

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

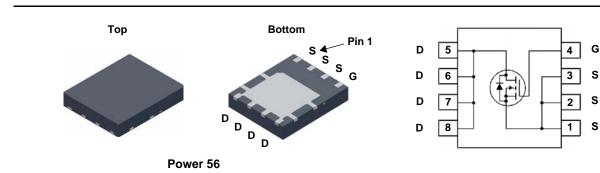
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and ovary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or una

SEMICONDUCTOR®

FDMS7660 N-Channel PowerTrench[®] MOSFET 30 V, 2.8 m Ω

Features


- Max $r_{DS(on)}$ = 2.8 m Ω at V_{GS} = 10 V, I_D = 25 A
- Max $r_{DS(on)}$ = 3.5 m Ω at V_{GS} = 4.5 V, I_D = 19 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery. Provides Schottky-like performance with minimum EMI in sync buck converter applications
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance.

Applications

- IMVP Vcore Switching for Notebook
- VRM Vcore Switching for Desktop and Server
- OringFET / Load Switch
- DC-DC Conversion

MOSFET Maximum Ratings $T_A = 25 \degree C$ unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
ID	Drain Current -Continuous (Package limited)	T _C = 25 °C		42		
	-Continuous (Silicon limited)	T _C = 25 °C		144		
	-Continuous	T _A = 25 °C	(Note 1a)	25	Α	
	-Pulsed			150		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	128	mJ	
P _D	Power Dissipation	T _C = 25 °C		78	w	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Ra	ange		-55 to +150	°C	
Thermal Ch	naracteristics					
$R_{\theta JC}$	Thermal Resistance, Junction to Case			1.6	°C/M	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient		(Note 1a)	50	°C/W	

Package Marking and Ordering Information

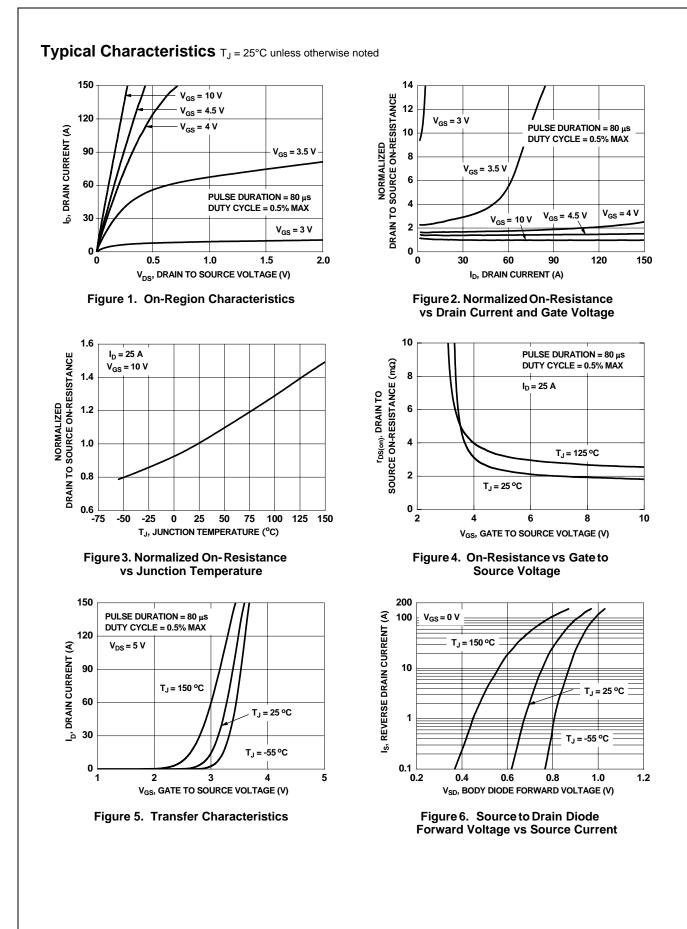
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7660	FDMS7660	Power 56	13 "	12 mm	3000 units

April 2009

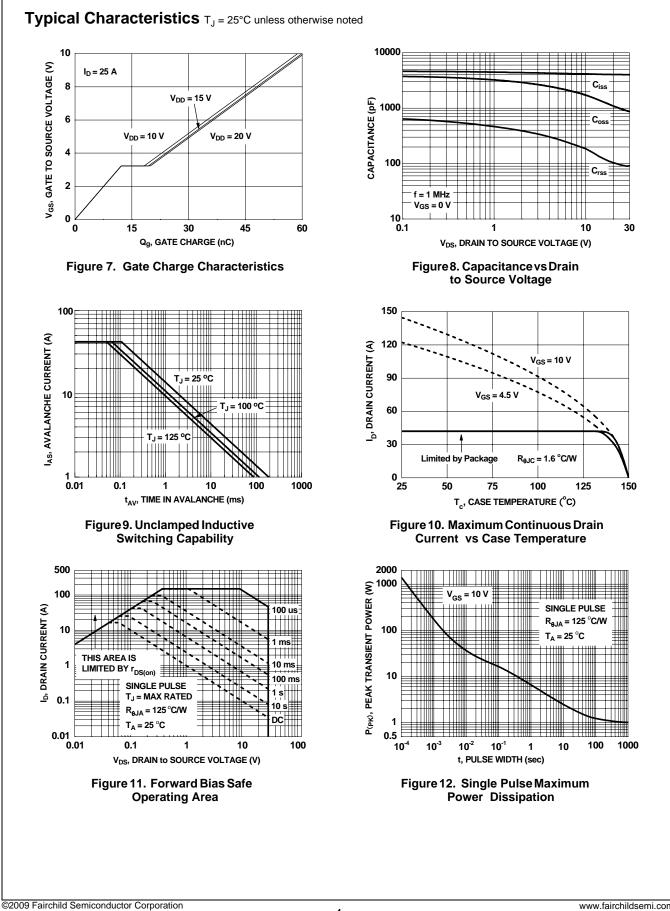
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \ \mu A, V_{GS} = 0 \ V$	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		17		mV/°0
DSS	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
On Chara	octeristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	1.25	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-7		mV/°0
r _{DS(on)}		V _{GS} = 10 V , I _D = 25 A		1.9	2.8	
	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 19 \text{ A}$		2.7	3.5	mΩ
- \ - /		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 25 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$		2.5	3.7	1
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 25 A		250		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			4185	5565	pF
C _{oss}	Output Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V,$		1380	1830	pF
C _{rss}	Reverse Transfer Capacitance	_f = 1 MHz		125	190	pF
- 133				-		1
×	Gate Resistance			0.9	2.0	Ω
Switching t _{d(on)}	g Characteristics Turn-On Delay Time			17	31	ns
Switching t _{d(on)} t _r	g Characteristics Turn-On Delay Time Rise Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25\text{ A},$		17 9	31 18	ns ns
Switching t _{d(on)} t _r	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25\text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{\text{GEN}} = 6 \Omega$		17 9 37	31 18 60	ns ns ns
Switching t _{d(on)} t _r t _{d(off)} t _f	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = 10 \text{ V}, \overline{\text{R}}_{\text{GEN}} = 6 \Omega$		17 9 37 7	31 18 60 13	ns ns ns ns
Switching t _{d(on)} t _r t _{d(off)} t _f Q _g	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10 \text{ V}, $		17 9 37 7 60	31 18 60 13 84	ns ns ns nc
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$		17 9 37 7 60 27	31 18 60 13	ns ns ns nC nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_g Q_{gs}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	$V_{GS} = 10 \text{ V}, \text{R}_{\text{GEN}} = 6 \Omega$ $V_{\text{GS}} = 0 \text{ V to } 10 \text{ V}$		17 9 37 7 60 27 12.3	31 18 60 13 84	ns ns ns nC nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_g Q_{gs} Q_{gd}	g CharacteristicsTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTotal Gate ChargeTotal Gate ChargeGate to Source ChargeGate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$		17 9 37 7 60 27	31 18 60 13 84	ns ns ns nC nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_g Q_{gs} Q_{gd}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	$V_{GS} = 10 \text{ V}, $		17 9 37 7 60 27 12.3 7.2	31 18 60 13 84 38	ns ns ns nC nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_g Q_{gs} Q_{gd}	g CharacteristicsTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTotal Gate ChargeTotal Gate ChargeGate to Source ChargeGate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, $		17 9 37 7 60 27 12.3	31 18 60 13 84	ns ns ns nC nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gg} Q_{gd} Drain-Sou V_{SD}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, $		17 9 37 7 60 27 12.3 7.2	31 18 60 13 84 38 0.95	ns ns ns nC nC nC
Switching t _{d(on)} t _r Q _g Q _g Q _{gs} Q _{gd} Drain-Sou V _{SD} t _{rr}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics Source to Drain Diode Forward Voltage	$V_{GS} = 10 \text{ V}, $		17 9 37 7 60 27 12.3 7.2 0.7 0.8	31 18 60 13 84 38 0.95 1.1	ns ns ns nC nC nC nC v
Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _g Q _{gd} Drain-Sou V _{SD} t _{rr}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time	$V_{GS} = 10 \text{ V}, $		17 9 37 7 60 27 12.3 7.2 0.7 0.8 46	31 18 60 13 84 38 0.95 1.1 74	ns ns ns nC nC nC nC v
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{g} Q_{g} Q_{g} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} t_a	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge	$V_{GS} = 10 \text{ V}, \ \overline{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 15 \text{ V},$ $I_D = 25 \text{ A}$ $V_{GS} = 0 \text{ V}, \ I_S = 2.1 \text{ A} (\text{Note } 2)$ $V_{GS} = 0 \text{ V}, \ I_S = 25 \text{ A} (\text{Note } 2)$		17 9 37 7 60 27 12.3 7.2 0.7 0.8 46 26	31 18 60 13 84 38 0.95 1.1 74	ns ns nC nC nC nC v v
Switching $t_{d(on)}$ t_r t_q Q_g Q_g Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} t_a t_a t_b	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Fall Time	$V_{GS} = 10 \text{ V}, \ \overline{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 15 \text{ V},$ $I_D = 25 \text{ A}$ $V_{GS} = 0 \text{ V}, \ I_S = 2.1 \text{ A} (\text{Note } 2)$ $V_{GS} = 0 \text{ V}, \ I_S = 25 \text{ A} (\text{Note } 2)$		17 9 37 7 60 27 12.3 7.2 0.7 0.8 46 26 19	31 18 60 13 84 38 0.95 1.1 74	ns ns nC nC nC nC v v
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_g Q_{gs} Q_{gd} Drain-Sou	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Fall Time Reverse Recovery Rise Time	$V_{GS} = 10 \text{ V}, \ \overline{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 15 \text{ V},$ $I_D = 25 \text{ A}$ $V_{GS} = 0 \text{ V}, \ I_S = 2.1 \text{ A} (\text{Note } 2)$ $V_{GS} = 0 \text{ V}, \ I_S = 25 \text{ A} (\text{Note } 2)$		17 9 37 7 60 27 12.3 7.2 0.7 0.8 46 26 19 27	31 18 60 13 84 38 0.95 1.1 74	ns ns nC nC nC nC v v

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. E_{AS} of 128 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 16 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 23 A.

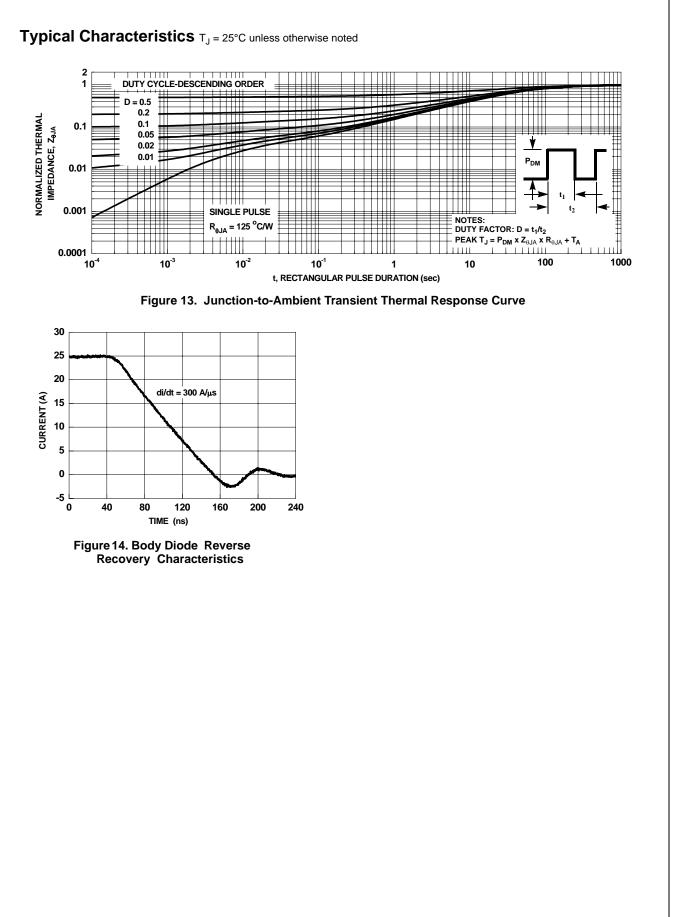

As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.
 ©2009 Fairchild Semiconductor Corporation
 FDMS7660 Rev. D
 2

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

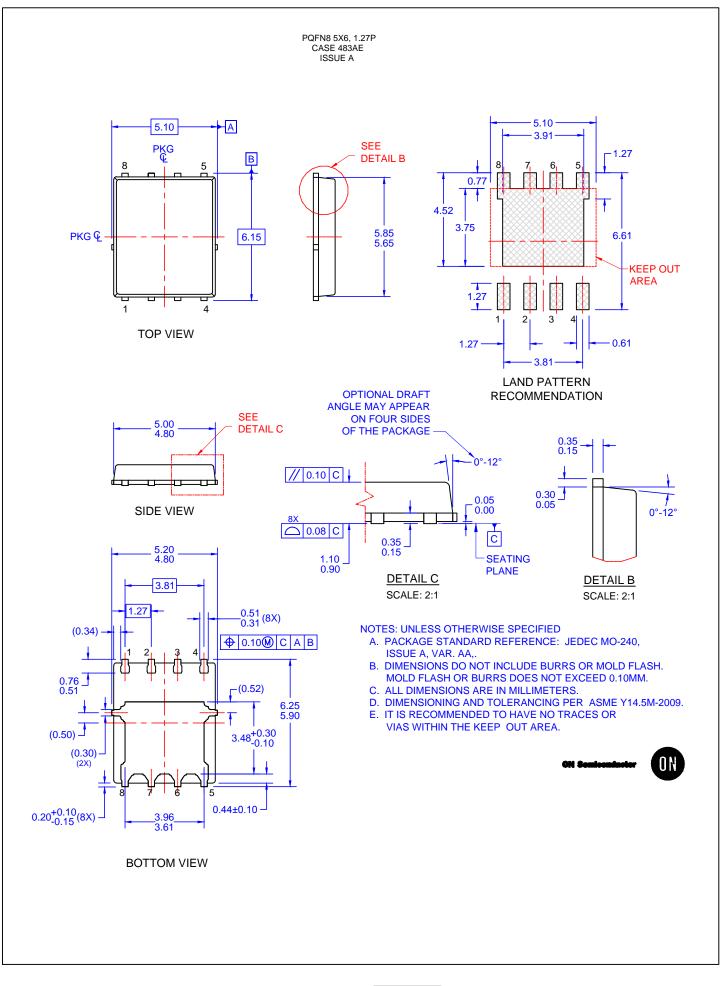

www.fairchildsemi.com

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

00000



©2009 Fairchild Semiconductor Corporation FDMS7660 Rev. D



FDMS7660 Rev. D

www.fairchildsemi.com

FDMS7660 N-Channel PowerTrench® MOSFET

Downloaded From Oneyac.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)