

Field Effect Transistor - Dual, N-Channel, Enhancement Mode

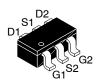
NDC7002N

General Description

These dual N-Channel enhancement mode power field effect transistors are produced using **onsemi**'s proprietary, high cell density, DMOS technology. This very high density process has been designed to minimize on-state resistance, provide rugged and reliable performance and fast switching. These devices is particularly suited for low voltage applications requiring a low current high side switch.

Features

- 0.51 A, 50 V, $R_{DS(ON)} = 2 \Omega @ V_{GS} = 10 V$
- High Density Cell Design for Low R_{DS(ON)}
- Proprietary SUPERSOT[™] -6 Package Design Using Copper Lead Frame for Superior Thermal and Electrical Capabilities
- High Saturation Current
- This is a Pb-Free Device


ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain-Source Voltage	50	V
V _{GSS}	Gate-Source Voltage	20	V
I _D	Drain Current - Continuous (Note 1a) - Pulsed	0.51 1.5	Α
P _D	Power Dissipation (Note 1a) (Note 1b) (Note 1c)	0.96 0.9 0.7	W
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C

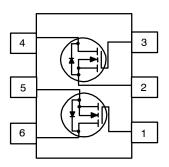
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Rejc	Thermal Resistance, Junction to Case (Note 1)	60	°C/W
RеJA	Thermal Resistance, Junction to Ambient (Note 1a)	130	

TSOT23 6-Lead CASE 419BL

MARKING DIAGRAM


XXX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PINOUT

SOT-6 (SUPERSOT™-6)

ORDERING INFORMATION

Device	Package	Shipping [†]
NDC7002N	TSOT-23-6 (Pb-free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Test Conditions

Min

Тур

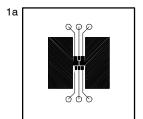
Max

Unit

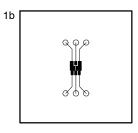
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

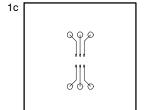
Parameter

Symbol


BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	50			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$			1 500	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
ON CHARA	ACTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 μA T_J = 125 $^{\circ}C$	1 0.8	1.9 1.5	2.5 2.2	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} = 10 V, I_{D} = 0.51 A T_{J} = 125°C		1 1.7	2 3.5	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 0.35 \text{ A}$		1.6	4	
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 10 V	1.5			Α
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 0.51 A		400		mS
YNAMIC	CHARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		20		pF
C _{oss}	Output Capacitance			13		pF
C _{rss}	Reverse Transfer Capacitance			5		pF
WITCHIN	G CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 25 \text{ V}, I_D = 0.25 \text{ A}, V_{GS} = 10 \text{ V},$		6	20	ns
t _r	Turn-On Time	$R_{GEN} = 25 \Omega$		6	20	
t _{d(off)}	Turn-Off Delay Time			11	20	
t _f	Turn-Off Fall Time			5	20	
Qg	Total Gate Charge	$V_{DS} = 25 \text{ V}, I_D = 0.51 \text{ A}, V_{GS} = 10 \text{ V}$		1		nC
Q_{gs}	Gate-Source Charge			0.19		nC
Q_{gd}	Gate to Drain Charge			0.33		nC
RAIN-SC	OURCE DIODE CHARACTERISTICS					
Is	Maximum Continuous Source Current				0.51	Α
I _{SM}	Maximum Pulse Source Current (Note 2)				1.5	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.51 A (Note 2)		0.8	1.2	V

mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. $P_D(t) = \frac{T_J - T_A}{R_{\theta JA}(t)} = \frac{T_J - T_A}{R_{\theta JC} + R_{\theta CA}(t)} = I_D^2(t) \times R_{DS(ON)} @T_J$


$$P_D(t) = \frac{I_J - I_A}{R_{\theta JA}(t)} = \frac{I_J - I_A}{R_{\theta JC} + R_{\theta CA}(t)} = I_D^2(t) \times R_{DS(ON)}@T_J$$


Typical $R_{\theta JA}$ for single device operation using the board layouts shown below on 4.5" x 5" FR-4 PCB in a still air environment:

- a. 130°C/W when mounted on a 0.125 in² pad of 2oz copper.
- $b.\ 140^{\circ}\mbox{C/W}$ when mounted on a 0.005 in 2 pad of 2oz copper.
- c. 180°C/W when mounted on a 0.0015 in² pad of 2oz copper.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty cycle \leq 2.0 %.

TYPICAL ELECTRICAL CHARACTERISTICS

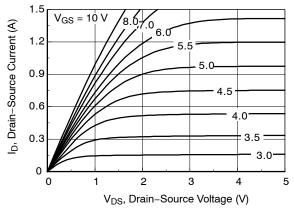


Figure 1. On-Region Characteristics

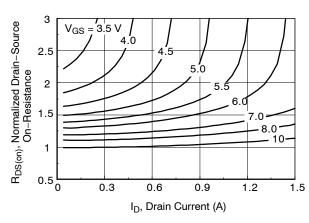


Figure 2. On-Resistance Variation with Gate Voltage and Current

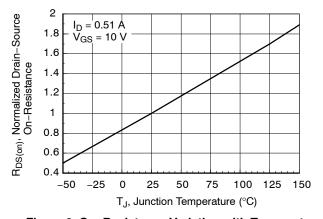


Figure 3. On–Resistance Variation with Temperature

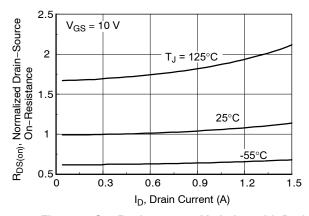


Figure 4. On–Resistance vs Variation with Drain Current and Temperature

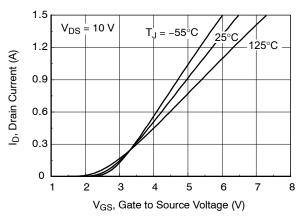


Figure 5. Transfer Characteristics

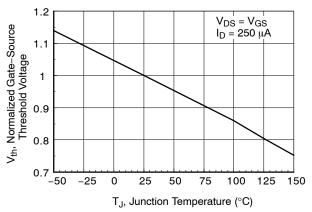


Figure 6. Gate Threshold Variation with Temperature

TYPICAL ELECTRICAL CHARACTERISTICS (continued)

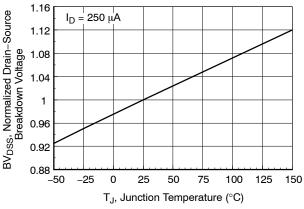


Figure 7. Breakdown Voltage Variation with Temperature

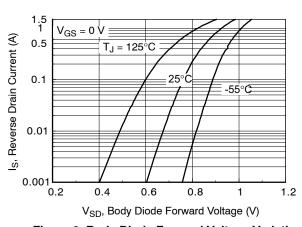


Figure 8. Body Diode Forward Voltage Variation with Current and Temperature

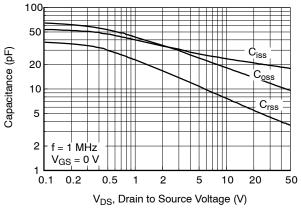


Figure 9. Capacitance Characteristics

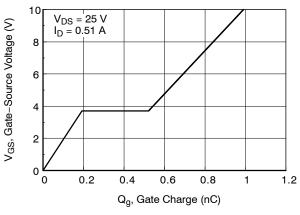


Figure 10. Gate Charge Characteristics

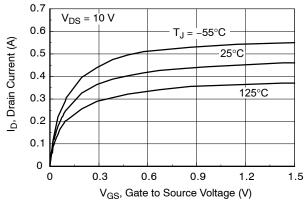


Figure 11. Transconductance Variation with Drain Current and Temperature

TYPICAL THERMAL CHARACTERISTICS

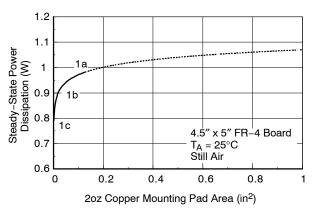


Figure 12. SOT-6 Dual Package Maximum Steady-State Power Dissipation versus Copper Mounting Pad Area

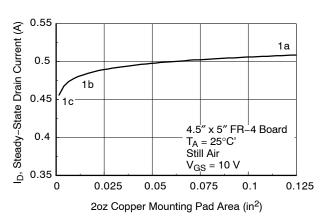


Figure 13. Maximum Steady-State Drain Current versus Copper Mounting Pad Area

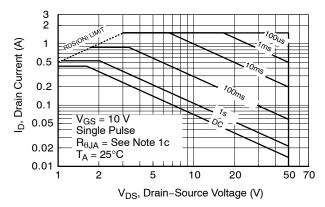


Figure 14. Maximum Safe Operating Area

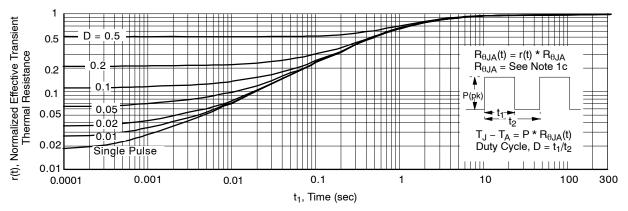
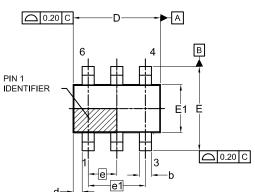
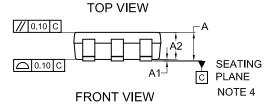
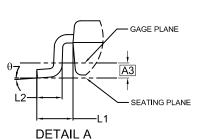
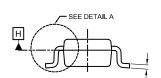


Figure 15. Transient Thermal Response Curve


(Note: Thermal characterization performed using the conditions described in note 1c. Transient thermal response will change depending on the circuit board design.)


SUPERSOT is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.




TSOT23 6-Lead CASE 419BL **ISSUE A**

DATE 31 AUG 2020

SIDE VIEW

SYMM ၉ 0.95 -0.95 2.60 0.70 MIN

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.25MM PER END. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MILLIMETERS			
D ₁ ,v,	MIN.	NOM.	MAX.	
Α	0.90	1.00	1.10	
A1	0.00	0.05	0.10	
A2	0.70	0.85	1.00	
А3	0.25 BSC			
b	0.25	0.38	0.50	
С	0.10	0.18	0.26	
D	2.80	2.95	3.10	
d	0.30 REF			
Е	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0.95 BSC			
e1	1.90 BSC			
L1	0.60 REF			
L2	0.20	0.40	0.60	
θ	0°		10°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON83292G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOT23 6-Lead		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)