Low Voltage Dual SPDT Analog Switch Dual 2:1 Multiplexer

The NLAS3158 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very low propagation delay and RDS $_{ON}$ resistances while maintaining CMOS low power dissipation. Analog and digital voltages that may vary across the full power–supply range (from V_{CC} to GND). This device is a drop in replacement for the PI5A3158.

The select pin has overvoltage protection that allows voltages above V_{CC} , up to 7.0 V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage.

Features

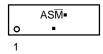
- High Speed: $t_{PD} = 1.0 \text{ ns (Typ)}$ at $V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1.0 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Standard CMOS Logic Levels
- High Bandwidth, Improved Linearity
- Low RDS_{ON}: 8 Ω Max at 3 V
- Break Before Make Circuitry, Prevents Inadvertent Shorts
- This is a Pb-Free Device

Typical Applications

- Switches Standard NTSC/PAL Video, Audio, SPDIF and HDTV
- May be used for Clock Switching, Data MUX'ing, etc.
- Can Switch Balanced Signal Pairs, e.g. LVDS > 200 Mb/s

Important Information

- Latchup Performance Exceeds 300 mA
- Pin for Pin Drop in for PI5A3158
- WDFN Package, 3x1 mm
- ESD Performance: Human Body Model; > 2000 V; Machine Model; > 200 V
- Extended Automotive Temperature Range -55°C to +125°C (See Appendix A)


ON Semiconductor®

www.onsemi.com

WDFN12 MN SUFFIX CASE 485AG

MARKING DIAGRAM

AS = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

Select Input	Function
L	B0 Connected to A
H	B1 Connected to A

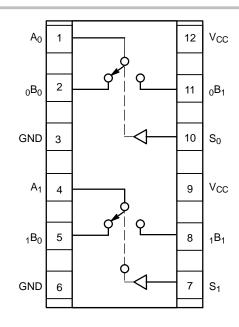


Figure 1. Pinout (Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Switch Input Voltage (Note 1)	V _{IS}	-0.5 to V _{CC} + 0.5	V
DC Input Voltage (Note 1)	V _{IN}	-0.5 to + 7.0	V
DC Input Diode Current @ V _{IN} < 0 V	l _{IK}	-50	mA
DC Output Current	Гоит	128	mA
DC V _{CC} or Ground Current	I _{CC} /I _{GND}	+100	mA
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature Under Bias	TJ	150	°C
Junction Lead Temperature (Soldering, 10 Seconds)	TL	260	°C
Power Dissipation @ +85°C	P _D	180	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Characteristic	Symbol	Min	Max	Unit
Supply Voltage Operating	V _{CC}	1.65	5.5	V
Select Input Voltage	V _{IN}	0	V _{CC}	V
Switch Input Voltage	V _{IS}	0	V _{CC}	V
Output Voltage	V _{OUT}	0	V _{CC}	V
Operating Temperature	T _A	-55	+125	°C
Input Rise and Fall Time Control Input V_{CC} = 2.3 V-3.6 V Control Input V_{CC} = 4.5 V-5.5 V	t _r , t _f	0	10 5.0	ns/V
Thermal Resistance	$\theta_{\sf JA}$	_	350	°C/W

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{2.} Select input must be held HIGH or LOW, it must not float.

DC ELECTRICAL CHARACTERISTICS ($T_A = -40^{\circ}C$ to +85°C)

			V _{CC}	T _A = +25°C			T _A = -40°0		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage		1.65–1.95 2.3–5.5				0.75 V _{CC} 0.7 V _{CC}		V
V _{IL}	LOW Level Input Voltage		1.65–1.95 2.3–5.5					0.25 V _{CC} 0.3 V _{CC}	V
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 \text{ V}$	0–5.5		±0.0 5	±0.1		±1	μΑ
I _{OFF}	OFF State Leakage Current	$0 \le A, B \le V_{CC}$	1.65–5.5		±0.0 5	±0.1		±1	μА
R _{ON}	Switch On Resistance (Note 3)	$V_{IN} = 0 \text{ V, } I_O = 30 \text{ mA}$ $V_{IN} = 2.4 \text{ V, } I_O = -30 \text{ mA}$ $V_{IN} = 4.5 \text{ V, } I_O = -30 \text{ mA}$	4.5		3.0 5.0 7.0	6.0 8.0 13		6.0 8.0 13	Ω
		$V_{IN} = 0 \text{ V, } I_{O} = 24 \text{ mA}$ $V_{IN} = 3 \text{ V, } I_{O} = -24 \text{ mA}$	3.0		4.0 10	8.0 19		8.0 19	Ω
		$V_{IN} = 0 \text{ V, } I_O = 8 \text{ mA}$ $V_{IN} = 2.3 \text{ V, } I_O = -8 \text{ mA}$	2.3		5.0 13	9.0 24		9.0 24	Ω
		V _{IN} = 0 V, I _O = 4 mA V _{IN} = 1.65 V, I _O = -4 mA	1.65		6.5 17	12 39		12 39	Ω
I _{CC}	Quiescent Supply Current All Channels ON or OFF	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0$	5.5			1.0		10	μΑ
	Analog Signal Range		V _{CC}	0		V _{CC}	0	V _{CC}	V
R _{RANGE}	On Resistance Over Signal Range (Note 3) (Note 7)	$\begin{split} I_{A} &= -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \\ I_{A} &= -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \\ I_{A} &= -8 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \\ I_{A} &= -4 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \end{split}$	4.5 3.0 2.3 1.65					25 50 100 300	Ω
ΔR_{ON}	On Resistance Match Between Channels (Note 3) (Note 4) (Note 5)	$I_A = -30 \text{ mA}, V_{Bn} = 3.15$ $I_A = -24 \text{ mA}, V_{Bn} = 2.1$ $I_A = -8 \text{ mA}, V_{Bn} = 1.6$ $I_A = -4 \text{ mA}, V_{Bn} = 1.15$	4.5 3.0 2.3 1.65		0.15 0.2 0.5 0.5				Ω
R _{flat}	On Resistance Flatness (Note 3) (Note 4) (Note 6)	$\begin{array}{l} I_{A} = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \\ I_{A} = -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \\ I_{A} = -8 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \\ I_{A} = -4 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC} \end{array}$	5.0 3.3 2.5 1.8		5.0 10 24 110				Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
 4. Parameter is characterized but not tested in production.
 5. ΔR_{ON} = R_{ON} max - R_{ON} min measured at identical V_{CC}, temperature and voltage levels.
 6. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

^{7.} Guaranteed by Design.

AC ELECTRICAL CHARACTERISTICS (T_A = -40° C to $+85^{\circ}$ C)

			V_{CC} $T_{A} = +25^{\circ}C$ $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		Figure					
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Unit	Number
t _{PHL} t _{PLH}	Propagation Delay Bus to Bus (Note 9)	V _I = OPEN	1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5			1.2 0.8 0.3			ns	Figures 2, 3
t _{PZL} t _{PZH}	Output Enable Time Turn On Time (A to B _n)	$V_I = 2 \times V_{CC}$ for t_{PZL} $V_I = 0$ V for t_{PZH}	1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5			23 13 6.9 5.2	7.0 3.5 2.5 1.7	24 14 7.6 5.7	ns	Figures 2, 3
t _{PLZ} t _{PHZ}	Output Disable Time Turn Off Time (A Port to B Port)	$V_I = 2 \times V_{CC}$ for t_{PLZ} $V_I = 0$ V for t_{PHZ}	1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5			12.5 7.0 5.0 3.5	3.0 2.0 1.5 0.8	13 7.5 5.3 3.8	ns	Figures 2, 3
t _{BBM}	Break Before Make Time (Note 8)	$R_L = 50 \Omega$ $C_L = 35 pF$	1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5	0.5 0.5 0.5 0.5			0.5 0.5 0.5 0.5		ns	Figure 4
Q	Charge Injection (Note 8)	$C_L = 0.1 \text{ nF}, V_{GEN} = 0 \text{ V}$ $R_{GEN} = 0 \Omega$	5.0 3.3		7.0 3.0				рС	Figure 5
OIRR	Off Isolation (Note 10) NO	$R_L = 50 \Omega$ f = 10 MHz	1.65–5.5		-55				dB	Figures 6, 16
OIRR	Off Isolation (Note 10) NC	$R_L = 50 \Omega$ f = 10 MHz	1.65–5.5		-48				dB	Figures 6, 16
Xtalk	Crosstalk	$R_L = 50 \Omega$ f = 10 MHz	1.65–5.5		-54				dB	Figure 7
BW	-3 dB Bandwidth	$R_L = 50 \Omega$	2.5–5.5		250				MHz	Figures 10, 15
THD	Total Harmonic Distortion (Note 8)	$R_L = 600 \Omega$ 0.5 V_{P-P} f = 600 Hz to 20 kHz	2.5 5.0		0.014 0.004				%	Figure 11

CAPACITANCE (Note 11)

Symbol	Parameter	Test Conditions	Тур	Max	Unit	Figure Number
C _{IN}	Select Pin Input Capacitance	V _{CC} = 0 V	2.3		pF	
C _{IO-B}	B Port Off Capacitance	V _{CC} = 5.0 V	6.5		pF	Figure 8
C _{IOA-ON}	A Port Capacitance when Switch is Enabled	V _{CC} = 5.0 V	18.5		pF	Figure 9

Guaranteed by Design.
 This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 35 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
 Off Isolation = 20 log₁₀ [V_A/V_{Bn}].
 T_A = +25°C, f = 1 MHz, Capacitance is characterized but not tested in production.

APPENDIX A DC ELECTRICAL EXTENDED AUTOMOTIVE TEMPERATURE RANGE CHARACTERISTICS (Note 14)

		Voc		T _A = +25°C	;	T _A = -55°C		
Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Unit
HIGH Level Input Voltage		1.65–1.95 2.3–5.5				0.75 V _{CC} 0.7 V _{CC}		V
LOW Level Input Voltage		1.65–1.95 2.3–5.5					0.25 V _{CC} 0.3 V _{CC}	V
Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0–5.5		±0.05	±0.1		±1	μΑ
OFF State Leakage Current	$0 \le A, B \le V_{CC}$	1.65–5.5		±0.05	±0.1		±1	μА
Switch On Resistance (Note 12)	$V_{IN} = 0 \text{ V, } I_{O} = 30 \text{ mA}$ $V_{IN} = 2.4 \text{ V, } I_{O} = -30 \text{ mA}$ $V_{IN} = 4.5 \text{ V, } I_{O} = -30 \text{ mA}$	4.5		3.0 5.0 7.0			8.5 13.0 15.0	Ω
	$V_{IN} = 0 \text{ V, } I_O = 24 \text{ mA}$ $V_{IN} = 3 \text{ V, } I_O = -24 \text{ mA}$	3.0		4.0 10			11 20	
	V _{IN} = 0 V, I _O = 8 mA V _{IN} = 2.3 V, I _O = -8 mA	2.3		5.0 13			12 30	
	V _{IN} = 0 V, I _O = 4 mA V _{IN} = 1.65 V, I _O = -4 mA	1.65		6.5 17			20 50	
Quiescent Supply Current All Channels ON or OFF	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0$	5.5			1.0		10	μΑ
Analog Signal Range		V_{CC}	0		V _{CC}	0	V _{CC}	V
On Resistance Over Signal Range	$I_A = -30 \text{ mA}, 0 \le V_{Bn} \le V_{CC}$	4.5					25	Ω
(Note 12) (Note 13)	V _{CC}							
	$I_A = -8 \text{ mA}, 0 \le V_{Bn}$ $\le V_{CC}$ $I_A = -4 \text{ mA}, 0 \le V_{Bn}$ $\le V_{CC}$	2.3 1.65					300	
	HIGH Level Input Voltage LOW Level Input Voltage Input Leakage Current OFF State Leakage Current Switch On Resistance (Note 12) Quiescent Supply Current All Channels ON or OFF Analog Signal Range On Resistance	$\begin{array}{c c} HIGH \ Level \\ Input \ Voltage \\ \\ LOW \ Level \\ Input \ Voltage \\ \\ Input \ Leakage \ Current \\ \\ OFF \ State \ Leakage \\ Current \\ \\ Switch \ On \ Resistance \\ (Note 12) \\ \\ \\ V_{IN} = 0 \ V, \ I_O = 30 \ mA \\ V_{IN} = 2.4 \ V, \ I_O = -30 \ mA \\ V_{IN} = 2.4 \ V, \ I_O = -30 \ mA \\ V_{IN} = 0 \ V, \ I_O = 24 \ mA \\ V_{IN} = 3 \ V, \ I_O = -24 \ mA \\ V_{IN} = 3 \ V, \ I_O = -24 \ mA \\ V_{IN} = 0 \ V, \ I_O = 8 \ mA \\ V_{IN} = 2.3 \ V, \ I_O = -8 \ mA \\ V_{IN} = 0 \ V, \ I_O = 4 \ mA \\ V_{IN} = 0 \ V, \ I_O = 4 \ mA \\ V_{IN} = 1.65 \ V, \ I_O = -4 \ mA \\ V_{IN} = 0 \ V, \ I_O = 4 \ mA \\ V_{IN} = 0 \ V, \ I_O = 4 \ mA \\ V_{IN} = 0 \ V, \ I_O = 4 \ mA \\ V_{IN} = 0 \ V, \ I_O = -4 \ mA \\ V_{IN} = 0 \ V, $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} & \textbf{(V)} & \textbf{Min} & \textbf{Typ} & \textbf{Max} \\ \hline \textbf{HIGH Level} & 1.65-1.95 \\ 2.3-5.5 & & & & & \\ \hline \textbf{LOW Level} & 1.65-1.95 \\ 2.3-5.5 & & & & & \\ \hline \textbf{Input Leakage Current} & 0 \leq \textbf{V}_{IN} \leq 5.5 \textbf{V} & 0-5.5 & & \pm 0.05 & \pm 0.1 \\ \hline \textbf{OFF State Leakage} & 0 \leq \textbf{A}, \textbf{B} \leq \textbf{V}_{CC} & 1.65-5.5 & & \pm 0.05 & \pm 0.1 \\ \hline \textbf{Switch On Resistance} & \textbf{V}_{IN} = 0 \textbf{V}, \textbf{I}_{O} = 30 \text{mA} \\ \textbf{V}_{IN} = 2.4 \textbf{V}, \textbf{I}_{O} = -30 \text{mA} \\ \textbf{V}_{IN} = 4.5 \textbf{V}, \textbf{I}_{O} = -30 \text{mA} \\ \textbf{V}_{IN} = 3 \textbf{V}, \textbf{I}_{O} = -24 \text{mA} \\ \textbf{V}_{IN} = 3 \textbf{V}, \textbf{I}_{O} = -24 \text{mA} \\ \textbf{V}_{IN} = 2.3 \textbf{V}, \textbf{I}_{O} = -4 \text{mA} \\ \textbf{V}_{IN} = 0.9 \textbf{V}, \textbf{I}_{O} = 4 \text{mA} \\ \textbf{V}_{IN} = 1.65 \textbf{V}, \textbf{I}_{O} = -4 \text{mA} \\ \textbf{V}_{IN} = 1.65 \textbf{V}, \textbf{I}_{O} = -4 \text{mA} \\ \textbf{V}_{IN} = 1.65 \textbf{V}, \textbf{I}_{O} = -4 \text{mA} \\ \textbf{V}_{IN} = 1.65 \textbf{V}, \textbf{I}_{O} = -4 \text{mA} \\ \textbf{V}_{IN} = 1.65 \textbf{V}, \textbf{I}_{O} = -4 \text{mA} \\ \textbf{V}_{IN} = 0.9 \textbf{V}_{CC} \textbf{O} \textbf{O} \textbf{V}_{CC} \\ \textbf{On Resistance} \\ \textbf{Over Signal Range} & \textbf{V}_{CC} & \textbf{O} & \textbf{V}_{CC} \\ \textbf{I}_{A} = -30 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \leq \\ \textbf{V}_{CC} \\ \textbf{I}_{A} = -8 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \leq \\ \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\ \textbf{I}_{A} = -4 \text{mA}, \textbf{O} \leq \textbf{V}_{Bn} \\ \leq \textbf{V}_{CC} \\$	$ \begin{array}{ c c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} & \textbf{VCC} & \textbf{Min} & \textbf{Typ} & \textbf{Max} & \textbf{Min} \\ \hline \textbf{HiGH Level} & 1.65-1.95 & 0.75 \ V_{CC} \\ \hline \textbf{Input Voltage} & 1.65-1.95 & 0.75 \ V_{CC} \\ \hline \textbf{LOW Level} & 1.65-1.95 & 0.75 \ V_{CC} \\ \hline \textbf{Input Leakage Current} & 0 \leq V_{IN} \leq 5.5 \ V & 0-5.5 & \pm 0.05 & \pm 0.1 \\ \hline \textbf{OFF State Leakage} & 0 \leq A, B \leq V_{CC} & 1.65-5.5 & \pm 0.05 & \pm 0.1 \\ \hline \textbf{Switch On Resistance} & V_{IN} = 0 \ V, I_{O} = 30 \ \text{mA} \\ V_{IN} = 2.4 \ V, I_{O} = -30 \ \text{mA} \\ V_{IN} = 2.4 \ V, I_{O} = -30 \ \text{mA} \\ V_{IN} = 3 \ V, I_{O} = -30 \ \text{mA} \\ V_{IN} = 3 \ V, I_{O} = -24 \ \text{mA} \\ V_{IN} = 3 \ V, I_{O} = -24 \ \text{mA} \\ V_{IN} = 3 \ V, I_{O} = -24 \ \text{mA} \\ V_{IN} = 2.3 \ V, I_{O} = -4 \ \text{mA} \\ V_{IN} = 2.3 \ V, I_{O} = -4 \ \text{mA} \\ V_{IN} = 1.65 \ V, I_{O} = -4 \ \text{mA} \\ V_{IN} = 1.65 \ V, I_{O} = -4 \ \text{mA} \\ V_{IN} = 0 \ V_{CC} \ \text{o} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{ c c c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} & \textbf{VCC} & \textbf{Min} & \textbf{Typ} & \textbf{Max} & \textbf{Min} & \textbf{Max} \\ \hline \textbf{HIGH Level} & 1.65-1.95 \\ 1.09 & 2.3-5.5 & & & & & & & & & & & & & & & & & & $

^{12.} Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).

13. Guaranteed by Design.

^{14.} For ΔR_{ON} , R_{FLAT} see $-40^{\circ}C$ to $+85^{\circ}C$ section.

APPENDIX A AC ELECTRICAL EXTENDED AUTOMOTIVE TEMPERATURE RANGE CHARACTERISTICS

			V _{CC}	T	x = +25°	°C	T _A = -55°C	to +125°C		Figure
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Unit	Number
t _{PHL} t _{PLH}	Propagation Delay Bus to Bus (Note 16)	V _I = OPEN	1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5					1.2 0.8 0.3	ns	Figures 2, 3
t _{PZL} t _{PZH}	Output Enable Time Turn On Time (A to B _n)	$V_I = 2 \times V_{CC}$ for t_{PZL} $V_I = 0$ V for t_{PZH}	1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5			23 13 6.9 5.2	7.0 3.5 2.5 1.7	24 14 9.0 7.0	ns	Figures 2, 3
[†] PLZ [†] PHZ	Output Disable Time Turn Off Time (A Port to B Port)	$V_I = 2 \times V_{CC}$ for t_{PLZ} $V_I = 0$ V for t_{PHZ}	1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5			12.5 7.0 5.0 3.5	3.0 2.0 1.5 0.8	13 7.5 6.5 5.0	ns	Figures 2, 3
t _{B-M}	Break Before Make Time (Note 15)		1.65–1.95 2.3–2.7 3.0–3.6 4.5–5.5				0.5 0.5 0.5 0.5		ns	Figure 4

^{15.} Guaranteed by Design.

^{16.} This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

AC LOADING AND WAVEFORMS

NOTE: Input driven by 50 Ω source terminated in 50 Ω

NOTE: C_L includes load and stray capacitance NOTE: Input PRR = 1.0 MHz; t_W = 500 ns

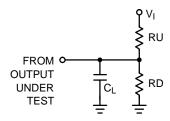
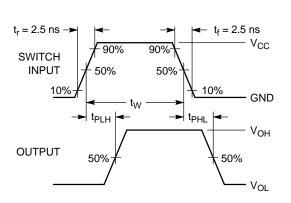



Figure 2. AC Test Circuit

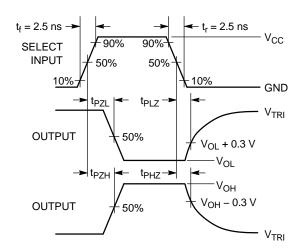
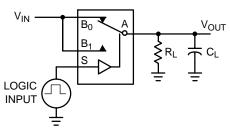



Figure 3. AC Waveforms

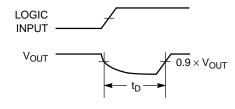


Figure 4. Break Before Make Interval Timing

AC LOADING AND WAVEFORMS

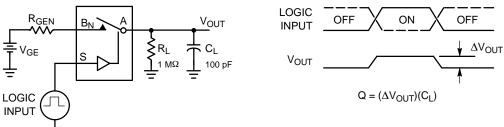


Figure 5. Charge Injection Test

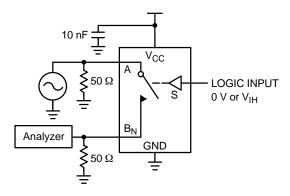


Figure 6. Off Isolation

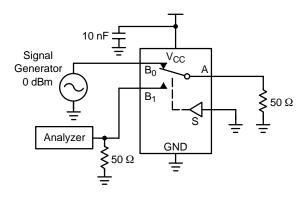


Figure 7. Crosstalk

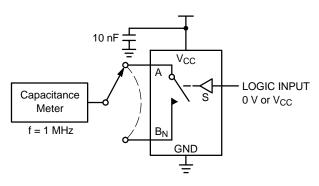


Figure 8. Channel Off Capacitance

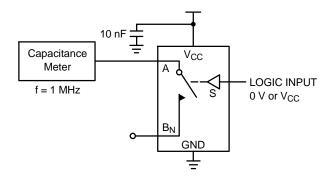


Figure 9. Channel On Capacitance

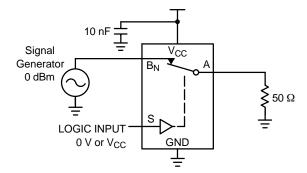


Figure 10. Bandwidth

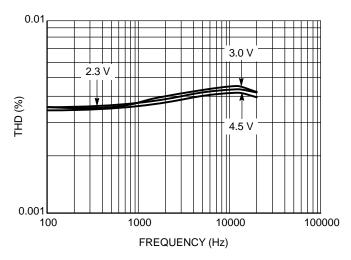


Figure 11. Total Harmonic Distortion vs. Frequency

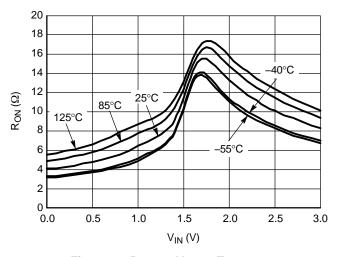


Figure 12. R_{ON} vs. V_{IN} vs. Temperature @ V_{CC} = 3.0 V

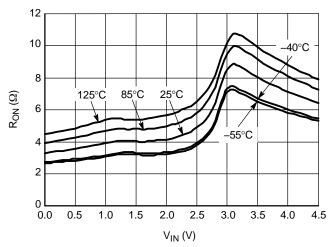


Figure 13. R_{ON} vs. V_{IN} vs. Temperature @ V_{CC} = 4.5 V

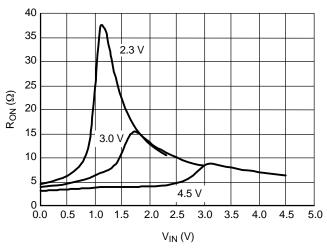


Figure 14. On-Resistance vs. Input Voltage

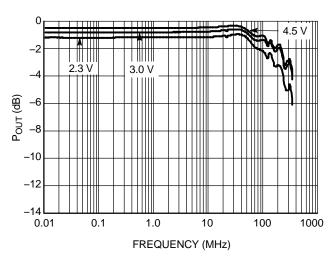


Figure 15. Bandwidth vs. Frequency

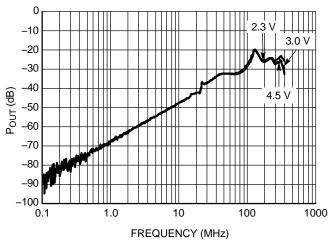


Figure 16. Off-Isolation vs. Frequency

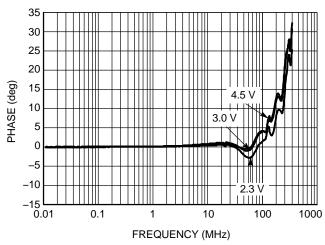
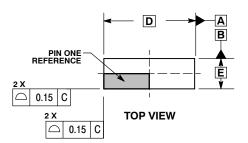


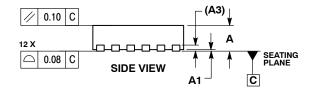
Figure 17. Phase Angle vs. Frequency

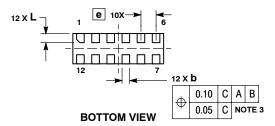
DEVICE ORDERING INFORMATION

Device Order Number	Package Type	Tape & Reel Size [†]
NLAS3158MNR2G	WDFN12 (Pb-Free)	3000 Unit / Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

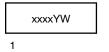

CASE 485AG-01




SCALE 4:1

12 PIN WDFN 3.0x1.0, 0.5P **ISSUE A**

DATE 31 MAR 2006



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION b APPLIES TO TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED
- PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	MAX				
Α	0.70	0.80				
A 1	0.00	0.05				
А3	0.20	REF				
b	0.18	0.30				
D	3.00	BSC				
Е	1.00	BSC				
е	0.50	BSC				
L	0.20	0.40				

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

Υ = Year W = Work Week G or ■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON19981D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	12 PIN WDFN 3.0X1.0, 0.5	MM PITCH	PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)