

Single 2-Input AND Gate NL17SZ08

The NL17SZ08 is a single 2-input AND Gate in tiny footprint packages.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.7 ns t_{PD} at $V_{CC} = 5 \text{ V (typ)}$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in SC-88A, SC-74A, SOT-553, SOT-953 and UDFN6 Packages
- Chip Complexity < 100 FETs
- –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

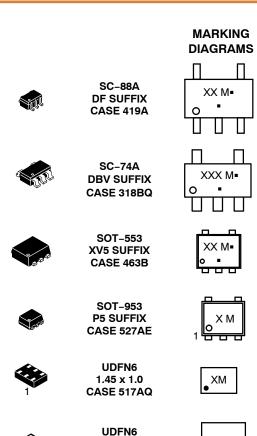
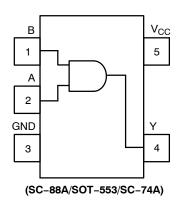



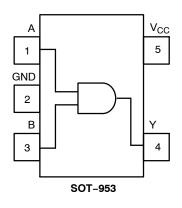
Figure 1. Logic Symbol

XX = Specific Device Code
M = Date Code*

1.0 x 1.0

CASE 517BX


XM


*Date Code orientation and/or position may vary depending upon manufacturing location. (Note: Microdot may be in either location)

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

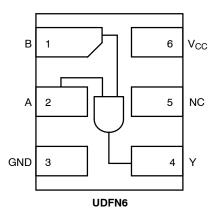


Figure 2. Pinout (Top View)

PIN ASSIGNMENT (SC-88A/SOT-553/SC-74A)

Pin	Function
1	В
2	А
3	GND
4	Y
5	V _{CC}

PIN ASSIGNMENT (SOT-953)

Pin	Function
1	Α
2	GND
3	В
4	Y
5	V _{CC}

PIN ASSIGNMENT (UDFN)

Pin	Function
1	В
2	Α
3	GND
4	Y
5	NC
6	V _{CC}

FUNCTION TABLE

Inp	Input		
Α	В	Υ	
L	L	L	
L	Н	L	
Н	L	L	
Н	Н	Н	

MAXIMUM RATINGS

Symbol	Characteristics		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to +6.5	V
V _{OUT}	Tri-Sta	igh or Low State) te Mode (Note 1) Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θЈА	Thermal Resistance (Note 2)	SC-88A SC-74A SOT-553 SOT-953 UDFN6	377 320 324 254 154	°C/W
P _D	Power Dissipation in Still Air	SC-88A SC-74A SOT-553 SOT-953 UDFN6	332 390 386 491 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating Oxyge	n Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}		man Body Model ed Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
- 3. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22–A115–A (Machine Model) be discontinued per JEDEC/JEP172A.

 4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

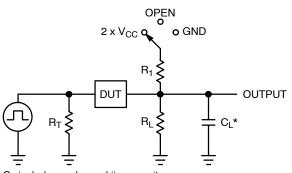
Symbol	Chara	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode ($V_{\rm CC}$ = 0 V)	0 0 0	V _{CC} 5.5 5.5	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time	$\begin{array}{c} V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \end{array}$	0 0 0	20 20 10 5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	Т	A = 25°	С	–55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
V _{IH}	High-Level Input Volt	age	1.65 to 1.95	0.65 x V _{CC}	_	-	0.65 x V _{CC}	_	V
			2.3 to 5.5	0.70 x V _{CC}	-	-	0.70 x V _{CC}	-	
V_{IL}	Low-Level Input Volta	age	1.65 to 1.95	_	-	0.35 x V _{CC}	-	0.35 x V _{CC}	V
			2.3 to 5.5	-	-	0.30 x V _{CC}	-	0.30 x V _{CC}	
V _{ОН}	High-Level Output Voltage	$\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OH} = -100 \mu\text{A} \\ &I_{OH} = -4 \text{ mA} \\ &I_{OH} = -8 \text{ mA} \\ &I_{OH} = -12 \text{ mA} \\ &I_{OH} = -16 \text{ mA} \\ &I_{OH} = -24 \text{ mA} \\ &I_{OH} = -32 \text{ mA} \end{aligned}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.4 2.7 2.5 4.0	- - - - -	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	- - - - -	V
V _{OL}	Low-Level Output Voltage	$\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 100 \mu\text{A} \\ &I_{OL} = 4 \text{ mA} \\ &I_{OL} = 8 \text{ mA} \\ &I_{OL} = 12 \text{ mA} \\ &I_{OL} = 16 \text{ mA} \\ &I_{OL} = 24 \text{ mA} \\ &I_{OL} = 32 \text{ mA} \end{aligned}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5		- 0.08 0.2 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55		0.1 0.24 0.3 0.4 0.4 0.55	V
I _{IN}	Input Leakage Cur- rent	V _{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	-	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	_	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5	-	_	1.0	-	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

			V _{CC} T _A = 25°C		$T_A = 25^{\circ}C$ $-55^{\circ}C \le T_A \le 125^{\circ}C$				
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
t _{PLH} ,	Propagation Delay, A to Y	$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	1.65 to 1.95	_	6.3	12	_	12.7	ns
t _{PHL}	(Figures 3 and 4)	$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	2.3 to 2.7	_	3.4	7.0	_	7.5	
		$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	3.0 to 3.6	_	2.6	4.7	_	5.0	
		R_L = 500 Ω, C_L = 50 pF		_	3.3	5.2	_	5.5	
		$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	4.5 to 5.5	_	2.2	4.1	_	4.4	
		R_L = 500 Ω, C_L = 50 pF		-	2.7	4.5	-	4.8	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{CC}$	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC} 10 MHz, V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	9 11	pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

Test	Switch Position	C _L , pF	R_L, Ω	R ₁ , Ω	
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table			
t _{PLZ} / t _{PZL}	2 x V _{CC}	50	500	500	
t _{PHZ} / t _{PZH}	GND	50	500	500	

X = Don't Care

C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f=1 MHz

Figure 3. Test Circuit

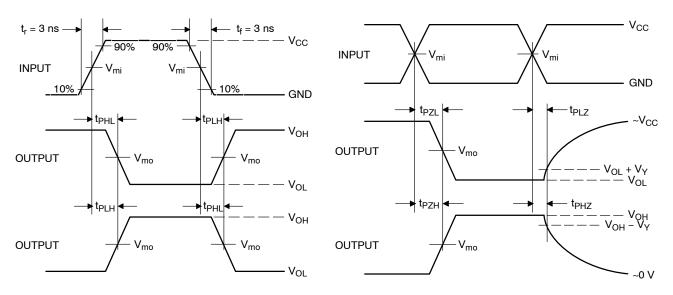
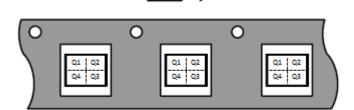


Figure 4. Switching Waveforms

		V _m		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3

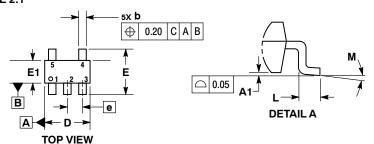

DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL17SZ08DFT2G	SC-88A	L2	Q4	3000 / Tape & Reel
NL17SZ08DFT2G-Q*	SC-88A	L2	Q4	3000 / Tape & Reel
NL17SZ08DBVT1G	SC-74A	AH	Q4	3000 / Tape & Reel
NL17SZ08DBVT1G-Q*	SC-74A	AH	Q4	3000 / Tape & Reel
NL17SZ08XV5T2G	SOT-553	L2	Q4	4000 / Tape & Reel
NL17SZ08P5T5G	SOT-953	E (Rotated 180° CW)	Q2	8000 / Tape & Reel
NL17SZ08MU1TCG	UDFN6, 1.45 x 1.0, 0.5P	D (Rotated 180° CW)	Q4	3000 / Tape & Reel
NL17SZ08MU3TCG	UDFN6, 1.0 x 1.0, 0.35P	P (Rotated 180° CW)	Q4	3000 / Tape & Reel

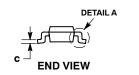
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

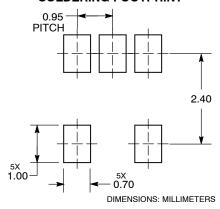
Pin 1 Orientation in Tape and Reel

Direction of Feed



Capable.




DATE 18 JAN 2018

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- IES:
 DIMENSIONING AND TOLERANCING PER ASME
 Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.90	1.10	
A1	0.01	0.10	
b	0.25	0.50	
С	0.10	0.26	
D	2.85	3.15	
E	2.50	3.00	
E1	1.35	1.65	
е	0.95 BSC		
L	0.20	0.60	
М	0 °	10°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

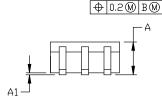
Μ = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

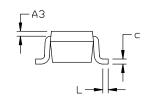
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

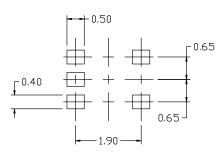
DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-74A		PAGE 1 OF 1

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M


DATE 11 APR 2023

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 419A-01 DBSDLETE. NEW STANDARD 419A-02
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.


DIM	MILLIMETERS		
الملتط	MIN.	N□M.	MAX.
А	0.80	0.95	1.10
A1			0.10
A3	0,20 REF		
b	0.10	0.20	0.30
С	0.10		0.25
D	1.80	2.00	2,20
Е	2.00	2.10	2.20
E1	1.15	1.25	1.35
е	0.65 BSC		
L	0.10	0.15	0.30

е Ε1 0

5X b

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

out in the datasheet refer to the device

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

STYLE 1	•
	EMITTER
	BASE
	COLLECTOR
5.	COLLECTOR

PIN 1. EMITTER 2

2. BASE 2

3. EMITTER 1

4. COLLECTOR

5. COLLECTOR 2/BASE 1

STYLE 6:

STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR CATHODE

2. EMITTER 3. BASE

4. COLLECTOR

5. COLLECTOR

STYLE 7:

PIN 1. BASE

STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1

PIN 1. CATHODE 2. COLLECTOR 3. N/C

4. BASE

STYLE 8:

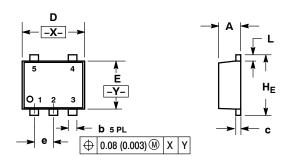
STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3 SOURCE 1 4. GATE 1 5. GATE 2

3. ANODE 4. ANODE

STYLE 5: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4

STYLE 9: Note: Please refer to datasheet for PIN 1. ANODE 2. CATHODE style callout. If style type is not called

 ANODE
 ANODE datasheet pinout or pin assignment. 5. EMITTER Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.


DOCUMENT NUMBER: 98ASB42984B **DESCRIPTION:** SC-88A (SC-70-5/SOT-353) PAGE 1 OF 1

SOT-553, 5 LEAD CASE 463B ISSUE C

DATE 20 MAR 2013

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES

- IES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.

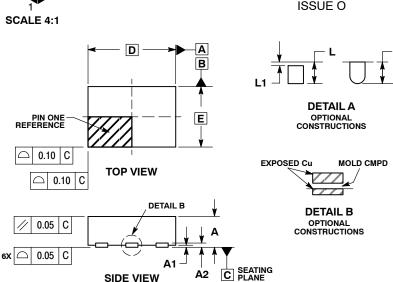
	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC			0.020 BS0	
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

= Pb-Free Package


(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 1 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	

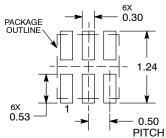
DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 1

6X L

6X b

0.10 | C | A | B

0.05 C NOTE 3


UDFN6, 1.45x1.0, 0.5P CASE 517AQ

DATE 15 MAY 2008

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.45	0.55	
A1	0.00	0.05	
A2	0.07	REF	
b	0.20	0.30	
D	1.45	BSC	
E	1.00	BSC	
е	0.50 BSC		
Ĺ	0.30	0.40	
L1		0.15	

MOUNTING FOOTPRINT

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

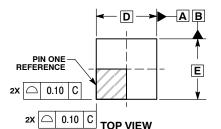
BOTTOM VIEW

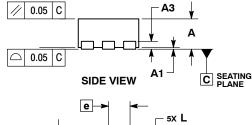
= Specific Device Code

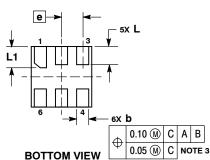
= Date Code

е

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

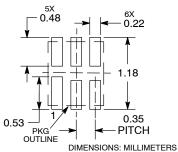

DOCUMENT NUMBER:	98AON30313E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN6, 1.45x1.0, 0.5P		PAGE 1 OF 1





UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O**

DATE 18 MAY 2011



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. PACKAGE DIMENSIONS EXCLUSIVE OF
- BURRS AND MOLD FLASH.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
A3	0.13 REF			
b	0.12	0.22		
D	1.00	BSC		
E	1.00 BSC			
е	0.35 BSC			
L	0.25	0.35		
L1	0.30	0.40		

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

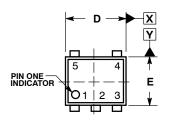
GENERIC MARKING DIAGRAM*

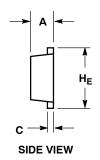
X = Specific Device Code

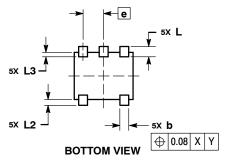
M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56787E	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN6, 1x1, 0.35P		PAGE 1 OF 1




SCALE 4:1

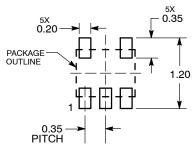

SOT-953 CASE 527AE **ISSUE E**

DATE 02 AUG 2011

TOP VIEW

GENERIC MARKING DIAGRAM*

= Specific Device Code Χ


= Month Code M

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	0.34	0.37	0.40
b	0.10	0.15	0.20
С	0.07	0.12	0.17
D	0.95	1.00	1.05
E	0.75	0.80	0.85
е		0.35 BS	C
HE	0.95	1.00	1.05
L	0.175 REF		
L2	0.05	0.10	0.15
L3			0.15

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON26457D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-953		PAGE 1 OF 1

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)