FAIRCHILD

SEMICONDUCTOR

NC7SZ175 TinyLogic® UHS D-Type Flip-Flop with Asynchronous Clear

General Description

The NC7SZ175 is a single positive edge-triggered D-type CMOS Flip-Flop with Asynchronous Clear from Fairchild's Ultra High Speed Series of TinyLogic® in the space saving SC70 6-lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and output are high impedance when V_{CC} operating voltage. This single flip-flop will store the state of the D input that meets the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. A LOW input to Clear sets the Q output to LOW level. The Clear input is independent of clock.

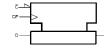
Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- \blacksquare Ultra High Speed; t_{PD} 2.6 ns Typ into 50 pF at 5V $\rm V_{CC}$
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V $\rm V_{CC}$
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Proprietary noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ175P6X	MAA06A	Z75	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ175L6X	MAC06A	C4	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

NC7SZ175 TinyLogic
UHS D-Type Flip-Flop with Asynchronous Clear

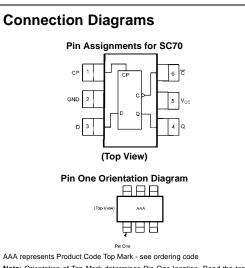

 $\label{eq:transformation} TinyLogic \circledast is a registered trademark of Fairchild Semiconductor Corporation. MicroPak^{TM} is a trademark of Fairchild Semiconductor Corporation.$

© 2004 Fairchild Semiconductor Corporation DS500158

www.fairchildsemi.com

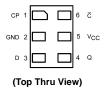
NC7SZ175

Logic Symbol IEEE/IEC


Function Table

		Inputs		Output
	СР	D	C	Q
	~	L	Н	L
	~	Н	Н	Н
	~	Х	н	Qn
	Х	Х	L	L
lIG	I Logic Level	Qn = No ch	ange in data	

H = HIGH Logic Leve L = LOW Logic Level X = Immaterial


Pin Descriptions

Pin Names	Description
D	Data Input
CP	Clock Pulse Input
C	Clear Input
Q	Flip-Flop Output

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

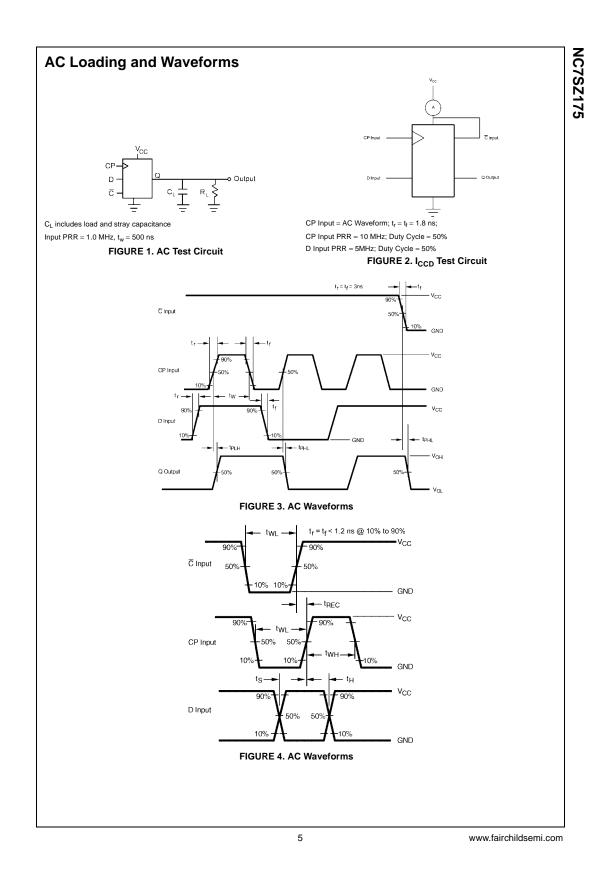
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (VIN)	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
V _{IN} < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < 0V	–50 mA
DC Output (I _{OUT}) Source/Sink Current	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @+85°C	180 mW

Recommended Operating Conditions (Note 2) Power Supply 1.65V to 5.5V Operating (V_{CC}) 1.5V to 5.5V Data Retention Input Voltage (V_{IN}) 0V to 5.5V Output Voltage (V_{OUT}) 0V to V_{CC} Input Rise and Fall Time (t_r, t_f) V_{CC} = 1.8V, 2.5V \pm 0.2V 0 to 20 ns/V $V_{CC}=3.3V\pm0.3V$ 0 to 10 ns/V $V_{CC}=5.5V\pm0.5V$ 0 to 5 ns/V Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$ Thermal Resistance (θ_{JA}) 350° C/W Note 1: The "Absolute Maximum Ratings": are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions

NC7SZ175

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

for actual device operation.

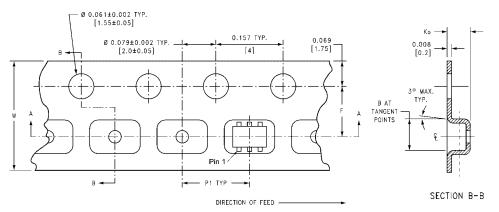

DC Electrical Characteristics

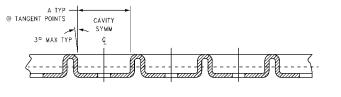
Symbol	Parameter	V _{cc}	V_{CC} $T_A = +25^{\circ}C$		$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$		Unit	Conditions		
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	onit	Conditions	
VIH	HIGH Level Control	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		v		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level Control	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	v		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2				$I_{OH}=-100\;\mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4		v	$V_{IN} = V_{IH}$	
		1.65	1.24	1.52		1.29		v	or V _{IL}	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.8		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.2		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Control	1.65		0.0	0.1		0.1			
	Output Voltage	1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1			$I_{OL}=100~\mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1	v	$V_{IN}=V_{IL}$	
		1.65		0.08	0.24		0.24	v	or V _{IH}	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			I _{OL} = 32 mA
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μA	$0 \le V_{IN} \le 8$	5.5V
I _{OFF}	Power Off Leakage Current	0.0			1.0		10	μΑ	V _{IN} or V _{OL}	_{JT} = 5.5V
Icc	Quiescent Supply Current	1.65 to 5.5			1.0		10.0	μA	$V_{IN} = 5.5V$, GND

www.fairchildsemi.com

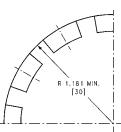
		V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				Figure	
Symbol	Paramete	er (V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
f _{MAX}	Maximum Clock	1.65				100				
	Frequency	1.8				100				
		2.5 ± 0.2				125		MHz	C _L = 50 pF	Figure 1, 4
		3.3 ± 0.3				150			$R_L = 500 \ \Omega$	1, 4
		5.0 ± 0.5				175				
t _{PLH} Propa	Propagation Del	ay 1.65	2.5	9.8	15.0	2.5	16.5			
t _{PHL} CF	CP to Q	1.8	2.5	6.5	10.0	2.5	11.0			
		2.5 ± 0.2	2.0	3.8	6.5	2.0	7.0		$C_L = 15 \text{ pF}$	Figure 1, 3
		3.3 ± 0.3	1.5	2.8	4.5	1.4	5.0	ns	$R_L = 1 M\Omega$., 0
		5.0 ± 0.5	1.0	2.2	3.5	1.0	3.8			
		3.3 ± 0.3	2.0	3.4	5.5	1.6	6.2		$C_L = 50 \text{ pF}$	Figure
		5.0 ± 0.5	1.5	2.6	4.0	1.4	4.7		$R_L = 500 \ \Omega$	1, 3
t _{PHL}	Propagation Del	ay 1.65	2.5	9.8	13.5	2.5	15.0			
	C to Q	1.8	2.5	6.5	9.0	2.5	10.0			
		2.5 ± 0.2	2.0	3.8	6.0	2.0	6.4		$C_L = 15 \text{ pF}$	Figure 1, 3
		3.3 ± 0.3	1.5	2.8	4.3	1.2	4.6	ns	$R_L = 1 M\Omega$., 0
		5.0 ± 0.5	1.5	2.2	3.2	1.0	3.5			
		3.3 ± 0.3	1.5	3.4	5.3	1.5	5.8		$C_L = 50 \text{ pF}$	Figure
		5.0 ± 0.5	1.0	2.7	4.0	1.2	4.5		$R_L = 500 \ \Omega$	1, 3
t _S	Setup Time	2.5 ± 0.2				2.5			C _L = 50 pF	
	CP to D	3.3 ± 0.3				2.0		ns	$R_L = 500 \ \Omega$	Figure 1, 4
		5.0 ± 0.5				1.5				.,.
t _H	Hold Time,	2.5 ± 0.2				1.5			C _L = 50 pF	F 1
	CP to D	3.3 ± 0.3				1.5		ns	$R_L = 500 \ \Omega$	Figure 1, 4
		5.0 ± 0.5				1.5				
t _W	Pulse Width, CP	2.5 ± 0.2				3.0			C _L = 50 pF	Figure
		3.3 ± 0.3				2.8		ns	$R_L = 500 \ \Omega$	Figure 1, 4
		5.0 ± 0.5				2.5				
	Pulse Width, C	2.5 ± 0.2				3.0			Clock HIGH or LOW	
		3.3 ± 0.3				2.8		ns	C _L = 50 pF	Figure 1, 4
		5.0 ± 0.5				2.5			$R_L = 500 \Omega$	1, 4
t _{rec}	Recovery Time,	2.5 ± 0.2				1.0			C _L = 50 pF	
	C to CP	3.3 ± 0.3				1.0		ns	$R_L = 500 \Omega$	Figure 1, 4
		5.0 ± 0.5				1.0				1, -
Сара	acitance	(Note 3)						•		
Sym	bol	Parameter			Тур	Max	Units		Conditions	
CIN	Input C	apacitance			3		pF	$V_{CC} = Open, V_{IN} = 0V \text{ or } V_{CC}$		
C _{OUT}	Output	Capacitance			4		pF	$V_{CC} = 3.3V, V_{IN} = 0V \text{ or } V_{CC}$		
C _{PD}	Power [Dissipation Capacitar	nce		10		-5	V _{CC} = 3.3V		
	(Note 4	(Note 4)					pF	$V_{CC} = 5.0V$		

Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static)$.

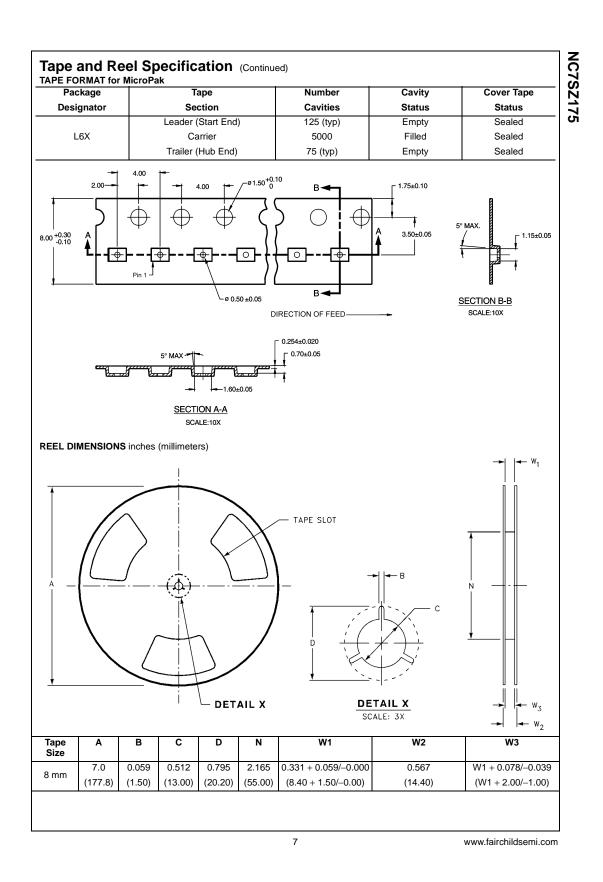


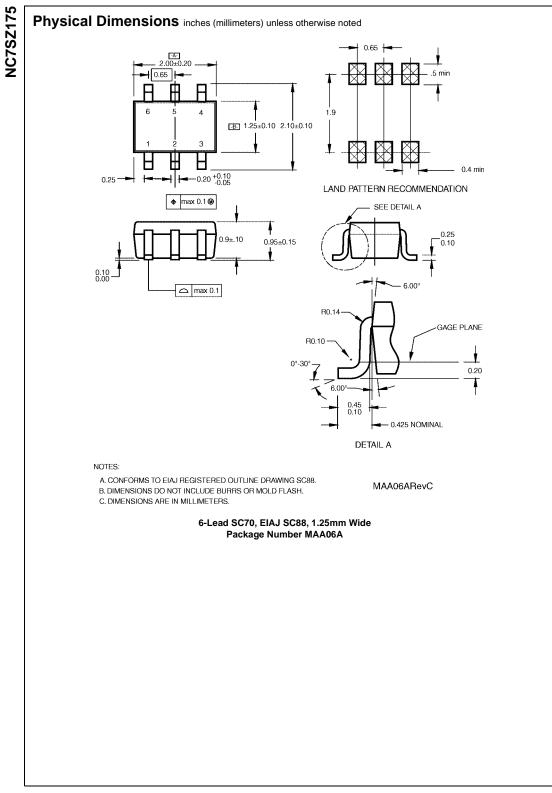

Tape and Reel Specification

TAPE FORMAT for SC70

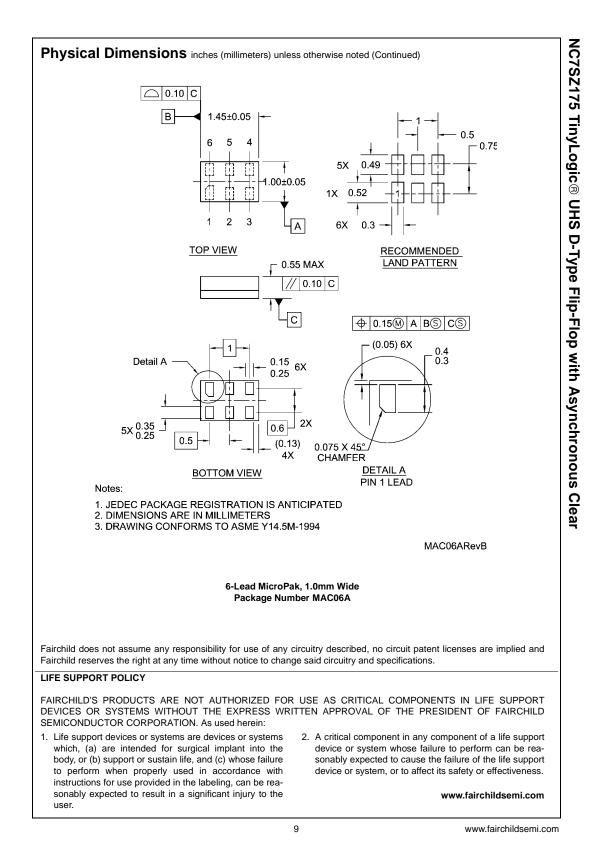

Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)


SECTION A-A



BEND RADIUS NOT TO SCALE


Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
3070-0	0 11111	(2.35)	(2.45)	$(\textbf{3.5}\pm\textbf{0.10})$	(1.35 ± 0.10)	(4)	(8 ± 0.1)
				<u>.</u>			-

www.fairchildsemi.com

www.fairchildsemi.com

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)