General Purpose Transistors

NPN Silicon

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

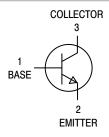
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V_{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ic	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1) @T _A = 25°C Derated above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2) @T _A = 25°C Derated above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction–to–Ambient (Note 2)	$R_{\theta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 × 1.0 Inch Pad


ON Semiconductor®

www.onsemi.com

GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

SOT-416/SC-75 CASE 463 STYLE 1

MARKING DIAGRAM

AM = Device Code

M = Date Code*

- Ph Free Packs

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT3904TT1G	SOT-416 (Pb-Free)	3,000 Tape & Reel
SMMBT3904TT1G	SOT-416 (Pb-Free)	3,000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

^{*}Date Code orientation may vary depending upon manufacturing location.

${\bf MMBT3904TT1G,\,SMMBT3904TT1G}$

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

	Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					1	
Collector – Emitter Breakdo (I _C = 1.0 mAdc, I _B = 0)	V _(BR) CEO	40	-	Vdc		
Collector – Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)			60	-	Vdc	
Emitter – Base Breakdown (I _E = 10 μAdc, I _C = 0)	Voltage	V _{(BR)EBO}	6.0	-	Vdc	
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)			-	50	nAdc	
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)			– 50 nAd		nAdc	
ON CHARACTERISTICS	Note 3)	1		1	1	
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 1$) ($I_C = 1.0 \text{ mAdc}, V_{CE} = 1$) ($I_C = 10 \text{ mAdc}, V_{CE} = 1$) ($I_C = 50 \text{ mAdc}, V_{CE} = 1$) ($I_C = 100 \text{ mAdc}, V_{CE} = 1$)	.0 Vdc) 0 Vdc) 0 Vdc)	h _{FE}	40 70 100 60 30	- 300 - -	_	
	V _{CE(sat)}	<u>-</u> -	0.2 0.3	Vdc		
Base – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)			0.65	0.85 0.95	Vdc	
SMALL-SIGNAL CHARA	CTERISTICS	-		1	1	
Current – Gain – Bandwidtl (I _C = 10 mAdc, V _{CE} = 20	f _T	300	_	MHz		
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f	C _{obo}	-	4.0	pF		
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f	C _{ibo}	-	8.0	pF		
Input Impedance (V _{CE} = 10 Vdc, I _C = 1.0	h _{ie}	1.0	10	kΩ		
Voltage Feedback Ratio (V _{CE} = 10 Vdc, I _C = 1.0	h _{re}	0.5	8.0	X 10 ⁻⁴		
Small – Signal Current Gain (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)			100	400	_	
Output Admittance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)			1.0	40	μmhos	
Noise Figure (V_{CE} = 5.0 Vdc, I_{C} = 100 μ Adc, R_{S} = 1.0 k Ω , f = 1.0 kHz)			-	5.0	dB	
SWITCHING CHARACTE	RISTICS					
Delay Time (V _{CC} : MM	= 3.0 Vdc, V _{BE} = -0.5 Vdc) BT3904TT1G, SMMBT3904TT1G	t _d		35		
	0 mAdc, I _{B1} = 1.0 mAdc) BT3904TT1G, SMMBT3904TT1G	t _r	_	35	- ns	
	= 3.0 Vdc, I _C = 10 mAdc) BT3904TT1G, SMMBT3904TT1G	t _s		200		
Fall Time (I _{B1} = MM	I _{B2} = 1.0 mAdc) BT3904TT1G, SMMBT3904TT1G	t _f	_	50		

^{3.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$.

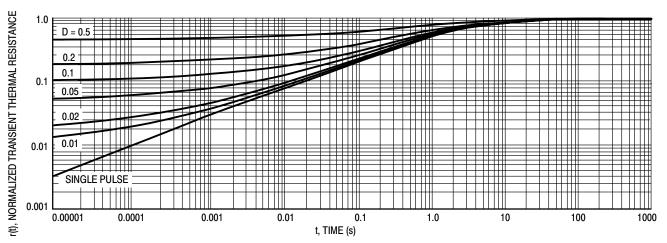
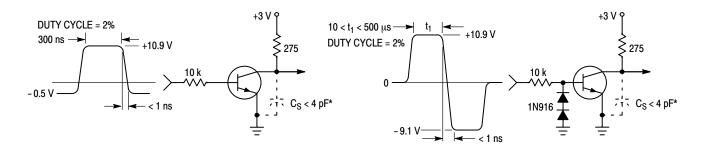



Figure 1. Normalized Thermal Response

* Total shunt capacitance of test jig and connectors

Figure 2. Delay and Rise Time Equivalent Test Circuit

Figure 3. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

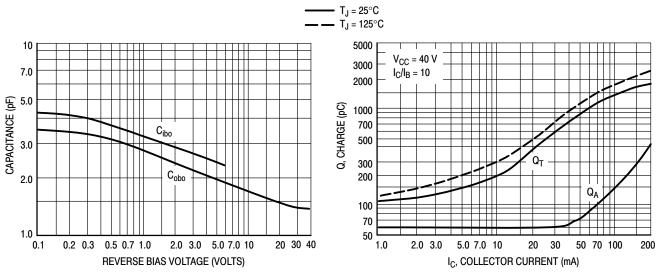
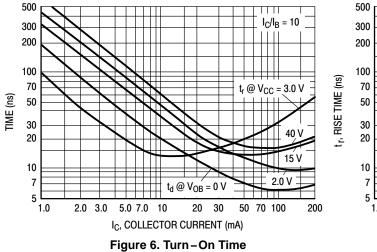



Figure 4. Capacitance

Figure 5. Charge Data

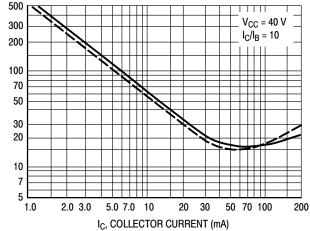
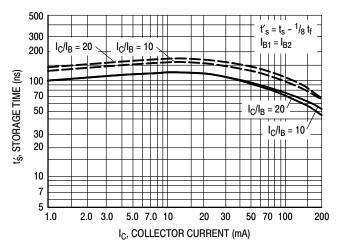



Figure 7. Rise Time

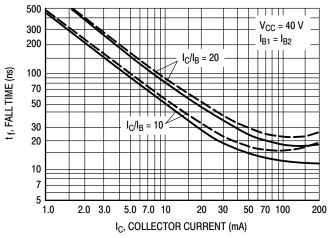
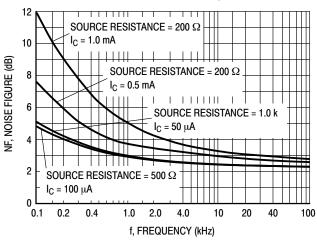



Figure 8. Storage Time

Figure 9. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

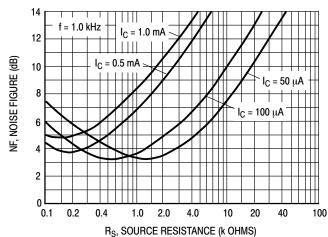
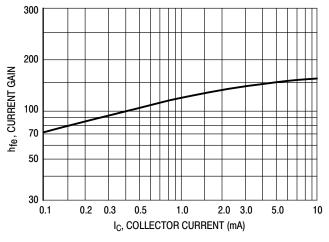



Figure 10. Noise Figure

Figure 11. Noise Figure

h PARAMETERS

 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

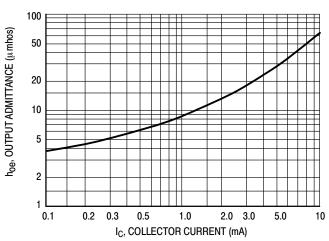
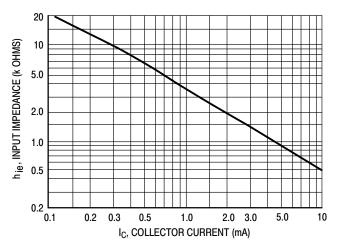



Figure 12. Current Gain

Figure 13. Output Admittance

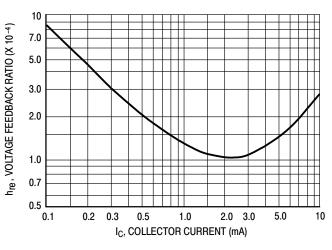


Figure 14. Input Impedance

Figure 15. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

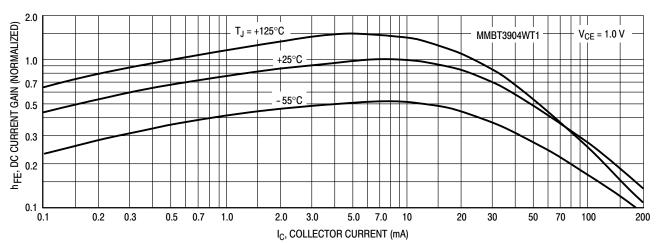


Figure 16. DC Current Gain

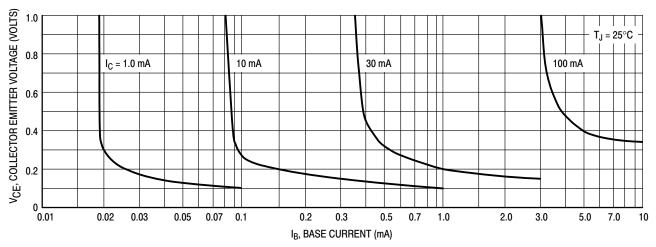


Figure 17. Collector Saturation Region

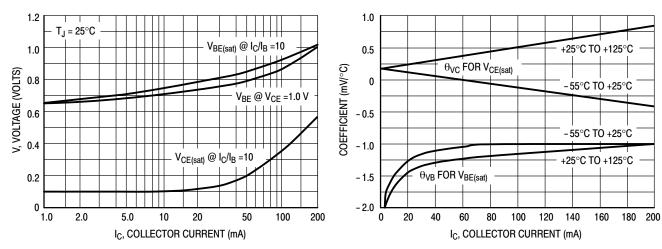
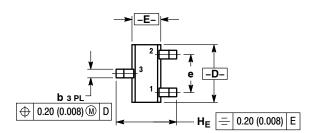
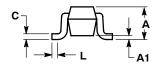


Figure 18. "ON" Voltages


Figure 19. Temperature Coefficients



SC-75/SOT-416 **CASE 463** ISSUE G

DATE 07 AUG 2015

STYLE 1: PIN 1. BASE 2. EMITTER STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. COLLECTOR 3. CATHODE STYLE 4: STYLE 5: PIN 1. CATHODE 2. CATHODE PIN 1. GATE 2. SOURCE

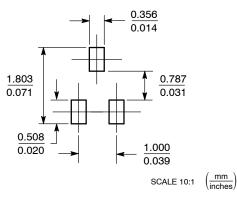
3. DRAIN

GENERIC MARKING DIAGRAM*

3. ANODE

XX = Specific Device Code Μ = Date Code

= Pb-Free Package


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14,5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.061	0.063	0.065
E	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			C	0.04 BSC	
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.060	0.063	0.067

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB15184C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-75/SOT-416		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)