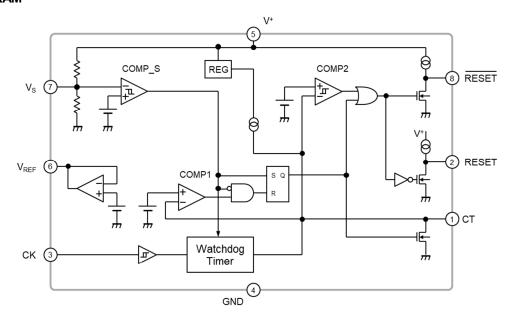
Low quiescent current 320µA typ.Low reset operation voltage 0.8V typ.Package DMP8

■GENERAL DESCRIPTION

The NJU2102A is a system reset IC with watchdog timer to detect the abnormal conditions, such as shutdown of all supply voltages at once, or sudden voltage down and then generate the reset signal.

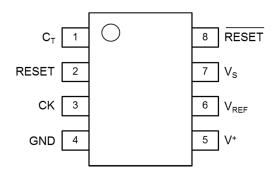

It is possible to direct replacement from NJM2102.

Furthermore, it improves usability by extending operating temperature, standardizing AC characteristics, and making each parameter highly accurate.

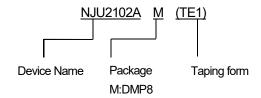

■APPLICATION

- Industrial equipment
- · Housing and facility equipment
- OA equipment
- Amusement equipment

■TYPICAL APPLICATION



■BLOCK DIAGRAM


■PIN CONFIGURATION

DMP8

PIN No.	PIN NAME	FUNCTION
		Connects Capacitor pin for setting
1	C_T	WDT monitor time, WDT reset time,
		and Reset signal hold time.
2	RESET	RESET output pin. (Active High)
3	CK	Clock input pin.
4	GND	GND pin.
5	V ⁺	Power Supply pin.
6	V_{REF}	Output reference voltage pin.
7	Vs	Comparator S input pin.
8	RESET	RESET output pin. (Active Low)

■PRODUCT NAME INFORMATION

■ORDERING INFORMATION

PRODUCT NAME	PACKAGE OUTLINE	RoHS	Halogen- Free	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ (pcs)
NJU2102AM(TE1)	DMP8	0	0	Sn-2Bi	2102A	95	2000

Note) "-" is non-evaluation. Please contact your sales representative for more information.

■ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	-0.3 to 20	V
Input Voltage	Vs	-0.3 to V ⁺ +0.3 (<20)	V
Clock Input Voltage	V _{CK}	-0.3 to 20	V
C _⊤ Pin Voltage	V _{CT}	-0.3 to V ⁺ +0.3 (<20)	V
RESET Output Voltage	V _{RESET}	-0.3 to V ⁺ +0.3 (<20)	V
RESET Output Voltage	V_{RESET}	-0.3 to V ⁺ +0.3 (<20)	V
Power Dissipation (Ta=25°C)	В	(2-layer / 4-layer)	m\//
DMP8	P_{D}	470 ⁽¹⁾ / 600 ⁽²⁾	mW
Junction Temperature	Tj	-40 to +150	°C
Operating Temperature	T _{opr}	-40 to +125	°C
Storage Temperature	T _{stg}	-50 to +150	°C

^{(1):} Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 2 Layers)

■RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	3.5 to 18	V
Input Voltage	Vs	0 to V [⁺]	V
Clock Input Voltage	V_{CK}	0 to 18	V
RESET Output Current	I _{RESET}	0 to 20	mA
RESET Output Current	I _{RESET}	0 to 20	mA
V _{REF} Output Current	I _{VREF}	-200 to +5	μA
Watchdog Timer Monitor Time	t _{WD}	0.1 to 1000	ms
Watchdog Timer Reset Time	t _{WR}	0.02 to 200	ms
Reset Signal Hold Time	t _{PR}	1 to 10000	ms
C _⊤ Pin Capacitor	C _T	0.001 to 10	μF

^{(2):} Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 4 Layers) internal Cu area: 74.2 x 74.2mm

■ELECTRICAL CHARACTERISTICS

(DC Characteristics)

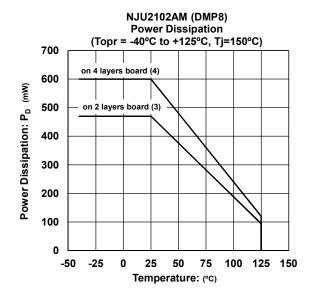
Unless other noted, V^{+} =5.0V, C_{T} =0.1 μ F, T_{a} =25 $^{\circ}$ C

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current	Icc	Watchdog timer operation	-	320	430	μΑ
Detection Voltage 1	V _{SL}	V ⁺ sweep down	4.158	4.200	4.242	V
Detection Voltage 2	V _{SH}	V ⁺ sweep up	4.210	4.300	4.390	V
Hysteresis Width	V _{HYS}	V _{HYS} =V _{SH-} V _{SL}	50	100	150	mV
Reference Voltage	V_{REF}		1.217	1.235	1.253	V
Reference Voltage Line Regulation	ΔV_{REF1}	V ⁺ =3.5V to 18V	-10	3	10	mV
Reference Voltage Load Regulation	ΔV_{REF2}	Ι _{ΟυΤ} =-200μΑ to +5μΑ	-5	-	5	mV
CK Input Threshold Voltage	V_{TH}		0.7	1.2	1.9	V
CK Input Current 1	I _{IH}	V _{CK} =5V	-	10	20	μA
CK Input Current 2	I _{IL}	V _{CK} =0V	-0.1	0	0.1	μA
C _T Charge Current 1	I _{CTC1}	Watchdog timer operation, V _{CT} =1V	20	50	110	μΑ
C _T Charge Current 2	I _{CTC2}	Power on reset operating, V _{CT} =1V	0.6	1.4	3.0	μΑ
C _T Discharge Current 1	I _{CTD1}	Watchdog timer operation, V _{CT} =1V	6	10	13	μΑ
C _T Discharge Current 2	I _{CTD2}	Power on reset operating, V _{CT} =1V	100	2000	-	μΑ
High Level Output Voltage 1	V _{OH1}	V _S =OPEN, I _{RESET} =-5μA	4.5	4.9	-	V
High Level Output Voltage 2	V _{OH2}	V _S =0V, I _{RESET} =-5µA	4.5	4.9	-	V
Output Saturation Voltage 1	V _{OL1}	V _S =0V, I _{RESET} =3mA	-	0.05	0.4	V
Output Saturation Voltage 2	V _{OL2}	V _S =0V, I _{RESET} =10mA	-	0.15	0.5	V
Output Saturation Voltage 3	V_{OL3}	V _S =OPEN, I _{RESET} =3mA	-	0.05	0.4	V
Output Saturation Voltage 4	V _{OL4}	V _S =OPEN, I _{RESET} =10mA	-	0.15	0.5	V
Output Sink Current 1	I _{OL1}	V _S =0V, V _{RESET} =1V	20	60	-	mA
Output Sink Current 2	I _{OL2}	V _S =OPEN, V _{RESET} =1V	20	60	-	mA
RESET Minimum Operating Voltage	V _{CCL1}	V _{RESET} =0.4V, I _{RESET} =0.2mA	-	0.8	1.2	V
RESET Minimum Operating Voltage	V _{CCL2}	$V_{RESET}=V^{\dagger}$ -0.1V, R_{L} =1M Ω (RESET-GND)	-	0.8	1.2	V

(AC Characteristics)

Unless other noted, $V^{+}=5.0V$, $C_{T}=0.1\mu F$, $T_{a}=25^{\circ}C$

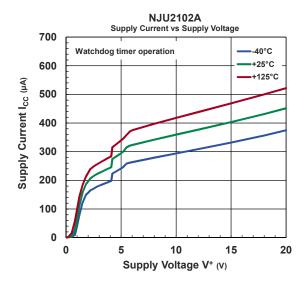
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
V ⁺ Input Pulse width	t _{Pl}		8	-	-	μs
CK Input Pulse width	t _{CKW}		3	-	-	μs
CK Input Cycle	t _{CK}		20	-	-	μs
Watchdog Timer Monitor Time	t _{WD}	C _T =0.1µF	5	10	15	ms
Watchdog Timer Reset Time	t _{WR}	C _T =0.1µF	1	2	3	ms
Reset Signal Hold Time	t _{PR}	C _T =0.1µF	50	100	150	ms
Output Propagation	t _{PD1}	$\overline{\text{RESET}}$ pin, R _L =2.2k Ω , C _L =100pF	-	2	10	μs
Delay Time from V ⁺	t _{PD2}	RESET pin, R_L =2.2 $k\Omega$, C_L =100pF	-	3	10	μs
Output Rise Time	t _{R1}	RESET pin, 10% to 90%, R _L =2.2kΩ, C _L =100pF	-	1.0	1.5	μs
Output Rise Time	t _{R2}	RESET pin, 10% to 90%, R_L =2.2 k_Ω , C_L =100pF	-	1.0	1.5	μs
Output Fall Time	t _{F1}	$\overline{\text{RESET}}$ pin, 90% to 10%, R _L =2.2k Ω , C _L =100pF	-	0.1	0.5	μs
Output Fall Time	t _{F2}	RESET pin, 90% to 10%, R_L =2.2 $k\Omega$, C_L =100pF	_	0.1	0.5	μs

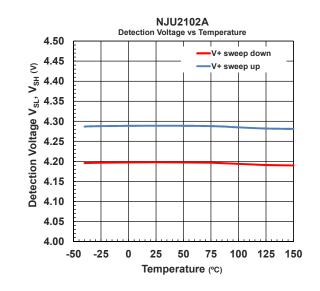


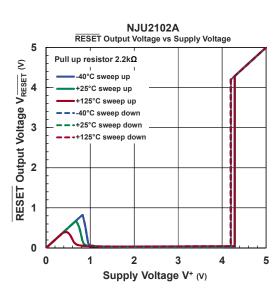
■THERMAL CHARACTERISTICS

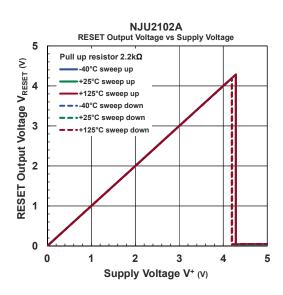
PARAMETER	SYMBOL	VALUE		UNIT
Junction-to-ambient thermal resistance	θја	DMP8	262 ⁽³⁾ 206 ⁽⁴⁾	°C/W
Junction-to-Top of package characterization parameter	ψjt	DMP8	72 ⁽³⁾ 65 ⁽⁴⁾	°C/W

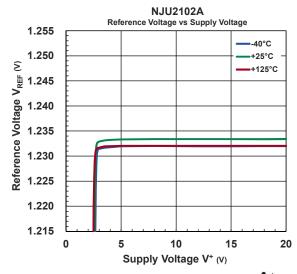
^{(3):} Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 2 Layers)

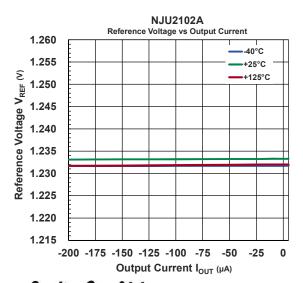

■POWER DISSIPATION vs. AMBIENT TEMPERATURE

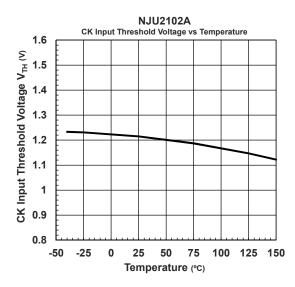


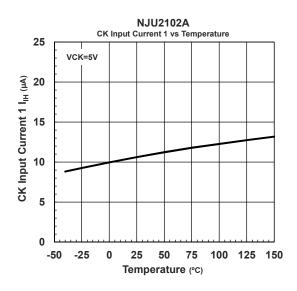

^{(4):} Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 4 Layers) internal Cu area: 74.2 x 74.2mm

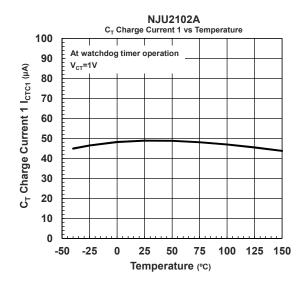


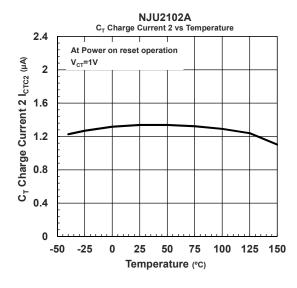

■TYPICAL CHARACTERISTICS

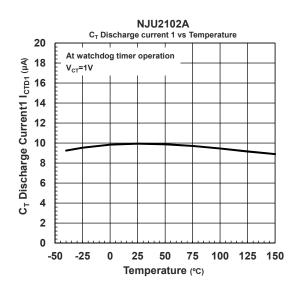


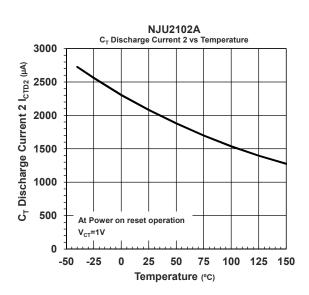


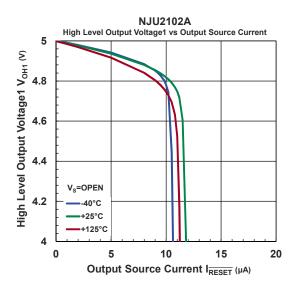


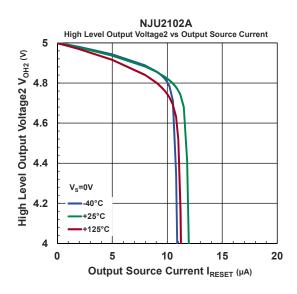


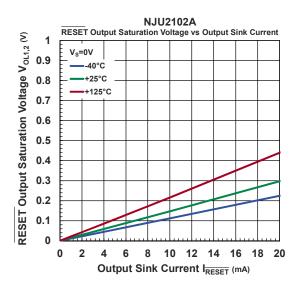


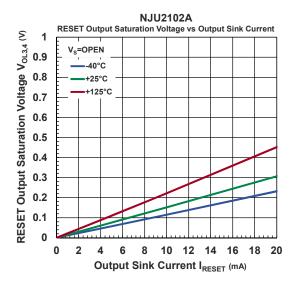


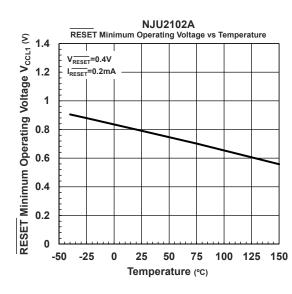


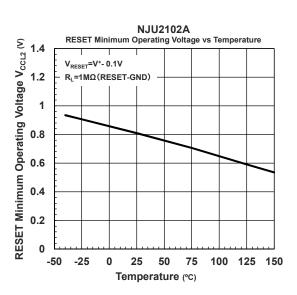


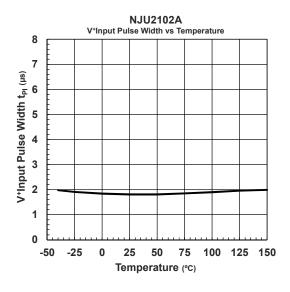


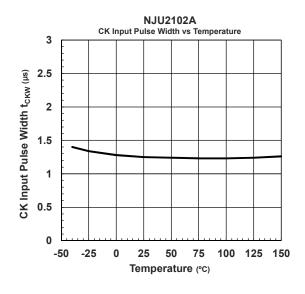


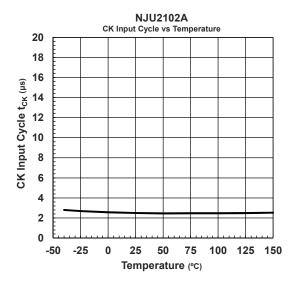


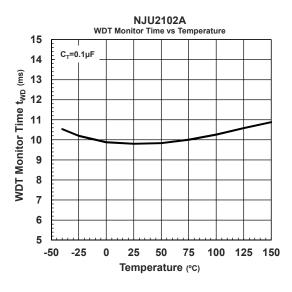


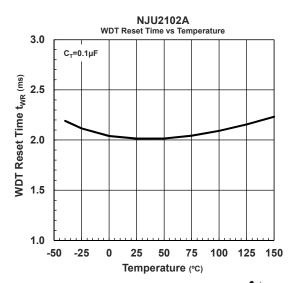


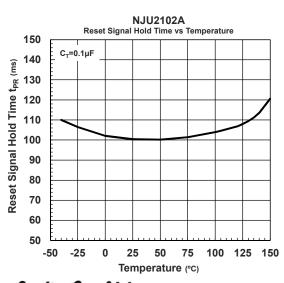


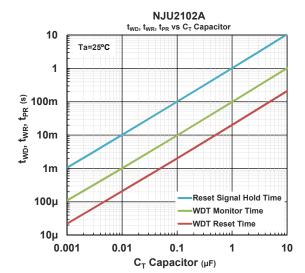


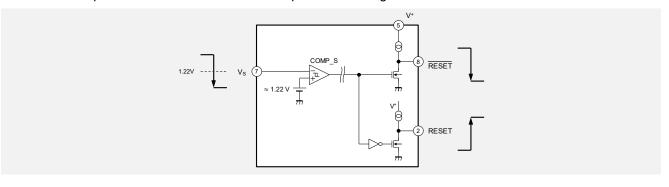


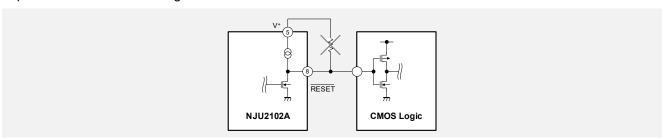

www nir com










■FUNCTION EXPLAMATION

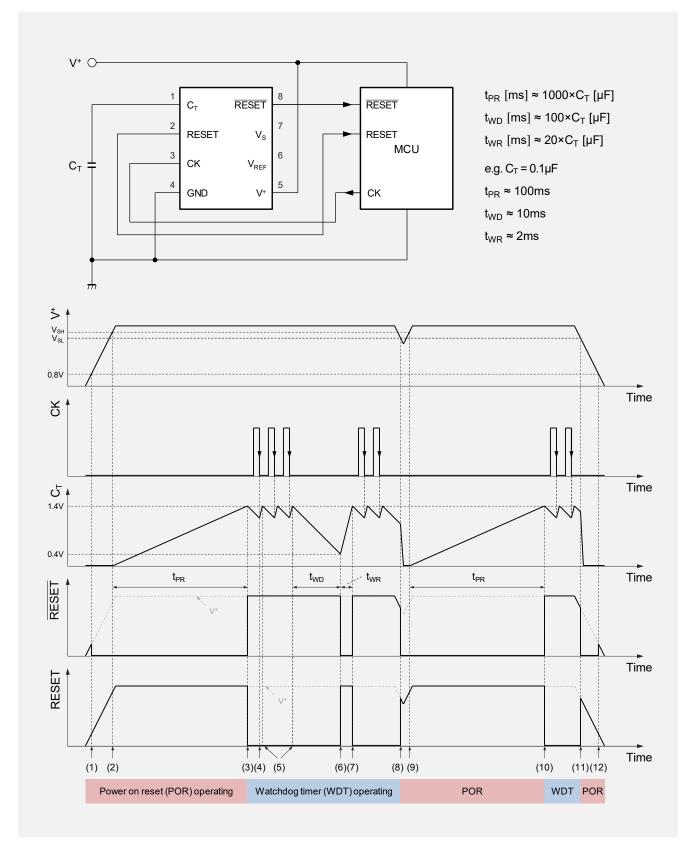
The COMP_S is the comparator with hysteresis in detection voltage. When V_S pin voltage becomes about 1.22V or less, the $\overline{\text{RESET}}$ output becomes "Low" and RESET output becomes "High".

The NJU2102A can detect the instantaneous interruption and the instantaneous drop of the power line with a time of about 2 μ s width. If this level of instantaneous interruption or drop is not a problem, it can have a delayed trigger function by connecting capacitor between the V_S pin and GND (refer to Fig.2).

Since the \overline{RESET} pin and RESET pin are internally pulled up to V^{\dagger} , an external pull-up resistor isn't required in case of high impedance load like a CMOS logic IC.

The watchdog timer monitors the clock input to CK pin. And CK pin detects falling edge of clock. While the supply voltage is below the detection voltage, the watchdog timer operation is disabled.

The V_{REF} pin outputs reference voltage of 1.235V typ. And it is possible to monitor the multiple supply voltage or over voltage by adding an external comparator.


Unused Pin should be treated as shown in the table below.

Pin. No.	Pin Name	Treatment method of unused Pin
2	RESET	OPEN
3	CK	Connect to GND
6	V_{REF}	OPEN
7	Vs	OPEN
8	RESET	OPEN

■OPERATION EXPLAMATION

Technical Information

Downloaded From Oneyac.com

(Power-ON Reset Operation)

- (1) When V⁺ increases to Minimum operating Voltage V_{CCL} (0.8V typ.), each output becomes reset state (RESET="Low", RESET="High").
- (2) When V^{\dagger} increases to V_{SH} (4.3V typ.), it starts to charge to capacitor C_T . At this time, each output holds the reset state (RESET="Low", RESET="High").
- (3) When the C_T voltage reaches the threshold voltage (about 1.4V), each output releases the reset state (RESET="High", RESET="Low"). The Reset Signal Hold Time t_{PR} is the time from when V⁺ reaches to V_{SH} to the output reset is released. And it is calculated as follows.

Reset Signal Hold Time
$$t_{PR}$$
 [ms] $\approx 1000 \times C_T$ [μ F]

After the reset release, it starts to discharge the capacitor C_T and the watchdog timer operation is started. Also, it is not affected by CK input during power-on reset operation.

(Watchdog Timer Operation)

- (4) If a clock from MCU is input to the CK pin during discharging of capacitor C_T, C_T is switched from discharging to charging. And CK pin detects falling edge.
- (5) When the C_T voltage reaches the threshold voltage (about 1.4V), C_T is switched from charging to discharging. Repeat the steps (4) and (5) as long as a normal clock is input.
- When the clock stops and C_T voltage decrease to the threshold voltage (about 0.4V), each output goes into reset state (RESET="Low", RESET="High"). At the same time, C_T is switched from discharging to charging.

 The Watchdog Timer Monitor Time t_{WD} is the C_T discharge time when C_T is switched from charging to discharging until reset is output. And it is calculated as follows.

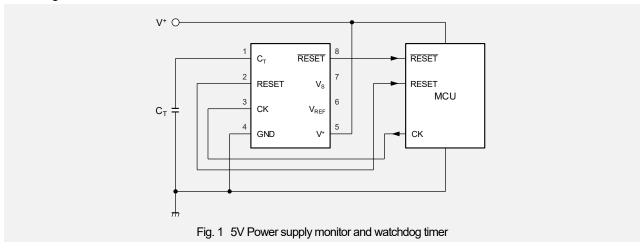
Watchdog Timer Monitor Time
$$t_{WD}$$
 [ms] $\approx 100 \times C_T$ [μ F]

(7) When the C_T voltage reaches the threshold voltage (about 1.4V), the reset output is released and CT is switched from charging to discharging (RESET="High", RESET="Low"). The Watchdog Timer Reset Time t_{WR} is the C_T charge time when C_T switches from charging to discharging after reset signal output and it is calculated as follows.

Watchdog Timer Reset Time
$$t_{WR}$$
 [ms] $\approx 20 \times C_T$ [μ F]

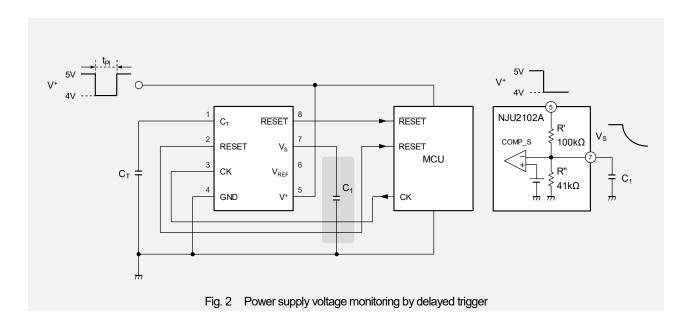
After that, repeat the steps (4) and (5) as long as the normal clock is input, but when the clock stops, repeat (6) and (7).

(Power-ON Reset Operation)


- (8) When V^{\dagger} decrease below the V_{SL} (4.2V typ.), each output goes into reset state (RESET="Low", RESET="High"). At the same time, C_T is discharged rapidly.
- (9) When V^+ increase to V_{SH} , C_T is started to charge. In case of instantaneous V^+ drop, if the time from the decreasing of V^+ below V_{SL} to the increasing above V_{SH} is longer than V^+ Input Pulse Width t_{Pl} , C_T charging will start after discharging C_T .
- (10) The reset output is released after t_{PR} from the time when V^{+} becomes higher than V_{SH} (RESET="High", RESET="Low"), and the watchdog timer operation is started. After that, when V^{+} becomes V_{SL} or less, repeat the steps (8) to (10).
- (11) In the case of power off, when V^{\dagger} decrease to V_{SL} , the output becomes reset state (RESET="Low", RESET="High").
- (12) Then, when V⁺ decrease to 0V, hold the output reset state (RESET="Low", RESET="High") until V⁺ reaches Minimum operating Voltage V_{CCL} (0.8V typ.).

■APPLICATION EXAMPLE

1. 5V Power supply monitor and watchdog timer


Monitor the 5V power supply with V_S (COMP_S). Detection voltage is Detection Voltage 1 (4.2V typ.) and Detection Voltage 2 (4.3V typ.) according to ELECTRICAL CHARACTERISTICS. Also, monitor the clock from a MCU by watchdog timer.

2. Power supply voltage monitoring by delayed trigger

Add an arbitrary delay to the COMP_S operation by connecting capacitor C_1 between V_S pin and GND When C_1 is connected, V^{\dagger} Input Pulse width t_{Pl} becomes longer. e.g. t_{Pl} = 40 μ s (C1=1000pF) V^{\dagger} Input Pulse width t_{Pl} in case of C_1 connected is calculated as following formula.

V⁺ Input Pulse width
$$t_{PI} [\mu s] \approx (R' \parallel R'') \times \ln \left(\frac{5-4}{V_{SAL}-4} \right) \times 10^{-6} \times C_1 [pF] \approx 4.7 \times 10^{-2} \times C_1 [pF]$$

3. Power supply monitor (adjust detection voltage by external resistor)

The detection voltage of V⁺ can be adjusted with an external resistor.

By selecting the external voltage-dividing resistors R_1 and R_2 to a sufficiently smaller value than internal voltage-dividing resistors R', R''(100 k Ω , 41 k Ω), the detection voltage can be set by the resistance ratio of R_1 and R_2 (refer to Tab.1).

The detection voltage should be set higher than the recommended minimum supply voltage (3.5V). Also, the method of adjusting the detection voltage using only either R_1 or R_2 is not recommended because of bad accuracy.

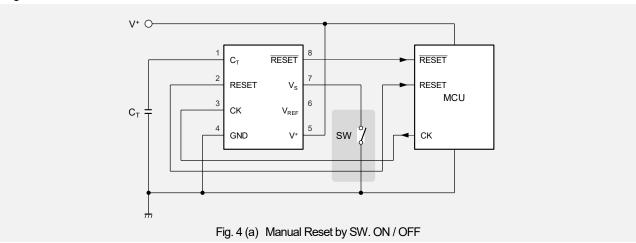

Detection voltage calculate formula (R₁ << 100k
$$\Omega$$
, R₂ << 41k Ω)

Detection Voltage(falling) =
$$\frac{(R_1 \parallel R') + (R_2 \parallel R'')}{R_2 \parallel R''} \times \frac{R''}{R' + R''} \times V_{SL} \approx \frac{R_1 + R_2}{R_2} \times 1.2213 \quad [V]$$

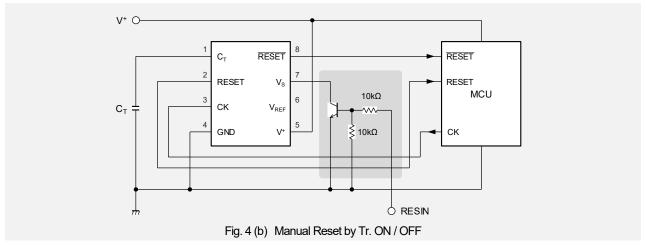
Detection Voltage(rising) =
$$\frac{(R_1 \parallel R') + (R_2 \parallel R'')}{R_2 \parallel R''} \times \frac{R''}{R' + R''} \times V_{SH} \approx \frac{R_1 + R_2}{R_2} \times 1.2504 \quad [V]$$

Tab. 1 Setting example

External resistor R_1 [$k\Omega$]	External resistor R_2 [k Ω]	Detection Voltage(falling) [V]	Detection Voltage(rising) [V]
10	3.9	4.34	4.44
9.1	3.9	4.08	4.18



4. Manual Reset function


(a) Manual Reset by SW. ON / OFF

By setting V_S pin to GND with SW_ON, it is possible to output reset signal (\overline{RESET} ="Low", RESET="High") arbitrarily regardless of the state of V^+ .

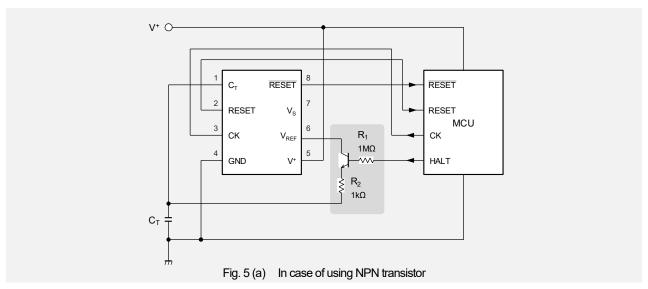
(b) Manual Reset by Tr. ON / OFF

By turning on Tr. with the RESIN signal, it is possible to output reset signal (\overline{RESET} ="Low", RESET="High") arbitrarily regardless of the state of V⁺.

5. Disable watchdog timer operation

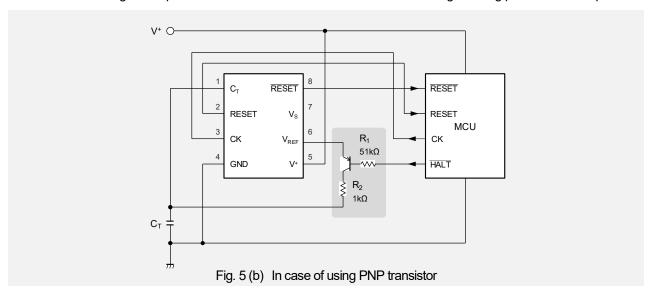
Disable watchdog timer operation when HALT="High", HALT="Low". When the MCU is in standby mode, even if the clock from the MCU is interrupted, it is possible to monitor the power supply without resetting by the watchdog timer.

(Notes)

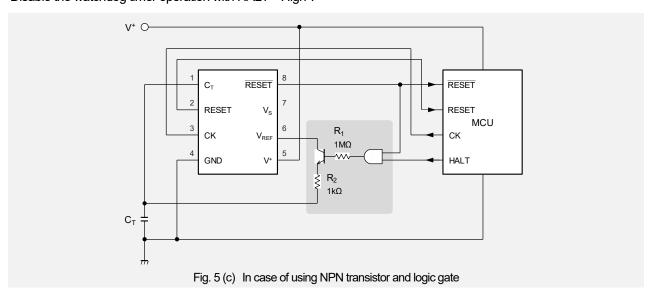

In Fig.5 (a) and (b), it should be set HALT="Low", \overline{HALT} ="High" during C_T charging at power-on reset operation. In this circuit, the watchdog timer operation is disabled by fixing C_T pin voltage with V_{REF} .

If it set HALT="High", \overline{HALT} ="Low" during C_T charging at power-on reset operation, C_T is not charged till the reset release voltage.

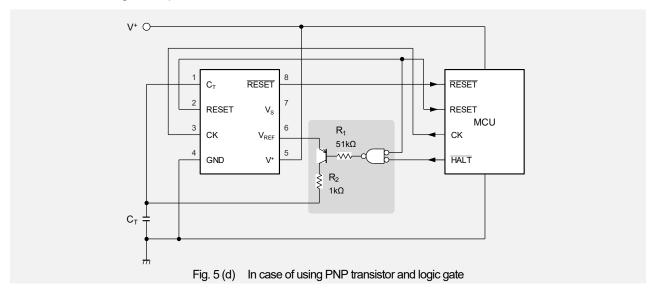
On the other hand, in Fig.5 (c) and (d), it can be used without considering the logic of HALT and \overline{HALT} at power on reset operation by applying a logic gate.


(a) In case of using NPN transistor

Disable the watchdog timer operation with HALT="High". Should be set HALT="Low" during power-on reset operation.


(b) In case of using PNP transistor

Disable the watchdog timer operation with HALT="Low". Should be set HALT="High" during power-on reset operation.



(c) In case of using NPN transistor and logic gate Disable the watchdog timer operation with HALT="High".

(d) In case of using PNP transistor and logic gate
Disable the watchdog timer operation with HALT="Low".

6. Shortening of Reset Signal Hold Time t_{PR}

By inserting a diode between C_T and RESET pin and increasing C_T charge current, Reset Signal Hold Time t_{PR} can be shortened. The available output is only $\overline{\text{RESET}}$. Estimated value of Reset Signal Hold Time t_{PR} is calculated as following formula.

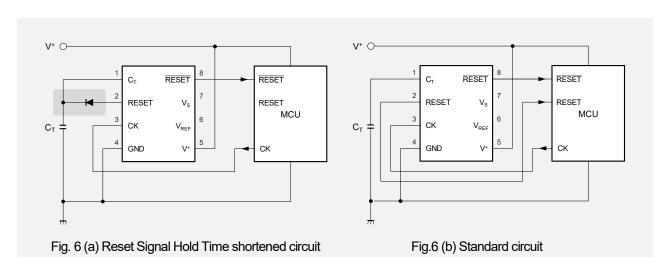
Comparison of shortened circuit and standard circuit at $C_T = 0.1 \,\mu\text{F}$ is shown in Tab. 2.

Reset Signal Hold Time (shortened circuit)

$$t_{PR} \, [\text{ms}] \approx 100 \times C_T \, [\mu \text{F}]$$

$$t_{WD}$$
 [ms] $\approx 100 \times C_T$ [µF]
 t_{WR} [ms] $\approx 16 \times C_T$ [µF]

Reset Signal Hold Time (standard circuit)


 t_{PR} [ms] $\approx 1000 \times C_T$ [μ F]

 t_{WD} [ms] $\approx 100 \times C_T$ [μ F]

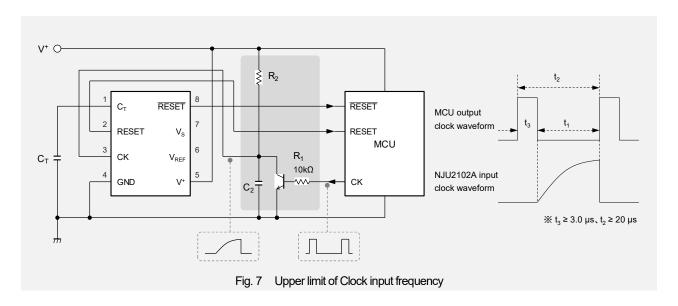
 t_{WR} [ms] $\approx 20 \times C_T$ [µF]

Tab. 2 Comparison of shortened circuit and standard circuit (C_T=0.1μF)

Item	Reset Signal Hold Time shortened circuit	Standard circuit
t _{PR} ≈	10 ms	100 ms
t _{WD} ≈	10 ms	10 ms
t _{WR} ≈	1.6 ms	2.0 ms

7. Upper limit of Clock input frequency

Technical Information

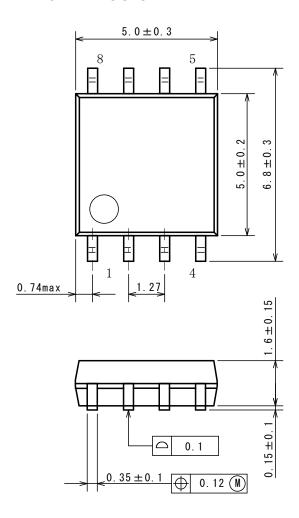

Set the clock input frequency upper limit f_H from MCU by external filters made of C_2 and R_2 . When the clock frequency from the MCU exceeds f_H , reset signal is output. On the other hand, the lower limit is set by C_T .

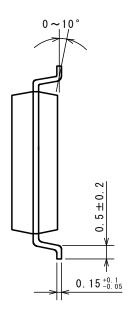
When the MCU outputs a clock like the Fig. 7, if the clock cycle t_2 is shorter, the clock interval t_1 also becomes shorter. If the clock input to NJU2102A (C_2 voltage) does not reach the CK Input Threshold Voltage V_{TH} (1.2V typ.), a reset signal output.

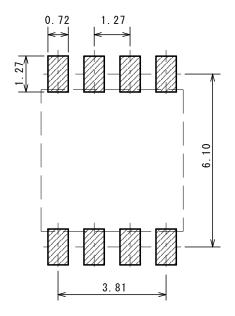
The t_1 value can be calculated as following formula. However, t_3 must be 3.0 μ s or more according to the minimum value of the CK Input Pulse width t_{CKW} and t_2 must be 20 μ s or more according to the minimum value of the CK Input Cycle t_{CK} .

A setting example of C2, R2 is shown in Tab.3.

$$t_1 \approx C_2 R_2 \ln \left(\frac{V^+}{V^+ - 1.2} \right) = 0.3 C_2 R_2$$
 However, $V^+ = 5 \text{ V}$, $t_3 \ge 3.0 \text{ µs}$, $t_2 \ge 20 \text{ µs}$

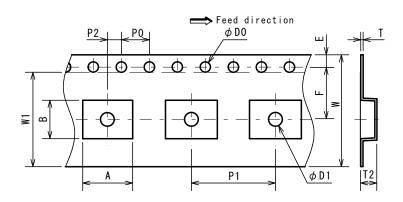

Tab. 3 Setting example of C₂, R₂


C_2	R_2	t ₁
0.01 μF	10 kΩ	30 µs
0.1 µF	10 kΩ	300 µs


■PACKAGE DIMENSIONS

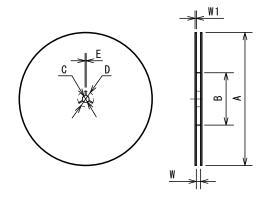
DMP8 Unit: mm

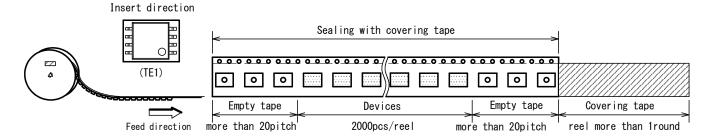
■EXAMPLE OF SOLDER PADS DIMENSIONS



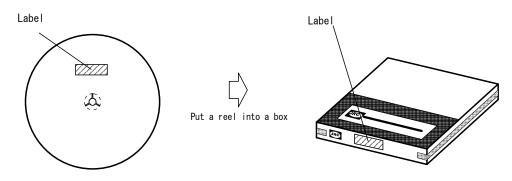
DMP8

■PACKING SPEC


TAPING DIMENSIONS

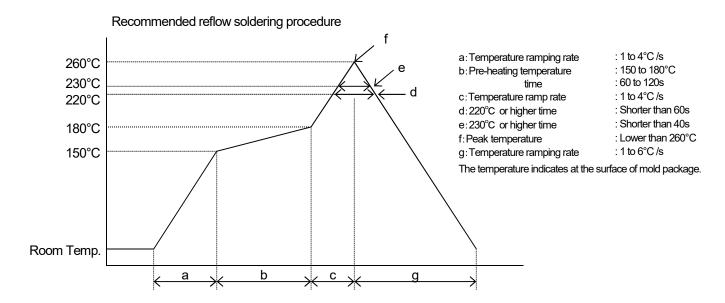

SYMBOL	DIMENSION	REMARKS
A	7. 1	BOTTOM DIMENSION
В	5. 4	BOTTOM DIMENSION
D0	1.55±0.05	
D1	2.05±0.1	
E	1.75±0.1	
F	7.5±0.1	
P0	4.0±0.1	
P1	12.0±0.1	
P2	2.0±0.1	
T	0.3 ± 0.05	
T2	2. 3	
W	16.0±0.3	
W1	13. 5	THICKNESS 0.1max

REEL DIMENSIONS



SYMBOL	DIMENSION
Α	$\phi 330 \pm 2$
В	φ 80±1
С	φ 13±0.2
D	φ 21±0.8
Е	2±0.5
W	17.5±0.5
W1	2±0.2

TAPING STATE


PACKING STATE

■RECOMMENDED MOUNTING METHOD

INFRARED REFLOW SOLDERING METHOD

■REVISION HISTORY

Date	Revision	Changes
18.Sep.2018	1.0	New Release
08.Nov.2018	1.1	Add the Technical Information. (FUNCTION EXPLAMATION, OPERATION EXPLAMATION, APPLICATION EXAMPLE)

[CAUTION]

- 1. New JRC strives to produce reliable and high quality semiconductors. New JRC's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of New JRC's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.
 All other trademarks mentioned herein are property of their respective companies.
- To ensure the highest levels of reliability, New JRC products must always be properly handled.
 The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- 4. New JRC offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact New JRC's Sale's Office if you are uncertain about the products listed in this catalog.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- The products listed in the catalog may not be appropriate for use in certain equipment where reliability is critical or where the
 products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the
 following types of equipment.

Aerospace Equipment
Equipment Used in the Deep sea
Power Generator Control Equipment (Nuclear, Steam, Hydraulic)
Life Maintenance Medical Equipment
Fire Alarm/Intruder Detector
Vehicle Control Equipment (airplane, railroad, ship, etc.)
Various Safety devices

- 7. New JRC's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this catalog. Failure to employ New JRC products in the proper applications can lead to deterioration, destruction or failure of the products. New JRC shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of its products. Products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic(GaAs) Products (Applying to GaAs MMIC, Photo Reflector). This Products uses Gallium(Ga) and Arsenic(As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this catalog are subject to change at any time, without notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>Nisshinbo