onsemi

Dual Precision Retriggerable/Resettable Monostable Multivibrator

MC14538B

The MC14538B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an accurate output pulse over a wide range of widths, the duration and accuracy of which are determined by the external timing components, C_X and R_X . Output Pulse Width $T = R_X \cdot C_X$ (secs)

$$R_X = \Omega$$

 $C_X = Farads$

Features

- Unlimited Rise and Fall Time Allowed on the A Trigger Input
- Pulse Width Range = $10 \,\mu s$ to $10 \, s$
- Latched Trigger Inputs
- Separate Latched Reset Inputs
- 3.0 Vdc to 18 Vdc Operational Limits
- Triggerable from Positive (A Input) or Negative-Going Edge (B-Input)
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-pin Compatible with MC14528B and CD4528B (CD4098)
- Use the MC54/74HC4538A for Pulse Widths Less Than 10 μs with Supplies Up to 6 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

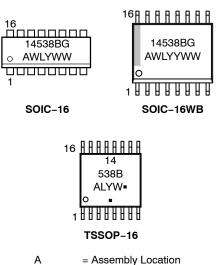
Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Operating Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: –7.0 mW/°C From 65 $^\circ$ C To 125 $^\circ$ C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

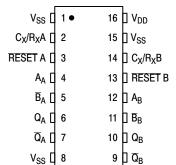
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.


SOIC-16 D SUFFIX CASE 751B

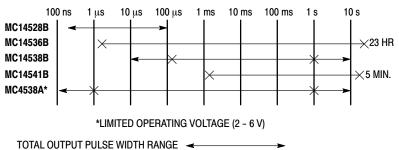
SOIC-16WB DW SUFFIX CASE 751G

TSSOP-16 DT SUFFIX CASE 948F

MARKING DIAGRAMS

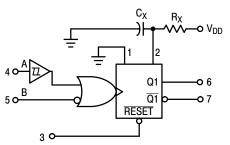


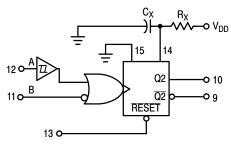
(Note: Microdot may be in either location)

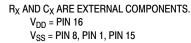

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

PIN ASSIGNMENT




ONE-SHOT SELECTION GUIDE



RECOMMENDED PULSE WIDTH RANGE ×

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14538BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14538BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14538BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC14538BDTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14538BDTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
MC14538BDWG	SOIC-16 WB (Pb-Free)	47 Units / Rail
NLV14538BDWG*	SOIC-16 WB (Pb-Free)	47 Units / Rail
MC14538BDWR2G	SOIC-16 WB (Pb-Free)	1000 Units / Tape & Reel
NLV14538BDWR2G*	SOIC-16 WB (Pb-Free)	1000 Units / Tape & Reel

 \rightarrow

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V	- 5	5°C	25°C			125°C		
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (V_{OH} = 2.5 \ \text{Vdc}) \\ (V_{OH} = 4.6 \ \text{Vdc}) \\ (V_{OH} = 9.5 \ \text{Vdc}) \\ (V_{OH} = 13.5 \ \text{Vdc}) \end{array}$	Source	I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4		mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdo
Input Current, Pin 2 or 14		l _{in}	15	_	±0.05	-	±0.00001	±0.05	_	±0.5	μAdc
Input Current, Other Inputs		l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance, Pin 2 or 1	14	C _{in}	-	-	-	-	25	-	-	-	pF
Input Capacitance, Other Inp (V _{in} = 0)	outs	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package) Q = Low, Q = High		I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Quiescent Current, Active St (Both) (Per Package) $Q = High, \overline{Q} = Low$	ate	I _{DD}	5.0 10 15	- - -	2.0 2.0 2.0	- - -	0.04 0.08 0.13	0.20 0.45 0.70	- - -	2.0 2.0 2.0	mAdo
Total Supply Current at an ex- load capacitance (C_L) and at external timing network (R_X , (Note 3)	t	ŀτ	5.0 10		I _T = (8.0 x I _T = (1.25 where:	x 10 ⁻²) R 5 x 10 ⁻¹) I _T in μΑ (C _X in μF,	$\langle C_X f + 4C_X f - \chi C_X f + 9C_X f + 9C_X f R_X C_X f + 12C one monosta C_L in pF, R_X the input free$	+ 2 x 10 ^{-{} Xf + 3 x 1 ble switch in k ohms	⁵ C _L f 0 ^{–5} C _L f iing only),		μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

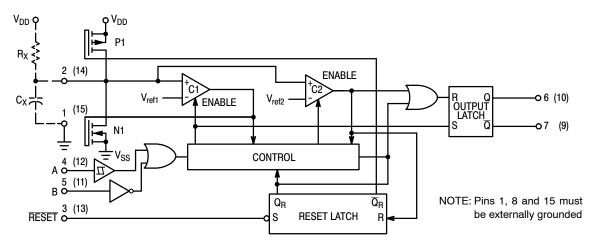
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3. The formulas given are for the typical characteristics only at 25°C.

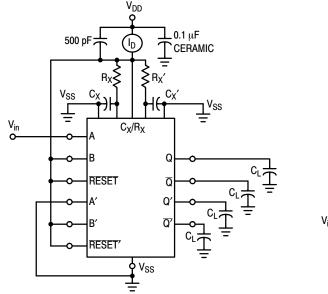
OPERATING CONDITIONS

	5.0		(Note 4)	kΩ
-	0	-	No Limit	μF
	-	- 0	- 0 -	– 0 – No Limit (Note 5)

4. The maximum usable resistance R_X is a function of the leakage of the capacitor C_X , leakage of the MC14538B, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for $R_X > 1 M\Omega$.


5. If $C_X > 15 \,\mu\text{F}$, use discharge protection diode per Fig. 11.

SWITCHING CHARACTERISTICS (Note 6) (CL = 50 pF, TA = 25° C)


		v				
Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 7)	Max	Unit
Output Rise Time	t _{TLH}					ns
t _{TLH} = (1.35 ns/pF) C _L + 33 ns		5.0	-	100	200	
t _{TLH} = (0.60 ns/pF) C _L + 20 ns		10	-	50	100	
t _{TLH} = (0.40 ns/pF) C _L + 20 ns		15	-	40	80	
Output Fall Time	t _{THL}					ns
t _{THL} = (1.35 ns/pF) C _L + 33 ns		5.0	-	100	200	
$t_{THL} = (0.60 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns}$		10	-	50	100	
t _{THL} = (0.40 ns/pF) C _L + 20 ns		15	-	40	80	
Propagation Delay Time A or B to Q or Q	t _{PLH} , t _{PHL}					ns
t _{PLH} , t _{PHL} = (0.90 ns/pF) C _L + 255 ns	1112	5.0	_	300	600	
t_{PLH} , $t_{PHL} = (0.36 \text{ ns/pF}) \text{ C}_{L} + 132 \text{ ns}$		10	-	150	300	
t_{PLH} , t_{PHL} = (0.26 ns/pF) C_L + 87 ns		15	-	100	220	
Reset to Q or \overline{Q}						ns
t _{PLH} , t _{PHL} = (0.90 ns/pF) C _L + 205 ns		5.0	-	250	500	
t _{PLH} , t _{PHL} = (0.36 ns/pF) C _L + 107 ns		10	-	125	250	
t _{PLH} , t _{PHL} = (0.26 ns/pF) C _L + 82 ns		15	-	95	190	
Input Rise and Fall Times	t _r , t _f	5	-	_	15	μs
Reset		10	-	-	5	
		15	-	-	4	
B Input		5	-	300	1.0	ms
		10	-	1.2	0.1	
		15	-	0.4	0.05	
A Input		5				-
		10		No Limit		
		15				
Input Pulse Width	t _{WH} ,	5.0	170	85	-	ns
A, B, or Reset	t _{WL}	10	90	45	-	
		15	80	40	-	
Retrigger Time	t _{rr}	5.0	0	-	-	ns
		10	0	-	-	
		15	0	-	I	
Output Pulse Width — Q or \overline{Q} Refer to Figures 8 and 9	Т					μs
$C_{\rm X} = 0.002 \ \mu \text{F}, \ \text{R}_{\rm X} = 100 \ \text{k}\Omega$		5.0	198	210	230	
		10	200	212	232	
		15	202	214	234	
C_X = 0.1 μ F, R_X = 100 k Ω		5.0	9.3	9.86	10.5	ms
		10	9.4	10	10.6	
		15	9.5	10.14	10.7	
C _X = 10 μF, R _X = 100 kΩ		5.0	0.91	0.965	1.03	s
		10	0.92	0.98	1.04	
		15	0.93	0.99	1.06	
Pulse Width Match between circuits in	100	5.0	-	±1.0	±5.0	%
the same package.	$[(T_1 - T_2)/T_1]$	10	-	±1.0	±5.0	
$C_X = 0.1 \ \mu F, R_X = 100 \ k\Omega$		15	-	±1.0	±5.0	

6. The formulas given are for the typical characteristics only at 25°C.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

www.onsemi.com 4

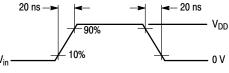


Figure 2. Power Dissipation Test Circuit and Waveforms

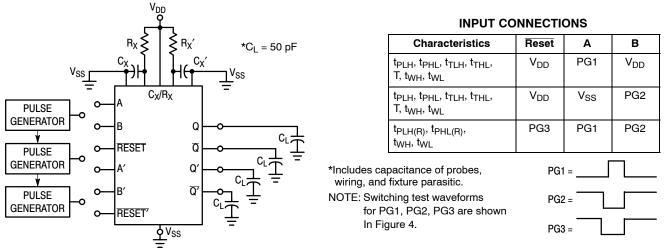


Figure 3. Switching Test Circuit

www.onsemi.com 5

Downloaded From Oneyac.com

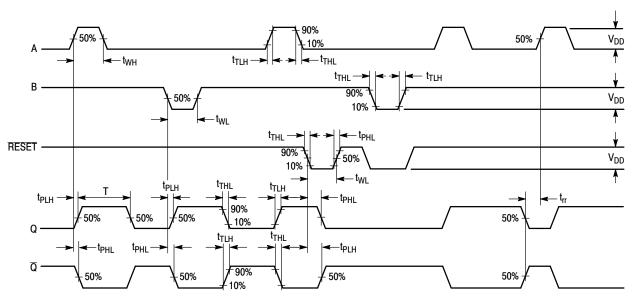
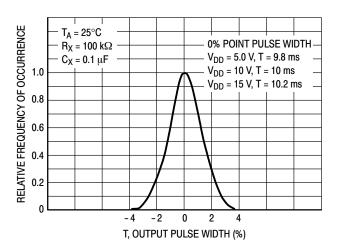



Figure 4. Switching Test Waveforms

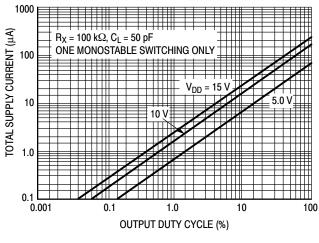


Figure 7. Typical Total Supply Current versus Output Duty Cycle

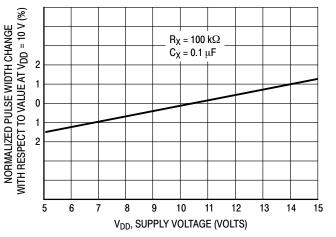


Figure 6. Typical Pulse Width Variation as a Function of Supply Voltage V_{DD}

FUNCTION TABLE

	Inputs	Out	puts		
Reset	Α	В	Q	Q	
H	ے۔	H √	Г.	U	
H	L		Г	U	
H	ノ へ	ר	Not Triggered		
H	H	ר ר	Not Triggered		
H	L, H, ~	Н		ggered	
H	L	L, H, <i>-</i> / ⁻		ggered	
	X	X	L	H	
	X	X	Not Tri	ggered	

www.onsemi.com 6

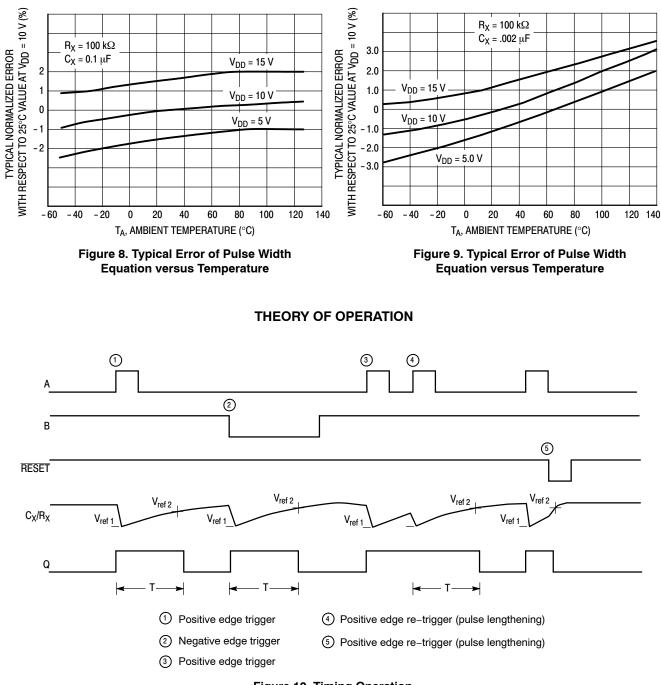


Figure 10. Timing Operation

www.onsemi.com 7

TRIGGER OPERATION

The block diagram of the MC14538B is shown in Figure 1, with circuit operation following.

As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor C_X completely charged to V_{DD} . When the trigger input A goes from V_{SS} to V_{DD} (while inputs B and Reset are held to V_{DD}) a valid trigger is recognized, which turns on comparator C1 and N-channel transistor N1 1. At the same time the output latch is set. With transistor N1 on, the capacitor CX rapidly discharges toward V_{SS} until V_{ref1} is reached. At this point the output of comparator C1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor C_X begins to charge through the timing resistor, R_X , toward V_{DD} . When the voltage across C_X equals $V_{ref 2}$, comparator C2 changes state, causing the output latch to reset (Q goes low) while at the same time disabling comparator C2 2. This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

In the quiescent state, C_X is fully charged to V_{DD} causing the current through resistor R_X to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the MC14538B is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of C_X , R_X , or the duty cycle of the input waveform.

RETRIGGER OPERATION

The MC14538B is retriggered if a valid trigger occurs ③ followed by another valid trigger ④ before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $V_{ref 1}$, but has not yet reached $V_{ref 2}$, will cause an increase in output pulse width T. When a valid retrigger is initiated ④, the voltage at C_X/R_X will again drop to $V_{ref 1}$ before progressing along the RC charging curve toward V_{DD} . The Q output will remain high until time T, after the last valid retrigger.

RESET OPERATION

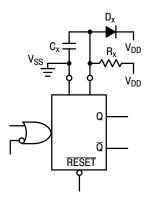
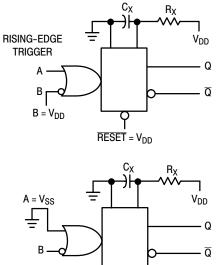
The MC14538B may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse

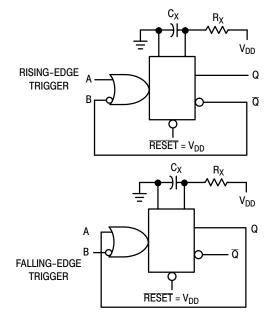
on Reset sets the reset latch and causes the capacitor to be fast charged to V_{DD} by turning on transistor P1 (5). When the voltage on the capacitor reaches $V_{ref 2}$, the reset latch will clear, and will then be ready to accept another pulse. It the Reset input is held low, any trigger inputs that occur will be inhibited and the Q and \overline{Q} outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Reset input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

POWER-DOWN CONSIDERATIONS

Large capacitance values can cause problems due to the large amount of energy stored. When a system containing the MC14538B is powered down, the capacitor voltage may discharge from V_{DD} through the standard protection diodes at pin 2 or 14. Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the V_{DD} supply must not be faster than (V_{DD}) . (C)/(10 mA). For example, if $V_{DD} = 10$ V and $C_X = 10 \,\mu\text{F}$, the V_{DD} supply should discharge no faster than $(10 \text{ V}) \times (10 \,\mu\text{F})/(10 \text{ mA}) = 10$ ms. This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate.

When a more rapid decrease of V_{DD} to zero volts occurs, the MC14538B can sustain damage. To avoid this possibility use an external clamping diode, D_X , connected as shown in Fig. 11.


Figure 11. Use of a Diode to Limit Power Down Current Surge

TYPICAL APPLICATIONS

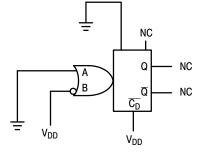
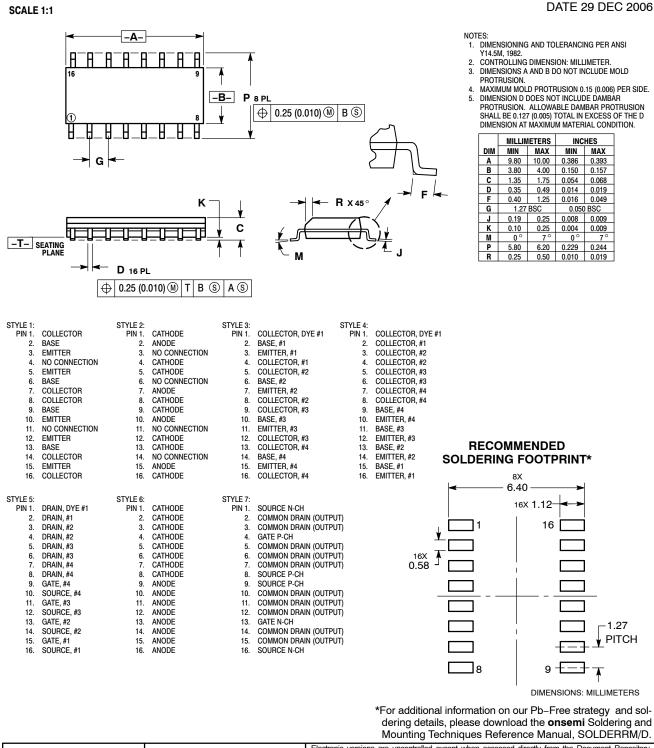



Figure 14. Connection of Unused Sections

ONSEMI

SOIC-16 CASE 751B-05 ISSUE K

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED "		
DESCRIPTION:	SOIC-16	-	PAGE 1 OF 1	

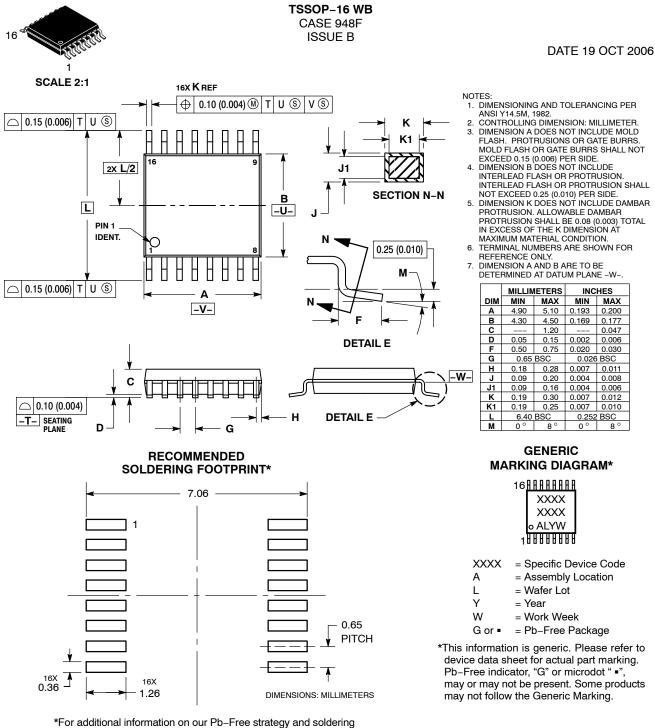
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

© Semiconductor Components Industries, LLC, 2019

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOIC-16 WB CASE 751G ISSUE E DATE 08 OCT 2021 SCALE 1:1 NOTES A DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 1. CONTROLLING DIMENSION: MILLIMETERS 2. 16 🗢 0.25@ B@ В з. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. <u>A A A A</u> RRRR ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 4. MAXIMUM MOLD PROTRUSION OR FLASH TO BE 0.15 PER SIDE. 5. MILLIMETERS DIM MIN. MAX. H Н Α 2.35 2.65 h 8 45 0.25 A1 0.10 -16X B e DETAIL A в 0.35 0.49 0.2500 TAS BS END VIEW С 0.23 0.32 TOP VIEW D 10.15 10.45 7.40 7.60 Е 1.27 BSC e 16X н 10.05 10.55 -L h 0.53 REF SEATIN **A1** 0.90 L 0.50 SIDE VIEW М 0* 7* DETAIL A 2X SCALE 0000|0000 GENERIC 11.00 **MARKING DIAGRAM*** 1 16X 1.62 XXXXXXXXXXXX PITCH XXXXXXXXXXXX RECOMMENDED AWLYYWWG MOUNTING FOOTPRINT H H Η 1 H Н XXXXX = Specific Device Code = Assembly Location А WL = Wafer Lot YY = Year ww = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98ASB42567B Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.							
DESCRIPTION:	SOIC-16 WB		PAGE 1 OF 1					
the right to make changes without furth purpose, nor does onsemi assume ar	onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.							


Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may

not follow the Generic Marking.

DUSEM

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

 DOCUMENT NUMBER:
 98ASH70247A
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 TSSOP-16
 PAGE 1 OF 1

 onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)