MOSFET – Small Signal, Complementary with ESD Protection, SOT-563

20 V, 540 mA / -430 mA

Features

- Leading Trench Technology for Low RDS(on) Performance
- High Efficiency System Performance
- Low Threshold Voltage
- ESD Protected Gate
- Small Footprint 1.6 x 1.6 mm
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

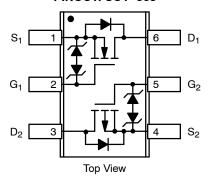
- DC-DC Conversion Circuits
- Load/Power Switching with Level Shift
- Single or Dual Cell Li-Ion Battery Operated Systems
- High Speed Circuits
- Cell Phones, MP3s, Digital Cameras, and PDAs

MAXIMUM RATINGS (T, I = 25°C unless otherwise specified)

Para	Symbol	Value	Unit			
Drain-to-Source Voltag	V_{DSS}	20	V			
Gate-to-Source Voltag	Gate-to-Source Voltage					
N-Channel Continu-	Steady	$T_A = 25^{\circ}C$		540		
ous Drain Current (Note 1)	State	T _A = 85°C		390		
	t ≤ 5 s	$T_A = 25^{\circ}C$		570	A	
P-Channel Continu-	Steady	T _A = 25°C	ID	-430	mA	
ous Drain Current (Note 1)	State $T_A = 85^{\circ}C$		-310			
	t ≤ 5 s	T _A = 25°C		-455		
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	250	mW	
	t ≤ 5 s	·A =	. 0	280		
Pulsed Drain Current	N-Channel	± 10	1	1500	mΛ	
'	P-Channel	t _p = 10 μs	I _{DM}	-750	mA	
Operating Junction and	T _J , T _{STG}	-55 to 150	°C			
Source Current (Body D	I _S	350	mA			
Lead Temperature for S (1/8" from case for 1	TL	260	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max (Note 1)
N 01 1	0.4 Ω @ 4.5 V	
N-Channel 20 V	0.5 Ω @ 2.5 V	540 mA
20 1	0.7 Ω @ 1.8 V	
D 01 1	0.5 Ω @ -4.5 V	
P-Channel -20 V	0.6 Ω @ -2.5 V	–430 mA
	1.0 Ω @ -1.8 V	

PINOUT: SOT-563

TW = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTZD3155CT1G		4000 / Tone 9 Deel
NTZD3155CT2G	SOT-563 (Pb-Free)	4000 / Tape & Reel
NTZD3155CT5G		8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Thermal Resistance Ratings

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	500	°C/W
Junction-to-Ambient - t = 5 s (Note 2)		447	

^{2.} Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	N/P	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N	V _{GS} = 0 V	I _D = 250 μA	20			V
		Р		I _D = -250 μA	-20			
Drain-to-Source Breakdown Voltage Temperature Coefficient	V(_{BR)DSS} /T _J					18		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C			1.0	μΑ
		Р	$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$				-1.0	
		N	V _{GS} = 0 V, V _{DS} = 16 V	T _J = 125°C			2.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} = - 16V				-5.0	
Gate-to-Source Leakage Current	I _{GSS}	Р	V _{DS} = 0 V, V _{GS} =	±4.5 V			±2.0	μΑ
		N					±5.0	
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage	V _{GS(TH)}	N	$V_{GS} = V_{DS}$	I _D = 250 μA	0.45		1.0	V
		Р		I _D = -250 μA	-0.45		-1.0	
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J					-1.9		-mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	N	V _{GS} = 4.5 V, I _D = 540 mA			0.4	0.55	
		Р	$V_{GS} = -4.5V, I_D = -4.5V$	-430 mA		0.5	0.9	
		N	V _{GS} = 2.5 V, I _D = 9	500 mA		0.5	0.7	
		Р	$V_{GS} = -2.5V, I_D = -2.5V$	-300 mA		0.6	1.2	Ω
		N	V _{GS} = 1.8 V, I _D = 3	350 mA		0.7	0.9	
		Р	V _{GS} = -1.8V, I _D = -	-150 mA		1.0	2.0	
Forward Transconductance	9FS	N	$V_{DS} = 10 \text{ V}, I_D = 5$	540 mA		1.0		
		Р	$V_{DS} = -10 \text{ V}, I_{D} = -10 \text{ V}$	-430 mA		1.0		S
CHARGES, CAPACITANCES AND GA	ATE RESISTAN	ICE						
Input Capacitance	C _{ISS}					80	150	
Output Capacitance	C _{OSS}	N	f = 1 MHz, V _{GS} V _{DS} = 16 V	= 0 V /		13	25	
Reverse Transfer Capacitance	C _{RSS}	1	VDS = 10 V			10	20	_
Input Capacitance	C _{ISS}					105	175	pF
Output Capacitance	C _{OSS}	Р	$f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$ $V_{DS} = -16 \text{ V}$			15	30	
Reverse Transfer Capacitance	C _{RSS}	1	100 - 10	-		10	20	

^{3.} Pulse Test: pulse width $\leq\!300~\mu\text{s},$ duty cycle $\leq\!2\%$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

	Symbol	N/P	Test Condition	on	Min	Тур	Max	Unit
CHARGES, CAPACITANCES AND	GATE RESIST	ANCE	1					
Total Gate Charge	Q _{G(TOT)}		N $V_{GS} = 4.5 \text{ V}, V_{DS} = -10 \text{ V}; I_D = 540 \text{ mA}$			1.5	2.5	
Threshold Gate Charge	Q _{G(TH)}	N				0.1		
Gate-to-Source Charge	Q_{GS}	1				0.2		
Gate-to-Drain Charge	Q_{GD}	1				0.35		0
Total Gate Charge	Q _{G(TOT)}					1.7	2.5	nC
Threshold Gate Charge	Q _{G(TH)}	P	V _{GS} = -4.5 V, V _{DS} = 10 V	$V_{GS} = -4.5 \text{ V}, V_{DS} = 10 \text{ V}; I_D = -380 \text{ mA}$		0.1		
Gate-to-Source Charge	Q_{GS}	7				0.3		
Gate-to-Drain Charge	Q_{GD}	1				0.4		
SWITCHING CHARACTERISTICS	(V _{GS} = V) (Not	e 4)						
Turn-On Delay Time	t _{d(ON)}	N	V_{GS} = 4.5 V, V_{DD} = -10 V, I_{D} = 540 mA, R_{G} = 10 Ω			6.0		
Rise Time	t _r					4.0		
Turn-Off Delay Time	t _{d(OFF)}	1				16		
Fall Time	t _f	1				8.0		
Turn-On Delay Time	t _{d(ON)}	Р				10		ns
Rise Time	t _r	1	V _{GS} = -4.5 V, V _{DD} = 10 V,	I _D = -215 mA,		12		
Turn-Off Delay Time	t _{d(OFF)}	1	$R_G = 10 \Omega$			35		
Fall Time	t _f					19		
Drain-Source Diode Characterist	tics							
Forward Diode Voltage	V _{SD}	N	I _S = 350 mA			0.7	1.2	\/
		Р	$V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}$ $I_S = -350 \text{ m}$	$I_{S} = -350 \text{ mA}$		-0.8	-1.2	V
Reverse Recovery Time	t _{RR}	N	$V_{GS} = 0 V$,	I _S = 350 mA		6.5		
		Р	$dIS/dt = 100 A/\mu s$ $I_S = -350 mA$			13		ns

^{4.} Switching characteristics are independent of operating junction temperatures

N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

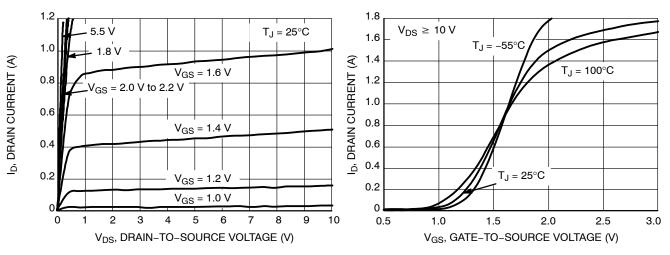


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

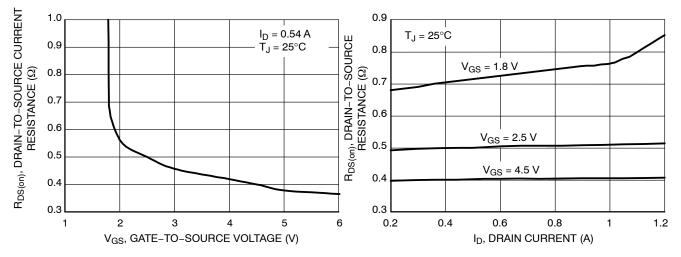


Figure 3. On-Resistance versus Gate-to-Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

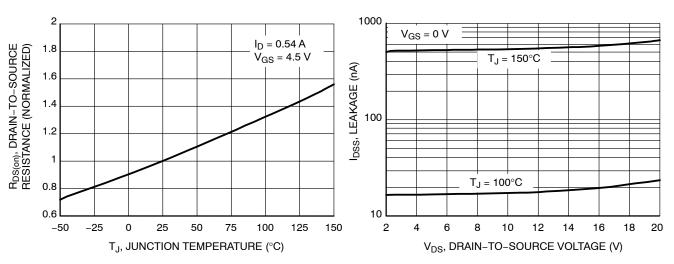


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

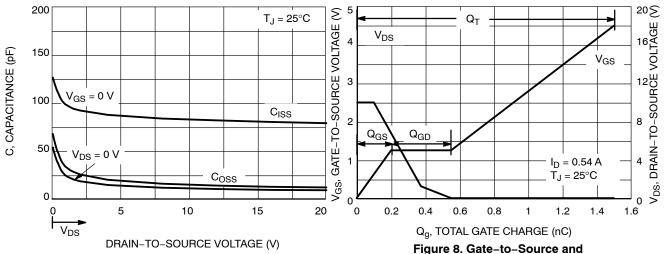


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

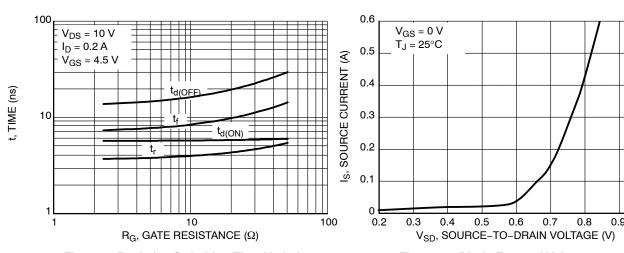


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

P-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

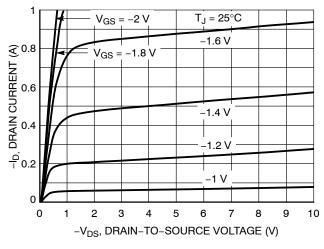


Figure 1. On-Region Characteristics

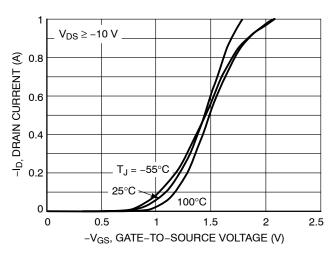


Figure 2. Transfer Characteristics

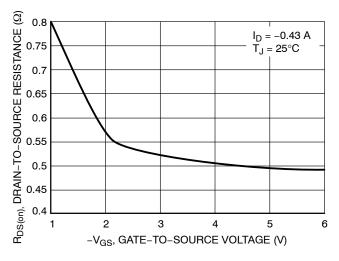


Figure 3. On-Resistance vs. Gate-to-Source Voltage

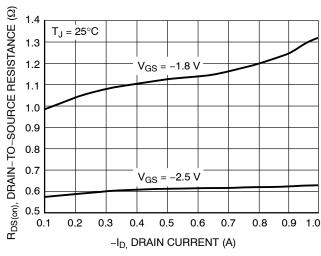


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

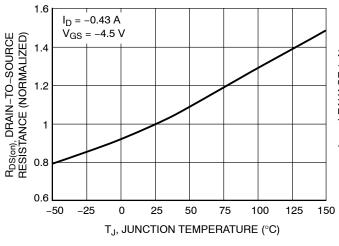


Figure 5. On–Resistance Variation with Temperature

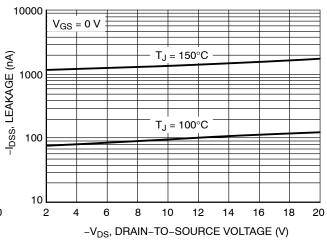


Figure 6. Drain-to-Source Leakage Current vs. Voltage

P-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

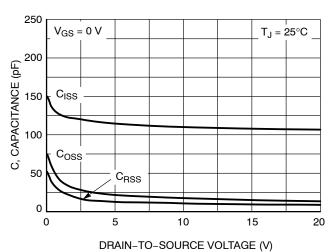


Figure 7. Capacitance Variation

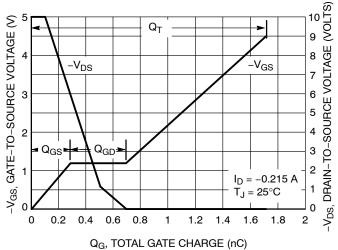


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

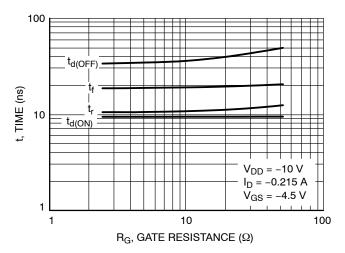


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

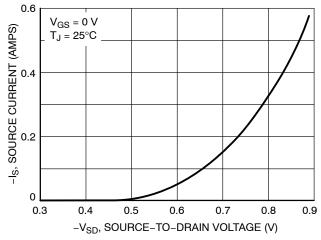
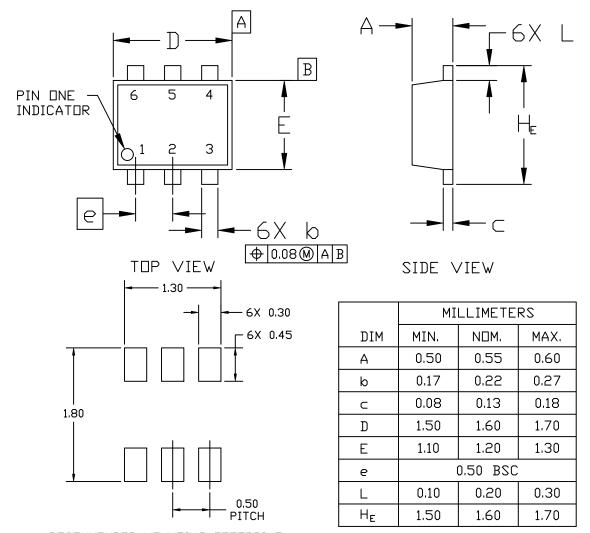


Figure 10. Diode Forward Voltage vs. Current



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT*

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Documen Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-563, 6 LEAD

CASE 463A ISSUE H

DATE 26 JAN 2021

STYLE 1: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 2: PIN 1. EMITTER 1 2. EMITTER 2 3. BASE 2 4. COLLECTOR 2 5. BASE 1 6. COLLECTOR 1	STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 2 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE 1
STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 5: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE 5. CATHODE 6. CATHODE	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
	STYLE 8: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SDURCE 5. DRAIN 6. DRAIN	
STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C 6. ANODE 1	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	

GENERIC MARKING DIAGRAM*

XX = Specific Device CodeM = Month Code= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)