DUSEM

MOSFET – N-Channel, POWERTRENCH[®]

100 V

FDT3612

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

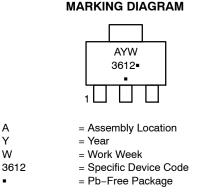
These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable R_{DS(ON)} specifications. The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 3.7 A, 100 V
 - $R_{DS(ON)} = 120 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$
 - $R_{DS(ON)} = 130 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- Fast Switching Speed
- Low Gate Charge (14 nC Typ)
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- High Power and Current Handling Capability in a Widely Used Surface Mount Package.
- This is a Pb-Free Device

Applications

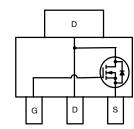
- DC/DC Converter
- Power Management


Symbol	Parameter	Value	Unit	
V _{DSS}	Drain-Source Voltage	100	V	
V _{GSS}	Gate-Source Voltage	±20	V	
Ι _D	Drain Current		А	
	– Continuous (Note 1a)	3.7		
	– Pulsed	20		
PD	Maximum Power Dissipation		W	
	(Note 1a)	3.0		
	(Note 1b)	1.3		
	(Note 1c)	1.1		
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C	

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	120 m Ω @ 10 V	3.7 A
	130 mΩ @ 6 V	



А Y

W

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
FDT3612	SOT-223 (Pb-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS (T_A = 25° C, unless otherwise noted)

Symbol	Parameter	Max	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	42	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	12	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Drain-Source Diode Forward Voltage

V_{SD}

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
RAIN-SOU	RCE AVALANCHE RATINGS (Note 2)	·				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V_{DD} = 50 V, I_D = 3.7 A	-	-	90	mJ
I _{AR}	Drain-Source Avalanche Current		-	-	3.7	Α
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	100	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C	-	106	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	10	μA
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-	-	-100	nA
ON CHARAC	TERISTICS (Note 2)	·				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	2.5	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	-6	-	mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 3.7 A	_	88	120	mΩ
20(01)		$V_{GS} = 6 V, I_D = 3.5 A$	_	94	130	
		V _{GS} = 10 V, I _D = 3.7 A, T _J = 125°C	-	170	245	
I _{D(ON)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 10 V	10	- 1	- 1	Α
9FS	Forward Transconductance	V _{DS} = 10 V, I _D = 3.7 A	-	11	-	S
YNAMIC CH	HARACTERISTICS	·				
C _{iss}	Input Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$	-	632	-	pF
C _{oss}	Output Capacitance	-	-	40	-	pF
C _{rss}	Reverse Transfer Capacitance	_	_	20	-	pF
WITCHING	CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn – On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 1 \text{ A},$	-	8.5	17	ns
t _r	Turn – On Rise Time	V _{GS} = 10 V, R _{GEN} = 6 Ω	-	2	4	ns
t _{d(off)}	Turn – Off Delay Time		-	23	37	ns
t _f	Turn – Off Fall Time		-	4.5	9	ns
Qg	Total Gate Charge	V_{DS} = 50 V, I _D = 3.7 A, V _{GS} = 10 V	-	14	20	nC
Q _{gs}	Gate-Source Charge		-	2.4	-	nC
Q _{gd}	Gate-Drain Charge	<u> </u>	-	3.8	-	nC
RAIN-SOU	RCE DIODE CHARACTERISTICS AND M	AXIMUM RATINGS				
۱ _S	Maximum Continuous Drain-Source Dic	ode Forward Current	-	-	2.5	А
			1	1		1

 V_{GS} = 0 V, I_S = 2.5 A (Note 2) Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

V

1.2

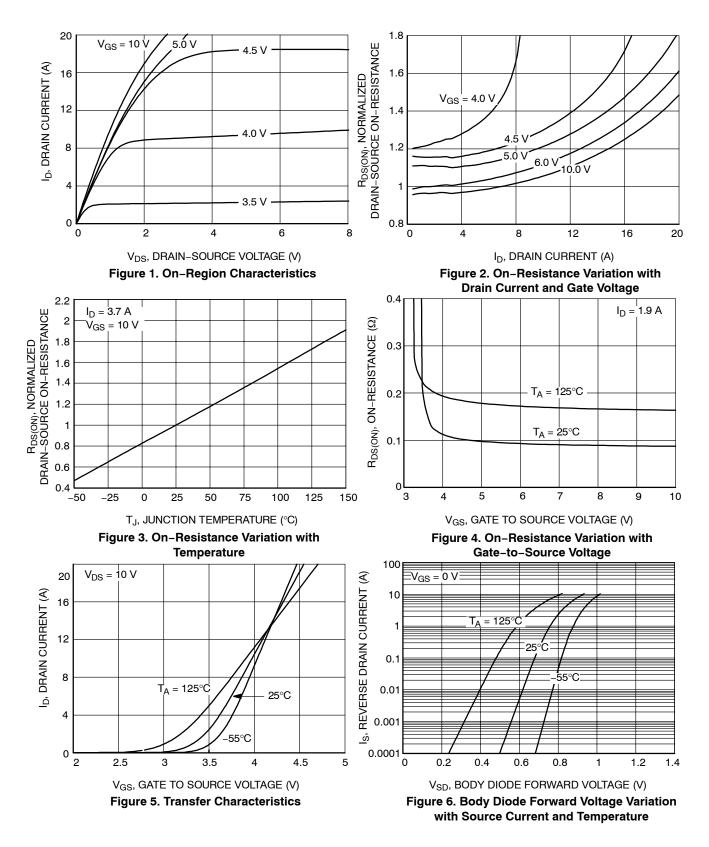
_

0.75

NOTES:

1. $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a. 42°C/W when mounted on a 1 in² pad of 2 oz copper.



b. 95°C/W when mounted on a 0.0066 in² pad of 2 oz copper. c. 110°C/W when mounted on a minimum pad.

Ļ

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%.

TYPICAL CHARACTERISTICS

www.onsemi.com 4

TYPICAL CHARACTERISTICS (continued)

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

POWERTRENCH is a registered trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

<u>www.onsemi.com</u> 5

SOT-223 CASE 318H ISSUE B DATE 13 MAY 2020 A NDTES SCALE 2:1 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS DIMENSIONS D & E1 ARE DETERMINED AT DATUM H. DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS DG GATE BURRS. SHALL NOT EXCEED 0.23mm PER SIDE. LEAD DIMENSIONS & AND &1 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBBAR PROTRUSION IS 0.08mm PER SIDE. DATUMS A AND B ARE DETERMINED AT DATUM H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS & AND &1. DIMENSIONING AND TOLERANCING PER ASME 1. b1 2 з. В 4. 5. 6. 7. b AND b1. MILLIMETERS DIM MIN. NITM. MAX. e ___ ___ 1.80 r Α \oplus 0.10 \otimes C A B 0.02 0.06 0.11 A1 TOP VIEW NDTE 7 0.60 0.74 0.88 b 2.90 3.10 b1 3.00 DETAIL A 0.24 ____ 0.35 С H 6.70 D 6.30 6.50 Е 6.70 7.00 7.30 E1 3.30 3.50 3.70 0.10 C 2.30 BSC e SIDE VIEW FND VIEW L 0.25 ___ i 10° 0° ____ -3.80 2.00 Α1 DETAIL A 8.30 3x= Assembly Location GENERIC A 2.00 **MARKING DIAGRAM*** Y = Year = Work Week w XXXXX = Specific Device Code = Pb-Free Package 5'30 AYW 3x 1.50 (Note: Microdot may be in either location) XXXXX= PITCH *This information is generic. Please refer to RECOMMENDED MOUNTING FOOTPRINT device data sheet for actual part marking. For additional information on our Pb-Free strategy Pb-Free indicator, "G" or microdot "•", may ж and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASH70634A Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-223 PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patient rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specification scan and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)