Hex Schmitt-Trigger Inverter with LSTTL Compatible Inputs

High-Performance Silicon-Gate CMOS

The MC74HCT14A may be used as a level converter for interfacing TTL or NMOS outputs to high–speed CMOS inputs.

The HCT14A is useful to "square up" slow input rise and fall times. Due to the hysteresis voltage of the Schmitt trigger, the HCT14A finds applications in noisy environments.

Features

- Output Drive Capability: 10 LSTTL Loads
- TTL/NMOS-Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1.0 μA
- In Compliance With the JEDEC Standard No. 7.0 A Requirements
- Chip Complexity: 72 FETs or 18 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

LOGIC DIAGRAM

A1
$$\frac{1}{\Box}$$
 $\frac{2}{\Box}$ Y1

A2 $\frac{3}{\Box}$ $\frac{4}{\Box}$ Y2

A3 $\frac{5}{\Box}$ $\frac{6}{\Box}$ Y3

A4 $\frac{9}{\Box}$ $\frac{8}{\Box}$ Y4

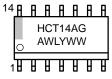
A5 $\frac{11}{\Box}$ $\frac{10}{\Box}$ Y5

A6 $\frac{13}{\Box}$ $\frac{12}{\Box}$ Y6

Y = \overline{A} PIN 14 = V_{CC} PIN 7 = GND

ON Semiconductor®

http://onsemi.com



SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

A1 [1●		v _{cc}
Y1 [2	13	A6
A2 [12	1 Y6
Y2 [4	11] A5
A3 [5	10] Y5
Y3 [6	9] A4
GND [7	8] Y4
			i

MARKING DIAGRAMS

SOIC-14 NB

TSSOP-14

A = Assembly Location L, WL = Wafer Lot

Y, YY = Year
W, WW = Work Week
G or = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

Input	Output
A	Y
L H	H L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Pi	arameter	Value	Unit
V _{CC}	DC Supply Voltage	(Referenced to GND)	-0.5 to +7.0	V
VI	DC Input Voltage	(Referenced to GND)	–0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	(Referenced to GND)	–0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±25	mA
Io	DC Output Sink Current		±25	mA
I _{CC}	DC Supply Current per Supply Pin		±50	mA
I _{GND}	DC Ground Current per Ground Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case fo	r 10 Seconds	260	°C
TJ	Junction Temperature under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance	SOIC TSSOP	125 170	°C/W
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 4000 > 300 > 1000	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 4)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Tested to EIA/JESD22-A114-A.
- 2. Tested to EIA/JESD22-A115-A.
- 3. Tested to JESD22-C101-A.
- 4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND	4.5	5.5	V
V _I , V _O	DC Input Voltage, Output Voltage (Referenced to GND) 0	V _{CC}	V
T _A	Operating Temperature, All Package Types		+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	-	(Note 5)	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- 5. No Limit when $V_{I} \approx 50\% V_{CC}$, $I_{CC} > 1$ mA.
- 6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Temperature Limit						
			v _{cc}	-55°C to 25°C		≤85°C		≤125°C		1
Symbol	Parameter	Test Conditions	Volts	Min	Max	Min	Max	Min	Max	Unit
V_{T+} max	Maximum Positive–Going Input Threshold Voltage	$V_{O} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5		1.9 2.1		1.9 2.1		1.9 2.1	V
V_{T+} min	Minimum Positive–Going Input Threshold Voltage	$V_{O} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5	1.2 1.4		1.2 1.4		1.2 1.4		V
V_{T-} max	Maximum Negative–Going Input Threshold Voltage	$V_{O} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5		1.2 1.4		1.2 1.4		1.2 1.4	
V_{T-} min	Minimum Negative-Going Input Threshold Voltage	$V_{O} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5	0.5 0.6		0.5 0.6		0.5 0.6		
V _H max	Maximum Hysteresis Voltage	$V_{O} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5		1.4 1.5		1.4 1.5		1.4 1.5	
V _H min	Minimum Hysteresis Voltage	$V_{O} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 5.5	0.4 0.4		0.4 0.4		0.4 0 4		
V _{OH}	Minimum High-Level Output Voltage	$V_1 < V_{T-}$ min $ I_{out} \le 20 \mu A$	4.5 5.5	4.4 5.4		4.4 5.4		4.4 5.4		V
		$V_1 < V_{T-}$ min $ I_{out} \le 4.0$ mA	4.5	3.98		3.84		3.7		-
V _{OL}	Maximum Low–Level Output Voltage	$V_1 \ge V_{T+} max$ $ I_{out} \le 20 \mu A$	4.5 5.5		0.1 0.1		0.1 0.1		0.1 0.1	V
		$V_l \ge V_{T+} max$ $ I_{out} \le 4.0 mA$	4.5		0.26		0.33		0.4	-
I _{IK}	Maximum Input Leakage Current	$V_I = V_{CC}$ or GND	5.5		±0.1		±1.0		±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per package)	$V_I = V_{CC}$ or GND $I_{out} = 0 \mu A$	5.5		1.0		10		40	μΑ
				≥ -55°C 25°C to 125°		5°C				
ΔI_{CC}	Additional Quiescent Supply Current	V_{I} = 2.4 V, Any One Input V_{I} = V_{CC} or GND, Other Inputs I_{out} = 0 μA	5.5	2.9 2.4			mA			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$; Input $t_r = t_f = 6.0 \text{ ns}$)

				Guaranteed Limit						
				−55°C	to 25°C	≤8	5°C	≤12	25°C	
Symbol	Parameter	Test Conditions	Figures	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (L to H)	$V_{CC} = 5.0 \text{ V} \pm 10\%$ $C_L = 50 \text{ pF}, \text{ Input } t_r = t_f = 6.0 \text{ ns}$	1 & 2		32		40		48	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output	$V_{CC} = 5.0 \text{ V} \pm 10\%$ $C_L = 50 \text{ pF}, \text{ Input } t_r = t_f = 6.0 \text{ ns}$	1 & 2		15		19		22	ns

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance, per Inverter (Note 7)	32	pF

^{7.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

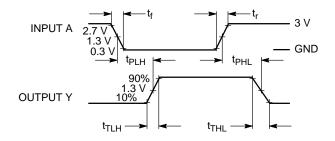
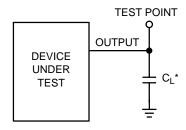



Figure 1. Switching Waveforms

*Includes all probe and jig capacitance.

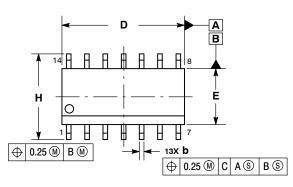
Figure 2. Test Circuit

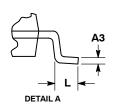
ORDERING INFORMATION

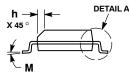
Device	Package	Shipping [†]
MC74HCT14ADG	SOIC-14 NB	55 Units / Rail
NLV74HCT14ADG*	(Pb-Free)	55 Utilis / Raii
MC74HCT14ADR2G	SOIC-14 NB	2500 / Tono 9 Dool
NLV74HCT14ADR2G*	(Pb-Free)	2500 / Tape & Reel
MC74HCT14ADTR2G	TSSOP-14	2500 / Tape & Reel
NLV74HCT14ADTR2G*	(Pb-Free)	2500 / Tape & Reel

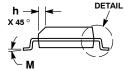
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

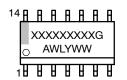





△ 0.10


SOIC-14 NB CASE 751A-03 ISSUE L

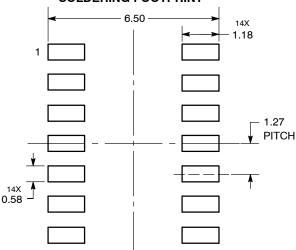
DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
 - MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIN	IETERS	S INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0 °	7°	0 °	7°

GENERIC MARKING DIAGRAM*



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

C SEATING PLANE

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)