<u>MOSFET</u> – Power, Single, N-Channel, SOT-23

20 V, 3.2 A

Features

- Leading Planar Technology for Low Gate Charge / Fast Switching
- 2.5 V Rated for Low Voltage Gate Drive
- SOT-23 Surface Mount for Small Footprint
- NVR Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Load/Power Switch for Portables
- Load/Power Switch for Computing
- DC-DC Conversion

MAXIMUM RATINGS (T_J= 25°C unless otherwise stated)

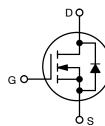
Paramo	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	20	V
Gate-to-Source Voltage			V _{GS}	±12	V
Continuous Drain	$\begin{array}{c} \text{Steady} \\ \text{State} \end{array} \begin{array}{c} \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \\ \text{T}_{\text{A}} = 85^{\circ}\text{C} \end{array}$		I _D	3.2	А
Current (Note 1)				2.4	А
Steady State Power Dissipation (Note 1)	Steady State		PD	1.25	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	10.0	А
Operating Junction and Si	ing Junction and Storage Temperature			–55 to 150	°C
Continuous Source Current (Body Diode)			I _S	1.6	А
Lead Temperature for Sole (1/8" from case for 10		poses	ΤL	260	°C

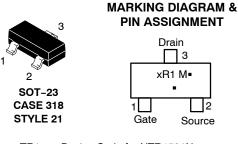
THERMAL RESISTANCE RATINGS

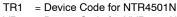
Parameter	Symbol	Max	Unit
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	100	°C/W
Junction-to-Ambient (Note 2)	$R_{\theta JA}$	300	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in sq pad size
- (Cu area = 1.127 in sq [1 oz] including traces).
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.




ON Semiconductor®


www.onsemi.com

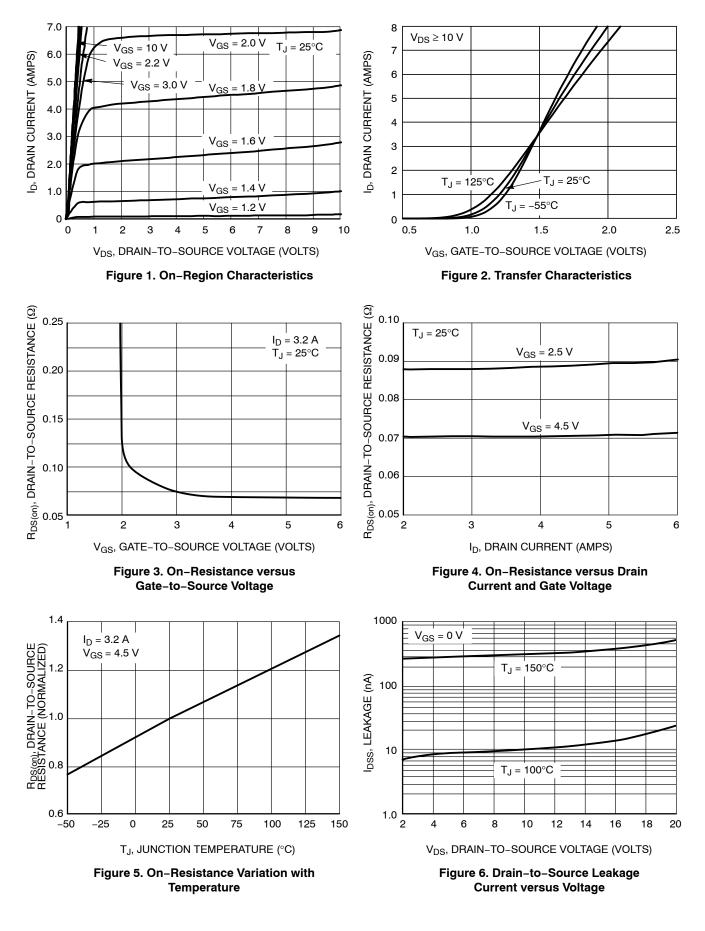
V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max (Note 1)	
20 V	70 mΩ @ 4.5 V	3.6 A	
	88 mΩ @ 2.5 V	3.1 A	

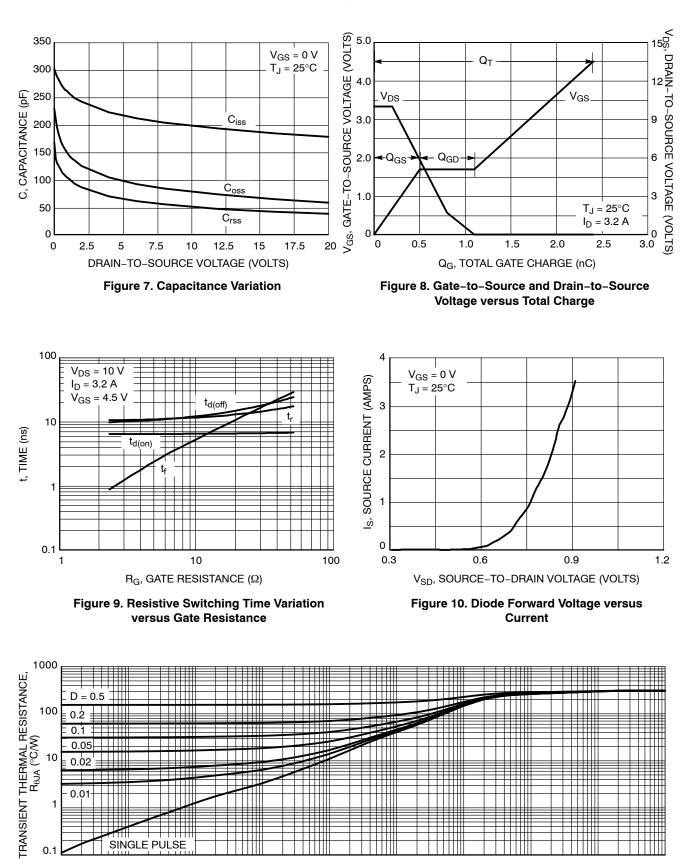
- VR1 = Device Code for NVR4501N
- M = Date Code*
 - = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION


Device	Package	Shipping†
NTR4501NT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
NVR4501NT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

Electrical Characteristics ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Con	dition	Min	Тур	Max	Units
OFF CHARACTERISTICS	-				-	-	-
Drain-to-Source Breakdown Voltage (Note 3)	V _{(BR)DSS}	V_{GS} = 0 V, I _C) = 250 μA	20	24.5		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				22		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V	$T_J = 25^{\circ}C$			1.5	μΑ
		V _{DS} = 16 V	$T_J = 85^{\circ}C$			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V ₀	_{GS} = ±12 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage (Note 3)	V _{GS(TH)}	V _{GS} = V _{DS} , I _I	_D = 250 μA	0.65		1.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.3		mV/°C
Drain-to-Source On Resistance	_	V _{GS} = 4.5 V,	I _D = 3.6 A		70	80	
	R _{DS(on)}	V _{GS} = 2.5 V, I _D = 3.1 A			88	105	mΩ
Forward Transconductance	9 FS	V _{DS} = 5.0 V, I _D = 3.6 A			9		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 10 V			200		pF
Output Capacitance	C _{oss}				80		
Reverse Transfer Capacitance	C _{rss}				50		
Total Gate Charge	Q _{G(TOT)}				2.4	6.0	1
Gate-to-Source Gate Charge	Q _{GS}	V _{GS} = 4.5 V, V I _D = 3.	/ _{DS} = 10 V,		0.5		nC
Gate-to-Drain Charge	Q _{GD}				0.6		1
SWITCHING CHARACTERISTICS (Note 4)							
Turn-On Delay Time	t _{d(on)}				6.5	13	
Rise Time	t _r	V _{CS} = 4.5 V. V	/ _{De} = 10 V.		12	24	1
Turn–Off Delay Time	t _{d(off)}	V _{GS} = 4.5 V, V I _D = 3.6 A, R	$_{\rm G}$ = 6.0 Ω		12	24	ns
Fall Time	t _f		·		3	6	
SOURCE-DRAIN DIODE CHARACTERISTICS	3					-	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, Is	_{SD} = 1.6 A		0.8	1.2	V
Reverse Recovery Time	t _{RR}				7.1		
Charge Time	t _a	V _{GS} =	0 V,		5		ns
Discharge Time	t _b	d _{IS} /d _t = 10 I _S = 1.			1.9		
Reverse Recovery Charge	Q _{RB}	•			3.0		nC

www.onsemi.com 4

PULSE TIME, tp (s) Figure 11. Thermal Response

0.1

1

0.01

0.001

0.0001

SINGLE PULSE

0.00001

10

100

1000

1

0.1

0.000001

Downloaded From Oneyac.com

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

n

3

TOP VIEW

SIDE VIEW

Нe

DETAIL A

-3X b

onsemi

SCALE 4:1

A____ ' A1SOT-23 (TO-236) CASE 318 ISSUE AT

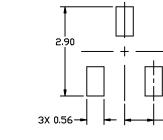
0.25

-1.1

DETAIL A

END VIEW

DATE 01 MAR 2023


3X -0.95

0.95

NDTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIM	IETERS			INCHES	
DIM	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
с	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
Η _E	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10*	0*		10*

PITCH RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2		
the right to make changes without furth purpose, nor does onsemi assume as	ner notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cours on owarranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	roducts for any particular		

© Semiconductor Components Industries, LLC, 2019

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

onsemi

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE	2. CATHODE	2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE	3. ANODE	3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE	2. OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN	3. INPUT	3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2	

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specification scan and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)