PNP Silicon Epitaxial Transistor

This PNP Silicon Epitaxial transistor is designed for use in linear and switching applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

Features

- NPN Complement is PZT2222AT1
- The SOT-223 Package can be Soldered Using Wave or Reflow
- SOT-223 Package Ensures Level Mounting, Resulting in Improved Thermal Conduction, and Allows Visual Inspection of Soldered Joints. The Formed Leads Absorb Thermal Stress during Soldering Eliminating the Possibility of Damage to the Die
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

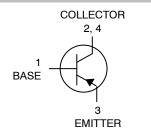
MAXIMUM RATINGS

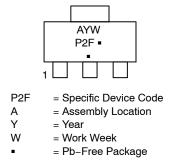
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-60	Vdc
Collector - Base Voltage	V _{CBO}	-60	Vdc
Emitter – Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ι _C	-600	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Total Device Dissipation (Note 1) $T_A = 25^{\circ}C$	PD	1.5 12	W mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{\theta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625" from case Time in Solder Bath	ΤL	260 10	°C Sec
Operating and Storage Temperature Range	T _J , T _{stg}	−65 to +150	°C


1. FR-4 with 1 oz and 713 mm² of copper area.


ON Semiconductor®

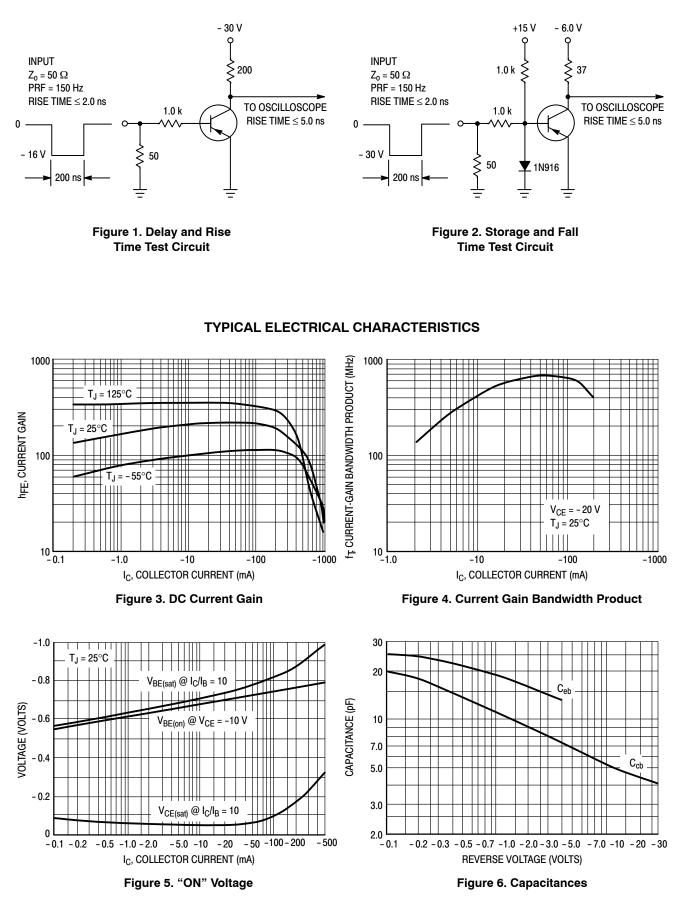
http://onsemi.com

MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

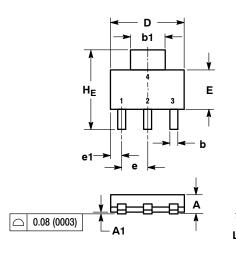
Device	Package	Shipping [†]				
PZT2907AT1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel				
SPZT2907AT1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel				
PZT2907AT3G	SOT-223 (Pb-Free)	4,000 / Tape & Reel				


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Cha	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector-Base Breakdown Volta $(I_C = -10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	-60	_	_	Vdc	
Collector-Emitter Breakdown Vol $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-60	-	-	Vdc	
Emitter-Base Breakdown Voltage $(I_E = -10 \ \mu Adc, I_C = 0)$	9	V _{(BR)EBO}	-5.0	-	-	Vdc
$\begin{array}{l} Collector-Base \ Cutoff \ Current \\ (V_{CB}=-50 \ Vdc, \ I_{E}=0) \end{array}$		I _{CBO}	-	_	-10	nAdc
$\begin{array}{l} \mbox{Collector-Emitter Cutoff Current} \\ \mbox{(V}_{CE} = -30 \mbox{ Vdc}, \mbox{ V}_{BE} = 0.5 \mbox{ Vdc} \end{array}$	c)	I _{CEX}	_	_	-50	nAdc
Base-Emitter Cutoff Current (V _{CE} = -30 Vdc, V _{BE} = -0.5 V	I _{BEX}	_	_	-50	nAdc	
ON CHARACTERISTICS (No	te 2)	-				_
$\begin{array}{l} \text{DC Current Gain} \\ (I_{C} = -0.1 \text{ mAdc}, V_{CE} = -10 \text{ Vol} \\ (I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vol} \\ (I_{C} = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vol} \\ (I_{C} = -150 \text{ mAdc}, V_{CE} = -10 \text{ Vol} \\ (I_{C} = -500 \text{ mAdc}, V_{CE} = -10 \text{ Vol} \\ \end{array}$	lc) c) dc)	h _{FE}	75 100 100 100 50	- - - - -	- - 300 -	-
Collector-Emitter Saturation Voltages ($I_C = -150 \text{ mAdc}$, $I_B = -15 \text{ mAdc}$) ($I_C = -500 \text{ mAdc}$, $I_B = -50 \text{ mAdc}$)		V _{CE(sat)}			-0.4 -1.6	Vdc
Base-Emitter Saturation Voltages ($I_C = -150 \text{ mAdc}, I_B = -15 \text{ mAd}$ ($I_C = -500 \text{ mAdc}, I_B = -50 \text{ mA}$	V _{BE(sat)}	-		-1.3 -2.6	Vdc	
DYNAMIC CHARACTERISTI	CS			•	•	
Current-Gain – Bandwidth Production ($I_C = -50$ mAdc, $V_{CE} = -20$ Vc	f _T	200	_	-	MHz	
Output Capacitance $(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0$	C _c	-	-	8.0	pF	
Input Capacitance $(V_{EB} = -2.0 \text{ Vdc}, I_C = 0, f = 1.0 \text{ Vdc})$	C _e	-	_	30	pF	
SWITCHING TIMES					•	
Turn-On Time		t _{on}	_	-	45	ns
Delay Time	$(V_{CC} = -30 \text{ Vdc}, I_C = -150 \text{ mAdc}, I_{B1} = -15 \text{ mAdc})$	t _d	-	-	10	1
Rise Time		t _r	-	-	40	1
Turn-Off Time		t _{off}	-	-	100	ns
Storage Time	$(V_{CC} = -6.0 \text{ Vdc}, I_C = -150 \text{ mAdc}, I_{B1} = I_{B2} = -15 \text{ mAdc})$		-	-	80	1
Fall Time	t _f	-	-	30	1	

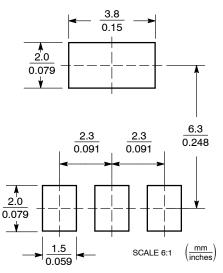

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04

ISSUE N

NOTES


DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. DIMENSIONING AND TOLEHANGIN
CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
c	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	-	10°

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER

COLLECTOR 4

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, UN semiconductor and up are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC works the rights to a number of patents, trademarks, trademarks, trade secrets, and other intellectual property. Al listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different application and advary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for support to suppor surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)