ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

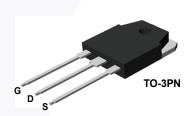
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi nouses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated w

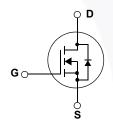
FCA47N60 / FCA47N60_F109 N-Channel SuperFET[®] MOSFET

600 V, 47 A, 70 m Ω

Features

- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 58 mΩ
- Ultra Low Gate Charge (Typ. Q_g= 210 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 420 pF)
- 100% Avalanche Tested


Application

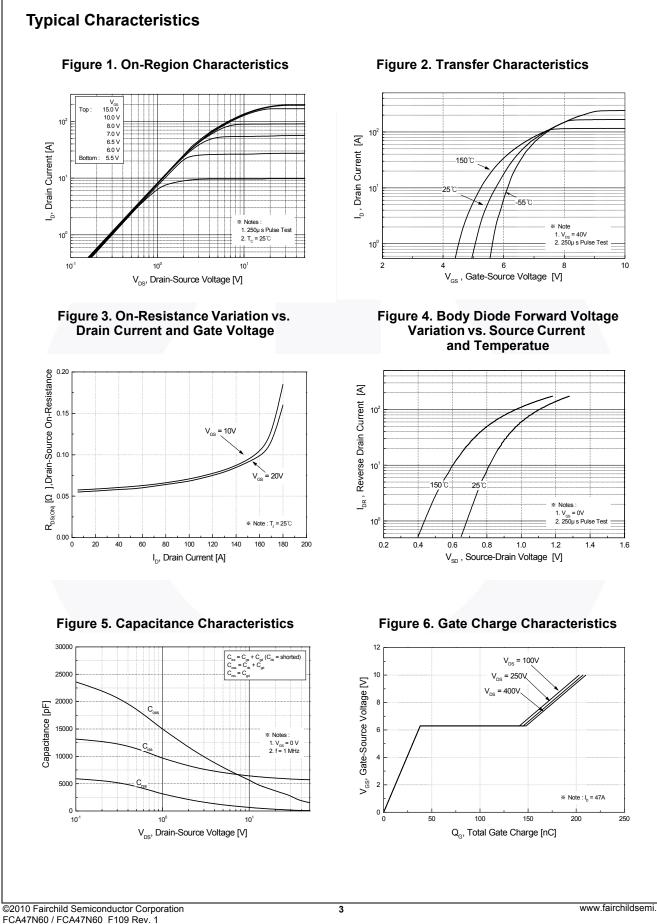

- Solar Invertor
- AC-DC Power Supply

September 2017

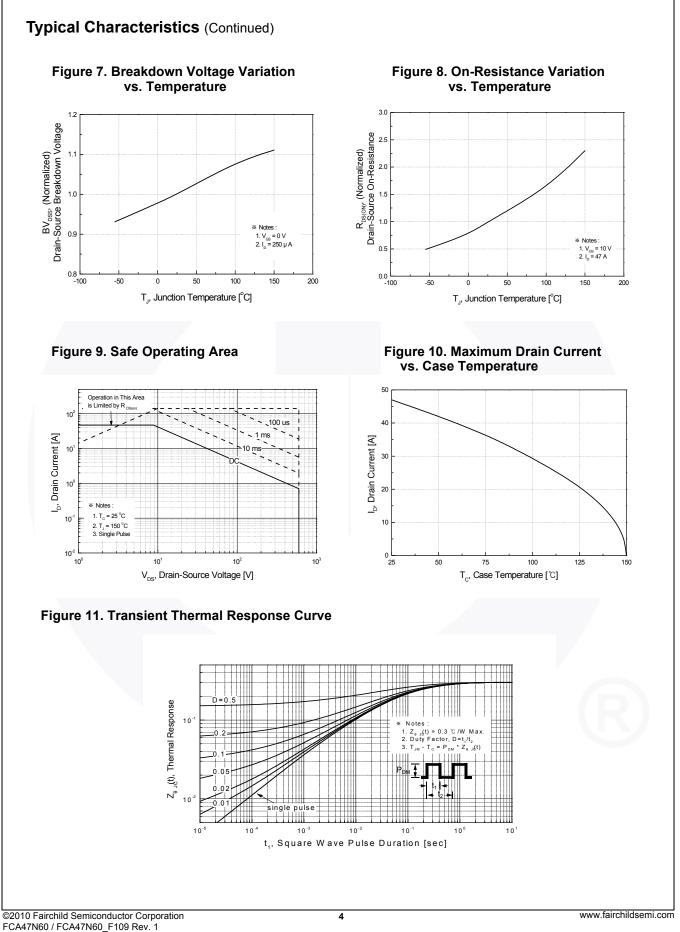
Description

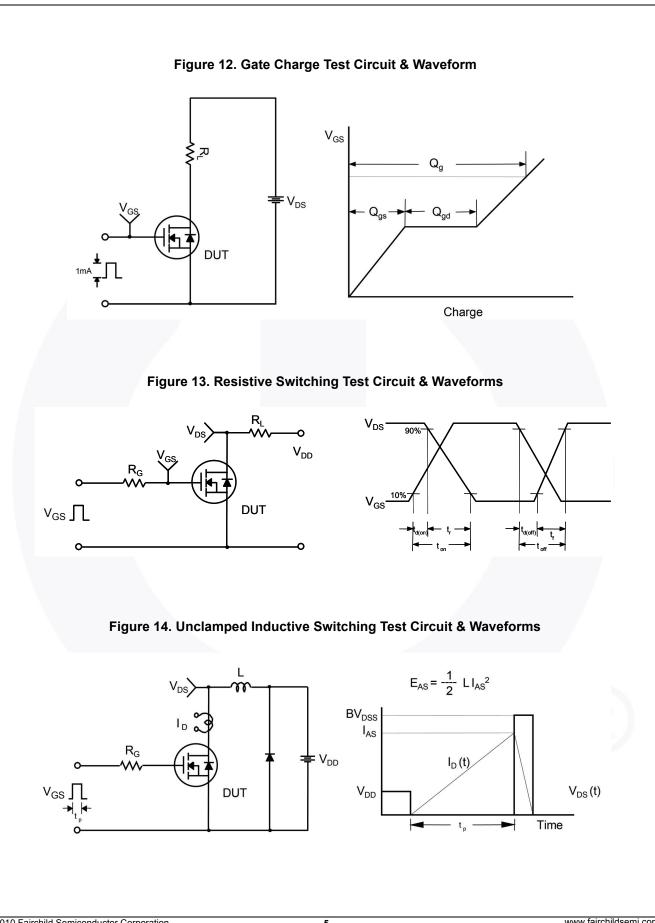
SuperFET[®] MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

Absolute Maximum Ratings


Symbol		Parameter		FCA47N60	FCA47N60_F109	Unit
V _{DSS}	Drain-Source Voltage		600		V	
ID	Drain Current	- Continuous - Continuous	(T _C = 25°C) (T _C = 100°C)	47 29.7		A A
I _{DM}	Drain Current	- Pulsed	(Note 1)	141		Α
V _{GSS}	Gate-Source voltage				V	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	1800		mJ
I _{AR}	Avalanche Current		(Note 1)	47		А
E _{AR}	Repetitive Avalanche Energy		(Note 1)	41.7		mJ
dv/dt	Peak Diode Recovery dv/dt ((Note 3)	4.5		V/ns
P _D	Power Dissipation	(T _C = 25°C) - Derate above 25°C			417 3.33	W W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range			-5	°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300		°C	

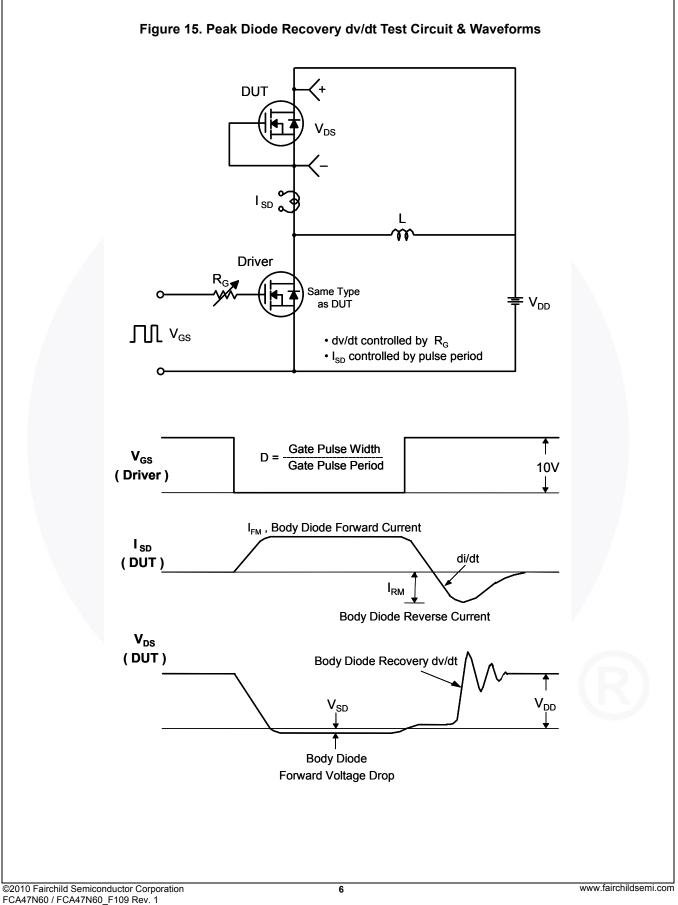
Thermal Characteristics

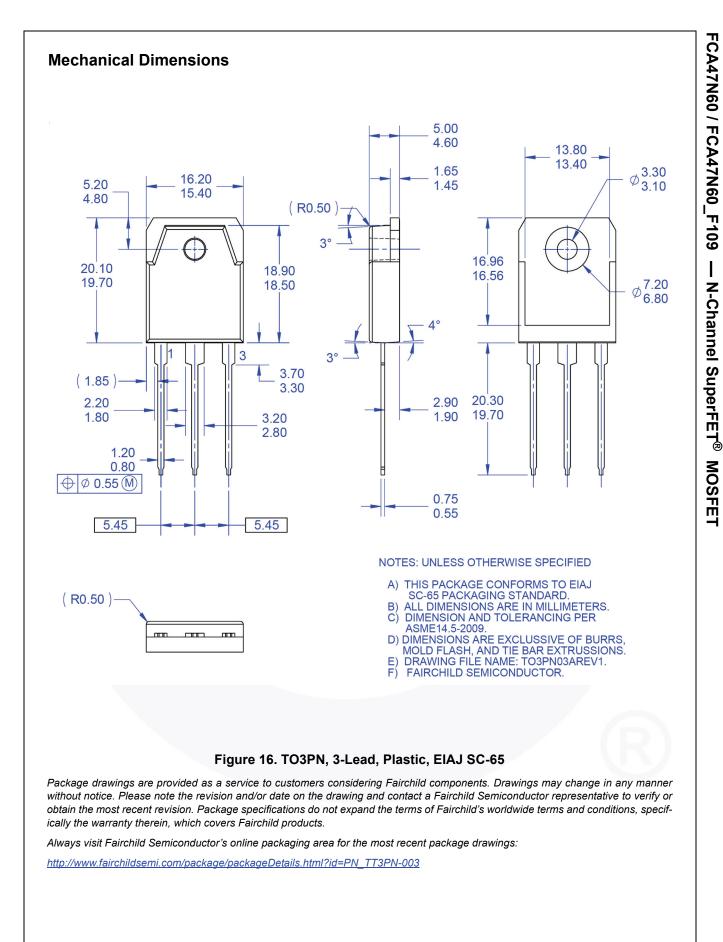

Symbol	Parameter	Тур.	Max.	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.		0.3	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient, Max.		41.7	°C/W


Device Marking Device Page		Packa	age	Reel Size	Таре	e Width		Quantity	/	
FCA47N60 FCA47N60		TO-3	0-3PN -		-		30			
FCA47N60 FCA47N60_F109 TO-			TO-3	PN -			- 30		30	
Electrica	al Char	acteristics T c=	25°C unles	s otherwis	se noted.					
Symbol	Symbol Parameter			Test Conditions			Min.	Тур.	Max.	Uni
Off Chara	cteristic	S								
BV _{DSS}	SS Drain-Source Breakdown Voltage		age	V _{GS} =	0 V, I _D = 250 μA, T _J =	= 25°C	600			V
200			-	$V_{GS} = 0 V, I_D = 250 \mu A, T_J = 150^{\circ}C$				650		V
ΔΒV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient		ure	$I_D = 250 \ \mu$ A, Referenced to 25°C				0.6		V/°(
BV _{DS}	Drain-Se Voltage	Drain-Source Avalanche Breakdown		V _{GS} = 0 V, I _D = 47 A				700		V
I _{DSS}	Zero Ga	Zero Gate Voltage Drain Current			V _{DS} = 600 V, V _{GS} = 0 V				1	μA
				$V_{DS} = 480 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$					10	μA
GSSF		ody Leakage Current,		V _{GS} = 30 V, V _{DS} = 0 V					100	nA
I _{GSSR}	Gate-Bo	ody Leakage Current,	Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$					-100	nA
On Chara	otoristics									
				N/ -	V L = 250 A			2.0		-
V _{GS(th)}		reshold Voltage		V _{DS} =	V _{GS} , I _D = 250 μA			3.0		5.0
R _{DS(on)}	Static Drain-Source On-Resistance			V _{GS} = 10 V, I _D = 23.5 A					0.058	0.0
9 _{FS}	Forward Transconductance			V _{DS} = 20 V, I _D = 23.5 A					40	-
V _{GS(th)}	Gate Threshold Voltage			$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$				3.0		5.0
Dynamic	Characte	rictico								
-			_	V -	25 (1) = 0 (1)			5900	8000	pF
C _{iss} C _{oss}	Input Capacitance Output Capacitance		_	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz						pF
Unee	Output (Canacitance		f = 1.0				3200	4200	
	-		<u>م</u>	f = 1.0				3200 250	4200	
C _{rss}	Reverse	Transfer Capacitance	9			1 0 MHz		250		pF
C _{rss} C _{oss}	Reverse Output (e Transfer Capacitance	e	V _{DS} =	480 V, V _{GS} = 0 V, f =			250 160		pF pF
C _{rss} C _{oss}	Reverse Output (Transfer Capacitance	e	V _{DS} =				250		pF pF pF
C _{rss} C _{oss} C _{oss} eff.	Reverse Output 0 Effective	e Transfer Capacitanc Capacitance e Output Capacitance	9	V _{DS} =	480 V, V _{GS} = 0 V, f =			250 160		pF pF
C _{rss} C _{oss} C _{oss} eff. Switching	Reverse Output (Effective J Charac	e Transfer Capacitanc Capacitance e Output Capacitance	e	V _{DS} =	480 V, V _{GS} = 0 V, f =			250 160		pF pF pF
C _{rss} C _{oss} C _{oss} eff.	Reverse Output (Effective g Charac t Turn-On	e Transfer Capacitance Capacitance e Output Capacitance teristics	e	V _{DS} =	480 V, V _{GS} = 0 V, f = 0 V to 400 V, V _{GS} = 0 300 V, I _D = 47 A			250 160 420		pF pF pF
C _{rss} C _{oss} C _{oss} eff. Switching t _{d(on)} t _r	Reverse Output 0 Effective J Charact Turn-On Turn-On	e Transfer Capacitance Capacitance e Output Capacitance teristics Delay Time	e	V _{DS} = V _{DS} =	480 V, V _{GS} = 0 V, f = 0 V to 400 V, V _{GS} = 0 300 V, I _D = 47 A) V 		250 160 420 185	 430	pF pF pF ns
C _{rss} C _{oss} C _{oss} eff. Switching t _{d(on)} t _r t _{d(off)}	Reverse Output (Effective J Charact Turn-On Turn-On Turn-Off	e Transfer Capacitance Capacitance e Output Capacitance teristics Delay Time Rise Time	e	V _{DS} = V _{DS} =	480 V, V _{GS} = 0 V, f = 0 V to 400 V, V _{GS} = 0 300 V, I _D = 47 A			250 160 420 185 210	 430 450	pF pF pF ns ns
C_{rss} C_{oss} eff. Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f	Reverse Output (Effective J Charact Turn-On Turn-Off Turn-Off	e Transfer Capacitance Capacitance e Output Capacitance teristics Delay Time Rise Time Delay Time	e	$V_{DS} =$ $V_{DS} =$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$	480 V, $V_{GS} = 0$ V, f = 0 V to 400 V, $V_{GS} = 0$ 300 V, $I_D = 47$ A 5 Ω 480 V, $I_D = 47$ A) V 		250 160 420 185 210 520	 430 450 1100	pF pF pF ns ns ns
C _{rss} C _{oss} C _{oss} eff. Switching t _{d(on)} t _r t _{d(off)} t _f Q _g	Reverse Output (Effective J Charact Turn-On Turn-Off Turn-Off Total Ga	Transfer Capacitance Capacitance Output Capacitance teristics Delay Time Rise Time Delay Time Fall Time	e	$V_{DS} =$ $V_{DS} =$ $V_{DD} =$ $R_{G} = 2$	480 V, $V_{GS} = 0$ V, f = 0 V to 400 V, $V_{GS} = 0$ 300 V, $I_D = 47$ A 5 Ω 480 V, $I_D = 47$ A) V 	 	250 160 420 185 210 520 75	 430 450 1100 160	pF pF pF ns ns ns
C _{rss} C _{oss} C _{oss} eff. Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Reverse Output (Effective J Charac Turn-On Turn-Off Turn-Off Total Ga Gate-So	Transfer Capacitance Capacitance Output Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge	e	$V_{DS} =$ $V_{DS} =$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$	480 V, $V_{GS} = 0$ V, f = 0 V to 400 V, $V_{GS} = 0$ 300 V, $I_D = 47$ A 5 Ω 480 V, $I_D = 47$ A) V 	 	250 160 420 185 210 520 75 210	 430 450 1100 160 270	pF pF pF ns ns ns ns nc
$\begin{array}{c} C_{rss} \\ C_{oss} \\ \hline C_{oss} eff. \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ t_r \\ \hline t_d(off) \\ t_f \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_{gs} \\ \hline \textbf{Q}_{gd} \\ \hline \end{array}$	Reverse Output (Effective J Charac Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dr	 Transfer Capacitance Capacitance Output Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge uurce Charge 		$V_{DS} =$ $V_{DS} =$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$	480 V, $V_{GS} = 0$ V, f = 0 V to 400 V, $V_{GS} = 0$ 300 V, $I_D = 47$ A 5 Ω 480 V, $I_D = 47$ A) V (Note 4)	 	250 160 420 185 210 520 75 210 38	 430 450 1100 160 270 	pF pF pF ns ns ns ns nc
C_{rss} C_{oss} eff. Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-Sou	Reverse Output (Effective y Charact Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate-So Gate-Dr urce Dioc	e Transfer Capacitance Capacitance e Output Capacitance teristics Delay Time Rise Time Fall Time te Charge ource Charge ain Charge	:S	$V_{DS} =$ $V_{DS} =$ $R_{G} = 2$ $V_{DS} =$ $V_{DS} =$ $V_{DS} =$	480 V, $V_{GS} = 0$ V, f = 0 V to 400 V, $V_{GS} = 0$ 300 V, $I_D = 47$ A 5 Ω 480 V, $I_D = 47$ A 10 V) V (Note 4)	 	250 160 420 185 210 520 75 210 38	 430 450 1100 160 270 	pF pF pF ns ns ns ns nc
C _{rss} C _{oss} eff. Switching td(on) tr td(off) tf Qg Qgs Qgd Drain-Sou	Reverse Output (Effective J Charac Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dr Irce Dioc Maximum	Transfer Capacitance Capacitance Output Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge ain Charge	: s urce Diode F	$V_{DS} =$ $V_{DS} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ orward Cu	480 V, $V_{GS} = 0$ V, f = 0 V to 400 V, $V_{GS} = 0$ 300 V, $I_D = 47$ A 5 Ω 480 V, $I_D = 47$ A 10 V) V (Note 4)		250 160 420 185 210 520 75 210 38 110	 430 450 1100 160 270 	pF pF pF ns ns ns nC nC
C _{rss} C _{oss} eff. Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gd} Q _{gd} Drain-Sou Is	Reverse Output (Effective J Charac Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dr Irce Dioc Maximum Maximum	Transfer Capacitance Capacitance Output Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge Le Characteristic Continuous Drain-Sou	S Irce Diode F Diode Forwa	$V_{DS} =$ $V_{DS} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ orward Cu	480 V, $V_{GS} = 0$ V, f = 0 V to 400 V, $V_{GS} = 0$ 300 V, $I_D = 47$ A 25 Ω 480 V, $I_D = 47$ A 10 V) V (Note 4)	 	250 160 420 185 210 520 75 210 38 110 	 430 450 1100 160 270 47	pF pF pF ns ns ns nC nC
C _{rss} C _{oss} eff. Switching td(on) tr td(off) tf Qg Qgs Qgd Drain-Sou Is M VsD	Reverse Output (Effective J Charact Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dr urce Dioc Maximum Maximum Drain-Sou	e Transfer Capacitance Capacitance e Output Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge de Characteristic Continuous Drain-Source	: S urce Diode F Diode Forwa Itage V	$V_{DS} =$ $V_{DS} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ orward Curren	$480 \text{ V}, \text{ V}_{\text{GS}} = 0 \text{ V}, \text{f} = 0$) V (Note 4)	 	250 160 420 185 210 520 75 210 38 110 	 430 450 1100 160 270 47 141	pF pF pF ns ns ns nC nC A A
$\begin{array}{c} C_{rss} \\ C_{oss} \\ C_{oss} eff. \\ \hline \end{array} \\ \hline \begin{array}{c} \hline \\ switching \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array}$	Reverse Output (Effective Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dr Urce Dioc Maximum Drain-Sou Reverse R	Transfer Capacitance Capacitance Output Capacitance Output Capacitance teristics Delay Time Rise Time Toelay Time Fall Time te Charge ain Charge de Characteristic Continuous Drain-Source Pulsed Drain-Source rce Diode Forward Vo	: S urce Diode F Diode Forwa Itage V	$V_{DS} =$ $V_{DS} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ orward Curren $R_{G} = 0 V,$	$480 \text{ V}, \text{ V}_{\text{GS}} = 0 \text{ V}, \text{f} = 0$) V (Note 4)	 	250 160 420 185 210 520 75 210 38 110 	 430 450 1100 160 270 47 141 1.4	PF PF PF nss nss nss nC nC nC A A V

FCA47N60 / FCA47N60_F109 — N-Channel SuperFET[®] MOSFET

www.fairchildsemi.com





©2010 Fairchild Semiconductor Corporation FCA47N60 / FCA47N60_F109 Rev. 1

www.fairchildsemi.com

FCA47N60 / FCA47N60_F109 — N-Channel SuperFET[®] MOSFET

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)