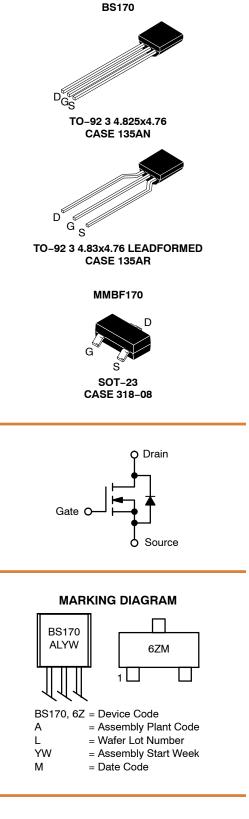
onsemi

Field Effect Transistor -N-Channel, Enhancement Mode


BS170, MMBF170

General Description

These N-Channel enhancement mode field effect transistors are produced using **onsemi**'s proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 500 mA DC. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- High Density Cell Design for Low R_{DS(ON)}
- Voltage Controlled Small Signal Switch
- Rugged and Reliable
- High Saturation Current Capability
- These are Pb-Free Devices

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Downloaded From Oneyac.com

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Para	neter	BS170	MMBF170	Unit
V _{DSS}	Drain-Source Voltage		60		V
V _{DGR}	Drain-Gate Voltage ($R_{GS} \le 1 M\Omega$)		60		V
V _{GSS}	Gate-Source Voltage		±20		V
I _D	Drain Current	– Continuous	500	500	mA
		- Pulsed	1200	800	
T _J , T _{STG}	Operating and Storage Temperature Range		– 55 to 150		°C
ΤL	Maximum Lead Temperature for So for 10 Seconds	Idering Purposes, 1/16" from Case	300		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	BS170	MMBF170	Unit
PD	Maximum Power Dissipation Derate above 25°C	830 6.6	300 2.4	mW mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	150	417	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit
OFF CHA	RACTERISTICS	•					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 100 μ A	All	60	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	All	-	-	0.5	μΑ
I _{GSSF}	Gate – Body Leakage, Forward	V_{GS} = 15 V, V_{DS} = 0 V	All	-	-	10	nA
ON CHAR	ACTERISTICS (Note 1)	•					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	All	0.8	2.1	3	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 200 mA	All	-	1.2	5	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 200 mA	BS170	-	320	-	mS
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	MMBF170	-	320	-	
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$	All	-	24	40	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	All	-	17	30	pF
C _{rss}	Reverse Transfer Capacitance		All	-	7	10	pF
SWITCHIN	IG CHARACTERISTICS (Note 1)						
t _{on}	Turn-On Time	V_{DD} = 25 V, I_D = 200 mA, V_{GS} = 10 V, R_{GEN} = 25 Ω	BS170	-	-	10	ns
		$\begin{array}{l} V_{DD} = 25 \text{ V}, \ I_{D} = 500 \text{ mA}, \\ V_{GS} = 10 \text{ V}, \ R_{GEN} = 50 \ \Omega \end{array}$	MMBF170	-	_	10	
t _{off}	Turn–Off Time	V_{DD} = 25 V, I_D = 200 mA, V_{GS} = 10 V, R_{GEN} = 25 Ω	BS170	-	-	10	ns
		V_{DD} = 25 V, I_D = 500 mA, V_{GS} = 10 V, R_{GEN} = 50 Ω	MMBF170	-	-	10	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL ELECTRICAL CHARACTERISTICS

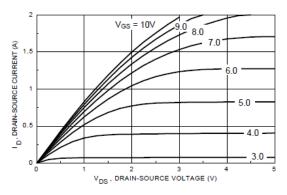


Figure 1. On-Region Characteristics

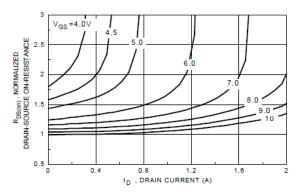
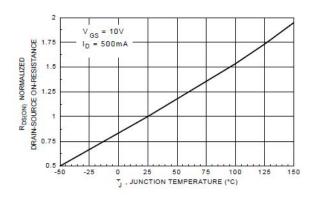
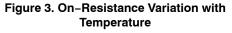




Figure 2. On–Resistance Variation with Gate Voltage and Drain Current

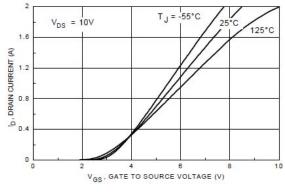


Figure 5. Transfer Characteristics

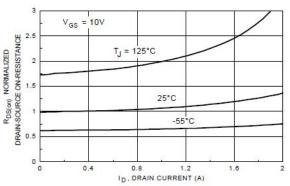


Figure 4. On–Resistance Variation with Drain Current and Temperature

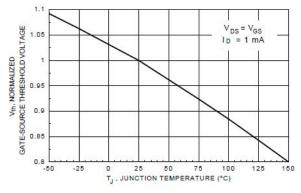


Figure 6. Gate Threshold Variation with Temperature

TYPICAL ELECTRICAL CHARACTERISTICS (continued)

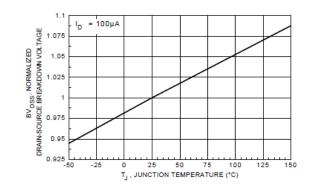


Figure 7. Breakdown Voltage Variation with Temperature

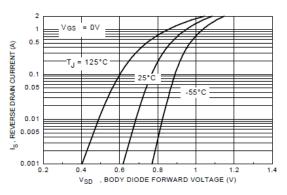


Figure 8. Body Diode Forward Voltage Variation with Current and Temperature

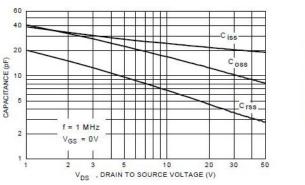


Figure 9. Capacitance Characteristics

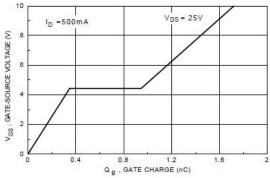


Figure 10. Gate Charge Characteristics

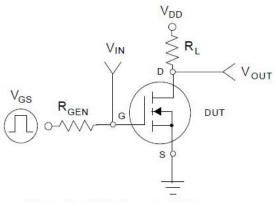


Figure 11. Switching Test Circuit

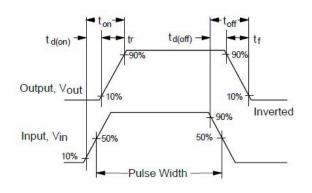


Figure 12. Switching Waveforms

TYPICAL ELECTRICAL CHARACTERISTICS (continued)

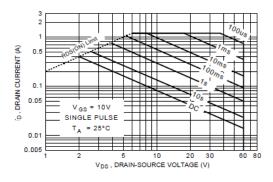


Figure 13. BS170 Maximum Safe Operating Area

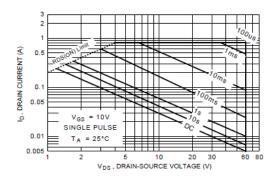


Figure 14. MMBF170 Maximum Safe Operating Area

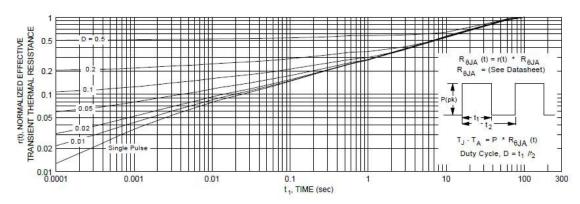


Figure 15. TO-92, BS170 Transient Thermal Response Curve

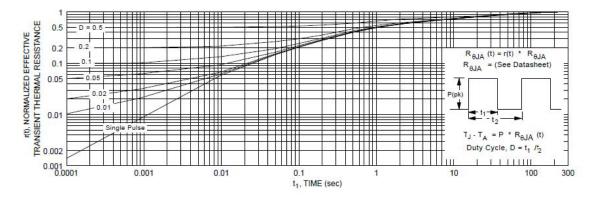
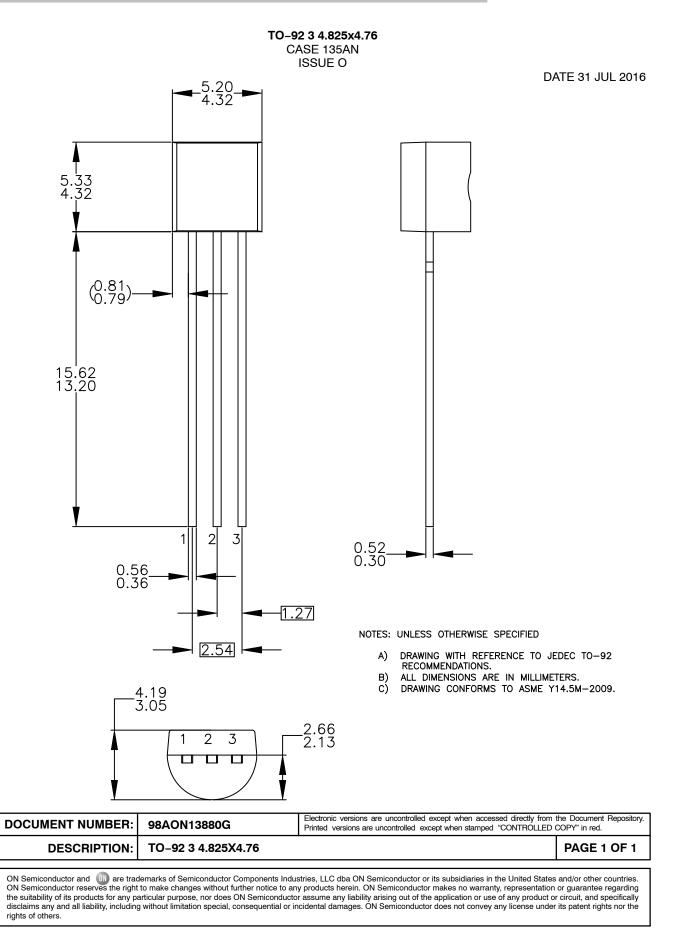
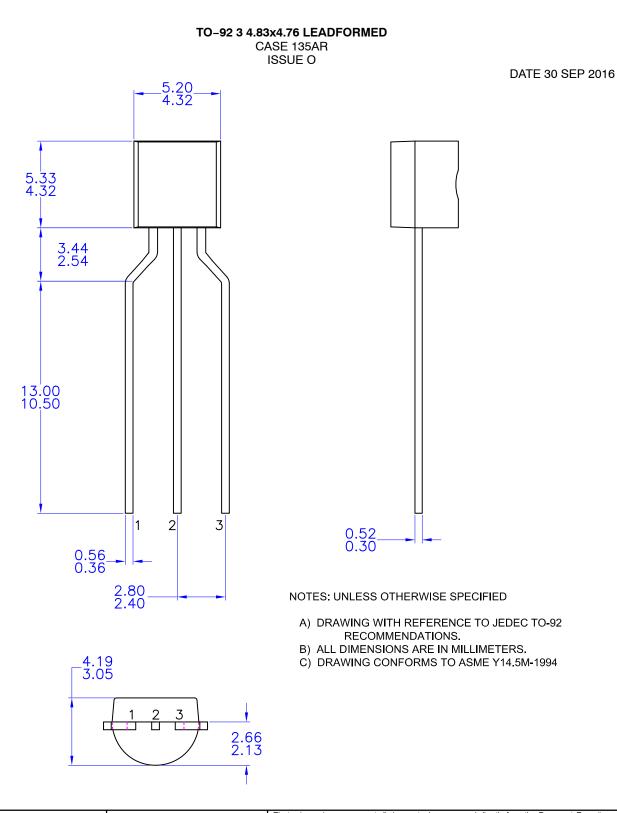


Figure 16. SOT-23, MMBF170 Transient Thermal Response Curve

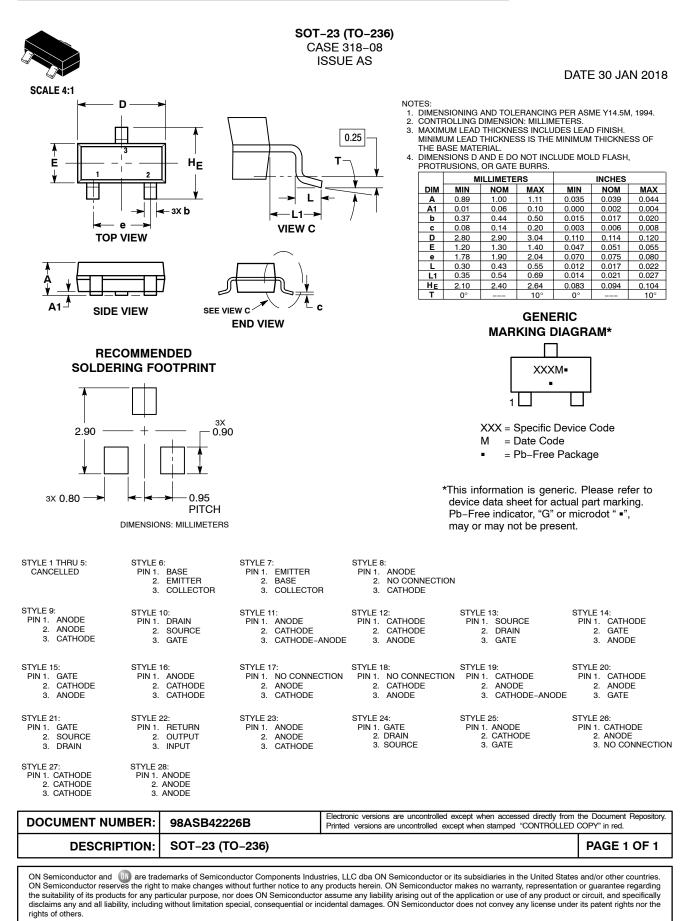


ORDERING INFORMATION

Part Number	Package	Lead Frame	Pin Array	Shipping [†]
BS170	TO–92 (Pb–Free)	Straight	DGS	10000 Units / Bulk
BS170-D26Z	TO–92 (Pb–Free)	Forming	DGS	2000 / Tape & Reel
BS170-D27Z	TO-92 (Pb-Free)	Forming	DGS	2000 / Tape & Reel
BS170-D74Z	TO–92 (Pb–Free)	Forming	DGS	2000 / Ammo
BS170-D75Z	TO–92 (Pb–Free)	Forming	DGS	2000 / Ammo
MMBF170	SOT-23 (Pb-Free)			3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2019



DOCUMENT NUMBER:	98AON13879G	AON13879G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	N: TO-92 3 4.83X4.76 LEADFORMED					
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi</u>.com/site/pdi/Patent-Marking.pdf. onsemi</u> reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)