NPN Silicon Planar Epitaxial Transistor

This NPN Silicon Epitaxial transistor is designed for use in linear and switching applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

Features

- PNP Complement is PZT2907AT1
- The SOT-223 Package Can be Soldered Using Wave or Reflow
- SOT-223 Package Ensures Level Mounting, Resulting in Improved Thermal Conduction, and Allows Visual Inspection of Soldered Joints
- The Formed Leads Absorb Thermal Stress During Soldering, Eliminating the Possibility of Damage to the Die
- Available in 12 mm Tape and Reel

MAXIMUM RATINGS

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant*

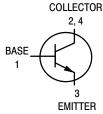
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage (Open Collector)	V _{EBO}	6.0	Vdc
Collector Current	Ι _C	600	mAdc
Total Power Dissipation up to $T_A = 25^{\circ}C$ (Note 1)	P _D	1.5	W
Storage Temperature Range	T _{stg}	– 65 to +150	°C
Junction Temperature Range	TJ	– 55 to +150	°C

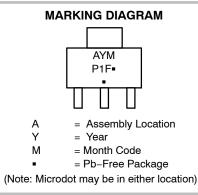
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Device mounted on an epoxy printed circuit board 1.575 inches x 1.575 inches x 0.059 inches; mounting pad for the collector lead min. 0.93 inches².

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625" from case Time in Solder Bath	TL	260 10	°C Sec




ON Semiconductor®

www.onsemi.com

SOT-223 PACKAGE NPN SILICON TRANSISTOR SURFACE MOUNT

ORDERING INFORMATION

Device	Package	Shipping [†]
PZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
SPZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
PZT2222AT3G	SOT-223 (Pb-Free)	4,000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PZT2222A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu Adc, I_E = 0$)	V _{(BR)CBO}	75	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	6.0	-	Vdc
Base-Emitter Cutoff Current (V _{CE} = 60 Vdc, V_{BE} = - 3.0 Vdc)	I _{BEX}	-	20	nAdc
Collector-Emitter Cutoff Current (V_{CE} = 60 Vdc, V_{BE} = - 3.0 Vdc)	I _{CEX}	-	10	nAdc
Emitter-Base Cutoff Current (V_{EB} = 3.0 Vdc, I_C = 0)	I _{EBO}	-	100	nAdc
Collector-Base Cutoff Current ($V_{CB} = 60 \text{ Vdc}, I_E = 0$) ($V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 125^{\circ}C$)	I _{CBO}		10 10	nAdc μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 10 Vdc) (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc, T _A = - 55°C) (I _C = 150 mAdc, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)	hFE	35 50 70 35 100 50 40	- - - 300 - -	_
Collector–Emitter Saturation Voltages ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	V _{CE(sat)}		0.3 1.0	Vdc
Base-Emitter Saturation Voltages ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	V _{BE(sat)}	0.6 _	1.2 2.0	Vdc
Input Impedance (V_{CE} = 10 Vdc, I_C = 1.0 mAdc, f = 1.0 kHz) (V_{CE} = 10 Vdc, I_C = 10 mAdc, f = 1.0 kHz)	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio ($V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$) ($V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz}$)	h _{re}	-	8.0x10 ⁻⁴ 4.0x10 ⁻⁴	-
$ Small-Signal Current Gain \\ (V_{CE} = 10 Vdc, I_C = 1.0 mAdc, f = 1.0 kHz) \\ (V_{CE} = 10 Vdc, I_C = 10 mAdc, f = 1.0 kHz) $	h _{fe}	50 75	300 375	-
Output Admittance ($V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$) ($V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz}$)	h _{oe}	5.0 25	35 200	μmhos
Noise Figure (V _{CE} = 10 Vdc, I _C = 100 μ Adc, f = 1.0 kHz)	F	-	4.0	dB
DYNAMIC CHARACTERISTICS				
Current–Gain – Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	300	_	MHz
Output Capacitance (V_{CB} = 10 Vdc, I_E = 0, f = 1.0 MHz)	C _c	-	8.0	pF
Input Capacitance (V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz)	C _e	-	25	pF
SWITCHING TIMES ($T_A = 25^{\circ}C$)				
Delay Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _d	-	10	ns
IB(on) = 15 mAdc, VEB(off) = 0.5 Vdc)Rise TimeFigure 1	t _r	-	25	
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _s	_	225	ns
Fall Time $I_{B(on)} = I_{B(off)} = 15 \text{ mAdc}$	t _f	_	60	

PZT2222A

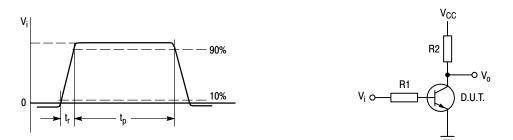


Figure 1. Input Waveform and Test Circuit for Determining Delay Time and Rise Time

$V_i = -0.5 V \text{ to } +9.9 V,$	V_{CC} = +30 V, R1 = 619 Ω, R2 = 2	200 Ω.	
PULSE GENERATOR: PULSE DURATION RISE TIME DUTY FACTOR	$t_{p} 3 200 ns$ $t_{r} 3 2 ns$ $\delta = 0.02$	OSCILLOSCOPE: INPUT IMPEDANCE INPUT CAPACITANCE RISE TIME	Z _i > 100 kΩ C _i < 12 pF t _r < 5 ns

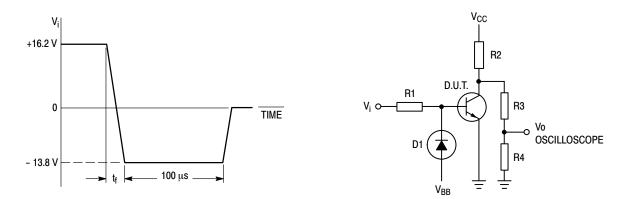
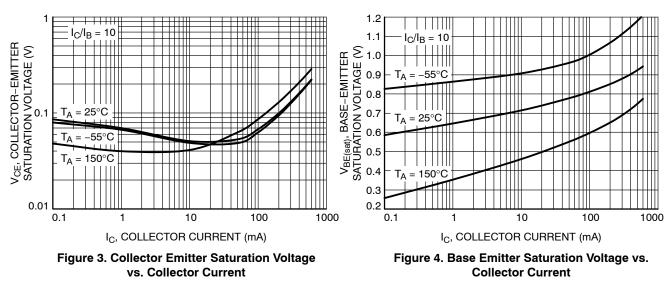
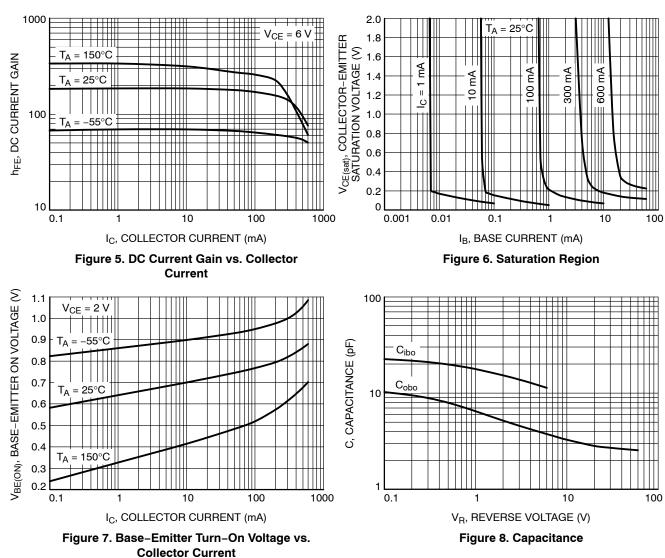
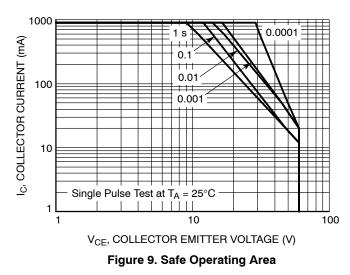




Figure 2. Input Waveform and Test Circuit for Determining Storage Time and Fall Time



TYPICAL CHARACTERISTICS

PZT2222A

TYPICAL CHARACTERISTICS

www.onsemi.com 4

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)