MOSFET - POWER, Dual, Complementary, TSOP-6 30 V, +2.9/-2.2 A

Features

- Complementary N-Channel and P-Channel MOSFET
- Small Size (3 x 3 mm) Dual TSOP-6 Package
- Leading Edge Trench Technology for Low On Resistance
- Reduced Gate Charge to Improve Switching Response
- Independently Connected Devices to Provide Design Flexibility
- This is a Pb-Free Device

Applications

- DC-DC Conversion Circuits
- Load/Power Switching with Level Shift

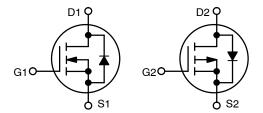
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

	, -				
Pa	Symbol	Value	Unit		
Drain-to-Source V	V_{DSS}	30	V		
Gate-to-Source Vo	oltage (N-C	Ch & P-Ch)	V_{GS}	±12	V
N-Channel Continuous Drain Current (Note 1)	Steady State	$T_A = 25$ °C $T_A = 85$ °C	I _D	2.6 1.9	Α
Carrent (Note 1)	t≤5 s	T _A = 25°C		2.9	
P-Channel Continuous Drain Current (Note 1)	Steady State	$T_A = 25$ °C $T_A = 85$ °C	I _D	−1.9 −1.4	Α
Odificiti (Note 1)	t ≤ 5 s	T _A = 25°C		-2.2	
Power Dissipation	Steady State	T _A = 25°C	P_{D}	0.9	W
(Note 1)	t≤5 s			1.1	
Pulsed Drain	N-Ch	t _p = 10 μs	I _{DM}	8.6	Α
Current	P-Ch			-6.3	
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			I _S	±0.9	Α
Lead Temperature (1/8" from case for		urposes	T_L	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	140	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 1)	$R_{\theta JA}$	110	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

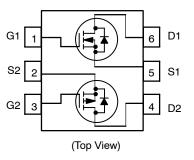
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
N-Ch	90 mΩ @ 4.5 V	2.6 A
30 V	125 mΩ @ 2.5 V	2.2 A
P-Ch	170 mΩ @ -4.5 V	–1.9 A
-30 V	300 mΩ @ –2.5 V	–1.0 A

N-CHANNEL MOSFET P-CHANNEL MOSFET

TSOP-6 CASE 318G STYLE 13


TA = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

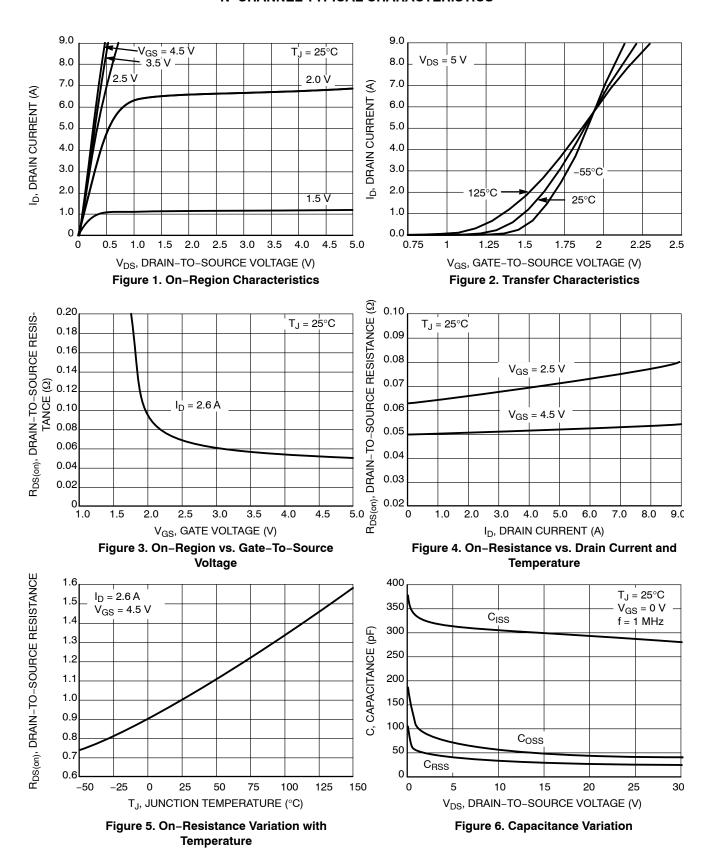
PIN CONNECTION

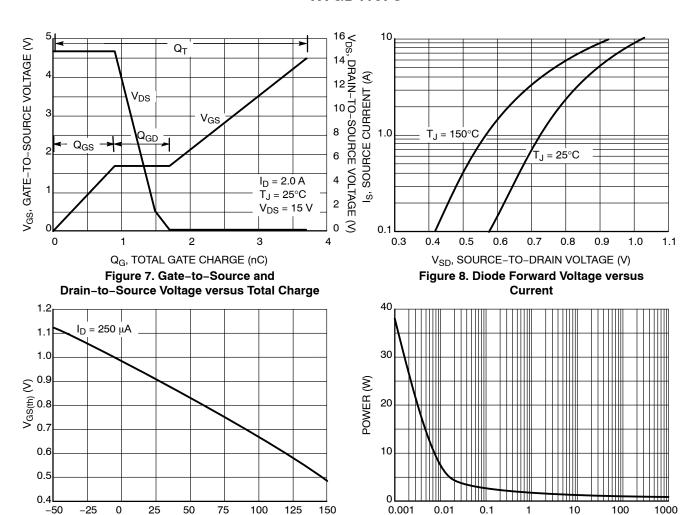
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N	., .,	I _D = 250 μA	30			V
		Р	$V_{GS} = 0 V$	I _D = -250 μA	-30			1
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /T _J	N				21.4		mV/°C
Temperature Coefficient	, ,	Р				22.2		
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 24 V				1.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} = -24 V	T _J = 25 °C			-1.0	1
		N	V _{GS} = 0 V, V _{DS} = 24 V				10	1
		Р	V _{GS} = 0 V, V _{DS} = -24 V	T _J = 85 °C			-10	1
Gate-to-Source Leakage Current	I _{GSS}	N	V _{DS} = 0 V, V _{GS} =	±12 V			±100	nA
•		Р	V _{DS} = 0 V, V _{GS} =				±100	1
ON CHARACTERISTICS (Note 2)			50 40					
Gate Threshold Voltage	V _{GS(TH)}	N		I _D = 250 μA	0.5	0.9	1.5	V
	,	Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.5	-1.1	-1.5	1
Drain-to-Source On Resistance	R _{DS(on)}	N	V _{GS} = 4.5 V , I _D =	2.6 A		52	90	
	==(=:,)		V _{GS} = 2.5 V , I _D =			67	125	
		Р	V _{GS} = -4.5 V , I _D =			130	170	mΩ
			V _{GS} = -2.5 V, I _D =			202	300	1
Forward Transconductance	9FS	N	$V_{DS} = 15 \text{ V}, I_D = 2.6 \text{ A}$ $V_{DS} = -15 \text{ V}, I_D = -1.9 \text{ A}$			2.6		S
	<u>.</u>	Р				2.6		
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}					295		
Output Capacitance	C _{OSS}	N		V _{DS} = 15 V		48		
Reverse Transfer Capacitance	C _{RSS}					27		
Input Capacitance	C _{ISS}		$f = 1 MHz, V_{GS} = 0 V$	V _{DS} = -15 V		419		pF
Output Capacitance	C _{OSS}	Р				51		1
Reverse Transfer Capacitance	C _{RSS}	1				26		1
Total Gate Charge	Q _{G(TOT)}					3.7	5.5	
Threshold Gate Charge	Q _{G(TH)}					0.6		
Gate-to-Source Gate Charge	Q _{GS}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ Y}$	V, I _D = 2.0 A		0.9		1
Gate-to-Drain "Miller" Charge	Q_{GD}					0.8		1 _
Total Gate Charge	Q _{G(TOT)}					3.9	6.0	nC
Threshold Gate Charge	Q _{G(TH)}	1 _				0.6		-
Gate-to-Source Gate Charge	Q _{GS}	Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15$	$V, I_D = -2.0 A$		1.0		1
Gate-to-Drain "Miller" Charge	Q_{GD}	1				1.0		1
SWITCHING CHARACTERISTICS (No	ote 3)				•			
Turn-On Delay Time	t _{d(ON)}					7.0		ns
Rise Time	t _r	N	V _{GS} = 4.5 V, V _{DD} = 15 V,	= 15 V.		4.0		1
Turn-Off Delay Time	t _{d(OFF)}	1	$I_D = 1.0 \text{ A}, R_G =$	6.0 Ω ΄		14		1
Fall Time	t _f	1				2.0		1
Turn-On Delay Time	t _{d(ON)}				İ	8.0		1
Rise Time	t _r	1 _	Vce = -4.5 V. Vcc	= -15 V.		8.0		1
Turn-Off Delay Time	t _{d(OFF)}	Р	$V_{GS} = -4.5 \text{ V}, V_{DD}$ $I_{D} = -1.0 \text{ A}, R_{G} =$	6.0 Ω		22		1
	,,	J	<i>J</i>				ļ	4


2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


3. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARA								
Forward Diode Voltage	V _{SD}	N	V 0V T 05 00	I _S = 0.9 A		0.7	1.2	V
		Р	$V_{GS} = 0 \text{ V, } T_{J} = 25 \text{ °C}$	I _S = -0.9 A		-0.8	-1.2	
Reverse Recovery Time	t _{RR}		$V_{GS} = 0 \text{ V},$ dI_{S} / $dt = 100 \text{ A}/\mu\text{s}, I_{S} = 0.9 \text{ A}$			8.0		ns
Charge Time	t _a	٦,,				5.0		
Discharge Time	t _b	N				3.0		
Reverse Recovery Charge	Q _{RR}					3.0		nC
Reverse Recovery Time	t _{RR}					12		ns
Charge Time	t _a	P	$V_{GS} = 0 \text{ V},$ $dI_{S} / dt = 100 \text{ A}/\mu\text{s}, I_{S} = -0.9 \text{ A}$			10		
Discharge Time	t _b	7	$dl_{S} / dt = 100 A/\mu s, I_{S}$	_S = -0.9 A		2.0		
Reverse Recovery Charge	Q _{RR}	1				7.0		nC

N-CHANNEL TYPICAL CHARACTERISTICS

T_J, JUNCTION TEMPERATURE (°C) Figure 9. Threshold Voltage

SINGLE PULSE TIME (s)

Figure 10. Single Pulse Maximum Power

Dissipation

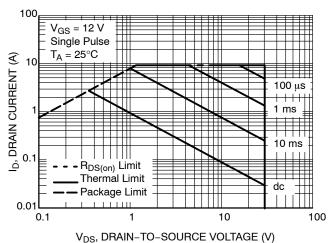


Figure 11. Maximum Rated Forward Biased Safe Operating Area

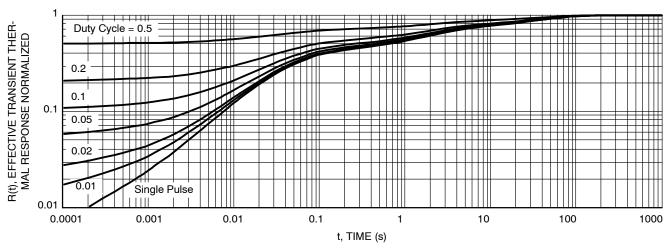


Figure 12. FET Thermal Response

P-CHANNEL TYPICAL CHARACTERISTICS

Figure 17. On–Resistance Variation with Temperature

Figure 18. Capacitance Variation

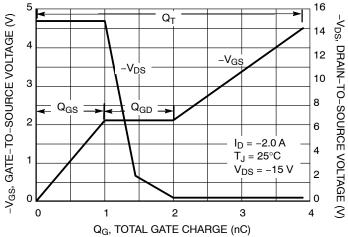


Figure 19. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

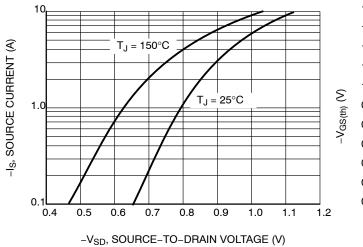
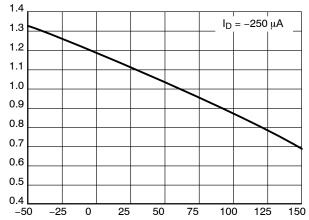



Figure 20. Diode Forward Voltage versus
Current

T_J, JUNCTION TEMPERATURE (°C) Figure 21. Threshold Voltage

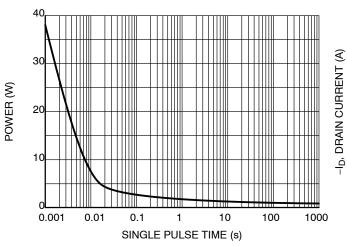


Figure 22. Single Pulse Maximum Power Dissipation

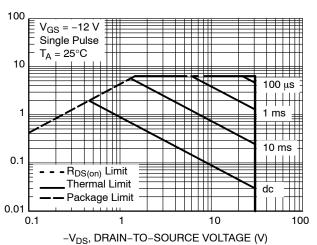


Figure 23. Maximum Rated Forward Biased Safe Operating Area

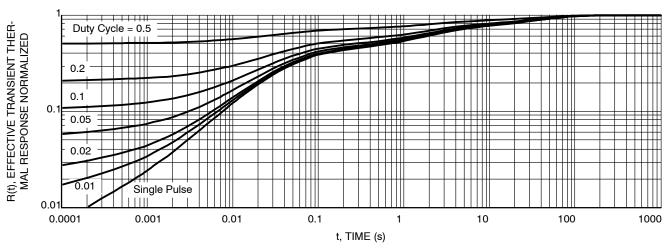


Figure 24. FET Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGD4167CT1G	TSOP6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2

4. DRAIN 2 5. SOURCE 1 DRAIN 1

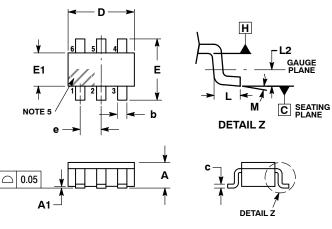
TSOP-6 CASE 318G-02 **ISSUE V**

DATE 12 JUN 2012

STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR

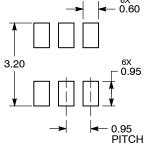
2. GROUND 3. I/O 4. I/O


5. VCC 6. I/O

STYLE 12:

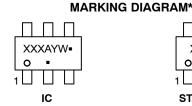
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS, MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
 5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.


	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.90	1.00	1.10			
A1	0.01	0.06	0.10			
b	0.25	0.38	0.50			
С	0.10	0.18	0.26			
D	2.90	3.00	3.10			
Е	2.50	2.75	3.00			
E1	1.30	1.50	1.70			
е	0.85	0.95	1.05			
L	0.20	0.40	0.60			
L2	0.25 BSC					
М	Uo.		10°			

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2

6. GND	6. HIGH VOLTAG	E GATE 6. D(IN)+	6. DRAIN 1/GATE 2
E 14:	STYLE 15:	STYLE 16:	STYLE 17:
I 1. ANODE	PIN 1. ANODE	PIN 1. ANODE/CATHODE	PIN 1. EMITTER
2. SOURCE	2. SOURCE	2. BASE	2. BASE
3. GATE	3. GATE	3. EMITTER	ANODE/CATHODE
4. CATHODE/DRAIN	4. DRAIN	COLLECTOR	4. ANODE
CATHODE/DRAIN	5. N/C	5. ANODE	5. CATHODE
CATHODE/DRAIN	CATHODE	6. CATHODE	6. COLLECTOR


RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC

XXX = Specific Device Code

= Pb-Free Package

= Date Code

XXX = Specific Device Code

Α =Assembly Location Υ = Year

= Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

M

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSOP-6		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)