onsemi

MOSFET – N & P-Channel, POWERTRENCH[®] 30 V

FDC6333C

General Description

These N & P-Channel MOSFETs are produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive SO–8 and TSSOP–8 packages are impractical.

Features

- Q1 2.5 A, 30 V
 - $R_{DS(on)} = 95 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$
 - $R_{DS(on)} = 150 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Q2 -2.0 A, -30 V
 - $R_{DS(on)} = 130 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$
 - $R_{DS(on)} = 220 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- Low Gate Charge
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- SUPERSOT[™] –6 Package: Small Footprint (72% Smaller than SO–8); Low Profile (1 mm Thick)
- This is a Pb–Free Device

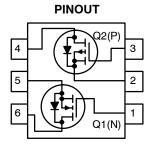
Applications

- DC-DC Converter
- Load Switch
- LCD Display Inverter

	V _{DSS}	R _{DS(ON)} MAX	I _D MAX
Q1	30 V	95 mΩ @ 10 V	2.5 A
		150 mΩ @ 4.5 V	
Q2	–30 V	130 m Ω @ –10 V	–2.0 A
		220 mΩ @ −4.5 V	

TSOT-23-6 CASE 419BL

MARKING DIAGRAM



333 = Specific Device Code

M = Assembly Operation Month

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

		Rat	ings		
Symbol	Parameter	Q1	Q2	Unit	
V _{DSS}	Drain-Source Voltage		30	-30	V
V _{GSS}	Gate-Source Voltage	±16	±25	V	
۱ _D	Drain Current – Continuous (Note 1a)	2.5	-2.0	А	
	Drain Current – Pulsed		8	-8	
PD	Power Dissipation for Single Operation	(Note 1a)	0.	96	W
	(Note 1b)		0		
		0	.7		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	130	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	60	°C/W

R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 130°C/W when mounted on a 0.125 in² pad of 2 oz. copper. b. 140°C/W when mounted on a 0.004 in² pad of 2 oz. copper. c. 180°C/W when mounted on a minimum pad.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
BV _{DSS}			V_{GS} = 0 V, I _D = 250 μ A	30	-	-	V	
	Voltage	Q2	V_{GS} = 0 V, I_D = -250 μ A	-30	-	-		
ΔBV_{DSS}	Breakdown Voltage	Q1	$I_D = 250 \ \mu A$, Ref. to $25^{\circ}C$	-	27	-	mV/°C	
ΔT_{J}	Temperature Coefficient	Q2	$I_D = -250 \ \mu A$, Ref. to $25^{\circ}C$	-	-22	-		
I _{DSS}	Zero Gate Voltage Drain Current	Q1	V_{DS} = 24 V, V_{GS} = 0 V	-	_	1	μΑ	
	Gurrent	Q2	$V_{DS} = -24$ V, $V_{GS} = 0$ V	-	_	-1		
I _{GSSF}	Gate-Body Leakage, Forward	Q1	$V_{GS} = 16 \text{ V}, V_{DS} = 0 \text{ V}$	-	_	100	nA	
		Q2	V_{GS} = 25 V, V_{DS} = 0 V	-	_	100		
I _{GSSR}	Gate-Body Leakage, Reverse	Q1	V_{GS} = -16 V, V_{DS} = 0 V	-	_	-100	nA	
		Q2	V_{GS} = -25 V, V_{DS} = 0 V	_	_	-100		

ON CHARACTERISTICS (Note 2)

V _{GS(th)}	Gate Threshold Voltage	Q1	Q1 $V_{DS} = V_{GS}, I_D = 250 \ \mu A$		1.8	3	V
		Q2	$V_{DS}=V_{GS},I_{D}=-250\;\mu\text{A}$	-1	-1.8	-3	
$\Delta V_{GS(th)}$	Gate Threshold Voltage Temperature Coefficient	Q1	I_D = 250 µA, Ref. to 25°C	-	4	-	mV/°C
ΔT_{J}	Temperature obemeient	Q2	$I_D = -250 \ \mu\text{A}$, Ref. to 25°C	-	-4	-	

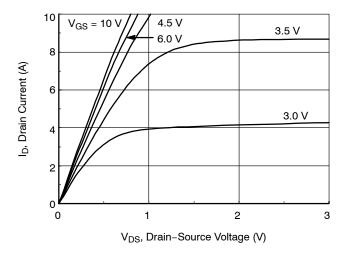
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.) (continued)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit			
ON CHARAC	ON CHARACTERISTICS (Note 2)									
R _{DS(on)}	Static Drain-Source	Q1	V_{GS} = 10 V, I _D = 2.5 A	-	73	95	mΩ			
	On-Resistance		V_{GS} = 4.5 V, I _D = 2.0 A	-	90	150				
			V_{GS} = 10 V, I_{D} = 2.5 A, T_{J} = 125°C	-	106	148				
		Q2	$V_{GS} = -10$ V, $I_D = -2.0$ A	-	95	130				
			$V_{GS} = -4.5$ V, $I_D = -1.7$ A	-	142	220				
			V_{GS} = 10 V, I_{D} = –2.0 A, T_{J} = 125°C	-	149	216				
I _{D(on)}	On-State Drain Current	Q1	V_{GS} = 10 V, V_{DS} = 5 V	8	_	_	А			
		Q2	$V_{GS} = -10$ V, $V_{DS} = -5$ V	-8	_	_				
9FS	Forward Transconductance	Q1	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 2.5 \text{ A}$	-	7	_	S			
		Q2	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.0 \text{ A}$	-	3	-				

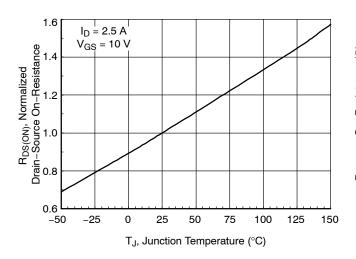
DYNAMIC CHARACTERISTICS

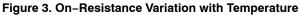
C _{iss}	Input Capacitance	Q1	V_{DS} = 15 V, V_{GS} = 0 V, f = 1.0 MHz	-	282	-	pF
		Q2	V_{DS} = –15 V, V_{GS} = 0 V, f = 1.0 MHz	-	185	-	
C _{oss}	Output Capacitance	Q1	V_{DS} = 15 V, V_{GS} = 0 V, f = 1.0 MHz	-	49	-	
		Q2	V_{DS} = –15 V, V_{GS} = 0 V, f = 1.0 MHz	_	56	-	
C _{rss}	Reverse Transfer Capacitance	Q1	V_{DS} = 15 V, V_{GS} = 0 V, f = 1.0 MHz	-	20	-	
		Q2	V_{DS} = –15 V, V_{GS} = 0 V, f = 1.0 MHz	-	26	-	

SWITCHING CHARACTERISTICS (Note 2)


t _{d(on)}	Turn-On Delay Time	Q1	For Q1:	-	4.5	9	ns
		Q2	V _{DS} = 15 V, I _{DS} = 1 A, V _{GS} = 10 V, R _{GEN} = 6 Ω	-	4.5	9	
t _r	Turn–On Rise Time	Q1	For <i>Q2</i> : V _{DS} = -15 V, I _{DS} = -1 A,	_	6	12	
		Q2	$V_{GS} = -10 \text{ V}, \text{ H}_{GEN} = 6 \Omega$	-	13	23	
t _{d(off)}	Turn–Off Delay Time	Q1		_	19	34	
		Q2		_	11	20	
t _f	Turn-Off Fall Time	Q1		_	1.5	3	
		Q2		_	2	4	
Qg	Total Gate Charge	Q1	For Q1:	_	4.7	6.6	nC
		Q2	V_{DS} = 15 V, I_{DS} = 2.5 A, V_{GS} = 10 V, R_{GEN} = 6 Ω	_	4.1	5.7	
Q _{gs}	Gate-Source Charge	Q1	For <i>Q2</i> : V _{DS} = -15 V, I _{DS} = -2.0 A,	_	0.9	-	
		Q2	$V_{GS} = -10 V$	_	0.8	_	
Q _{gd}	Gate-Drain Charge	Q1		_	0.6	_	
		Q2		-	0.4	-	

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS


١ _S	Maximum Continuous Drain–Source Diode Forward	Q1		_	_	0.8	А
	Current	Q2		-	-	-0.8	
V _{SD}	Drain-Source Diode Forward Voltage	Q1	V_{GS} = 0 V, I _S = 0.8 A (Note 2)	-	0.8	1.2	V
	vollage	Q2	V_{GS} = 0 V, I_S = 0.8 A (Note 2)	-	0.8	-1.2	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%

TYPICAL CHARACTERISTICS: N-CHANNEL

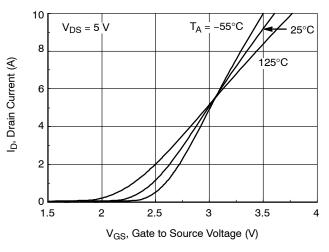
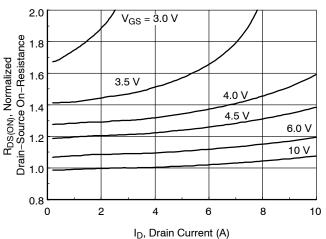
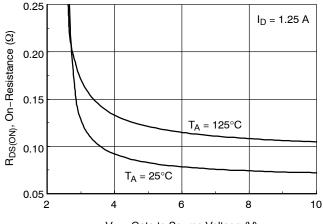
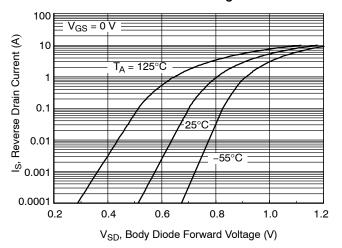
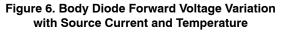


Figure 5. Transfer Characteristics


Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

 V_{GS} , Gate to Source Voltage (V)

Figure 4. On–Resistance Variation with Gate–to–Source Voltage

www.onsemi.com

TYPICAL CHARACTERISTICS: N-CHANNEL (continued)

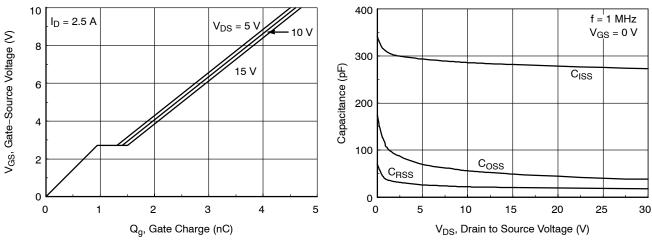
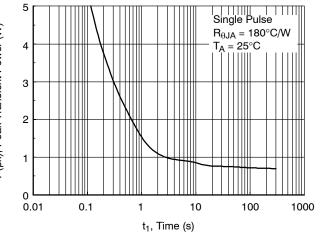
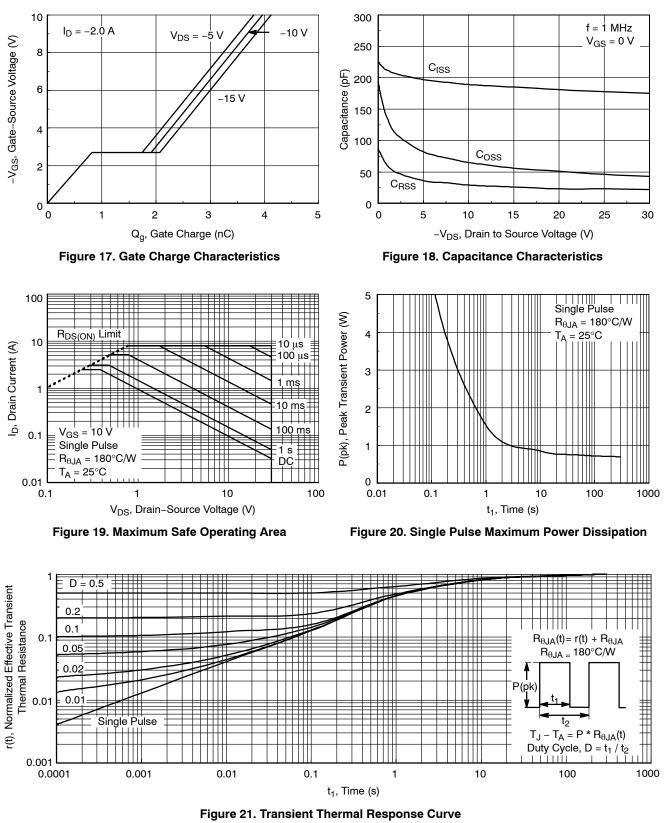


Figure 7. Gate Charge Characteristics

Figure 9. Maximum Safe Operating Area




Figure 10. Single Pulse Maximum Power Dissipation

Downloaded From Oneyac.com

TYPICAL CHARACTERISTICS: P-CHANNEL

TYPICAL CHARACTERISTICS: P-CHANNEL (continued)

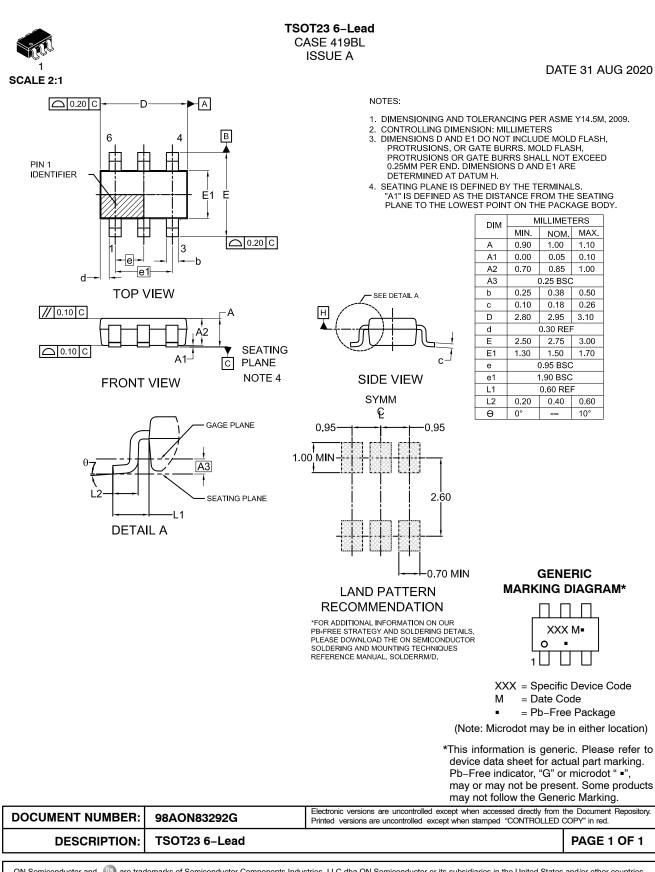
Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

> www.onsemi.com 7

Downloaded From Oneyac.com

ORDERING INFORMATION

Device	Device Marking	Package Type	Reel Size	Tape Width	Shipping [†]
FDC6333C	333	TSOT-23-6 (Pb-Free)	7"	8 mm	3000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SUPERSOT is trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

www.onsemi.com

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specification scan and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)