Operational Amplifier, Railto-Rail Output, 3 MHz BW

The NCx2007x series operational amplifiers provide rail–to–rail output operation, 3 MHz bandwidth, and are available in single, dual, and quad configurations. Rail–to–rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The NCx2007x can operate on supply voltages as low as 2.7 V over the temperature range of –40°C to 125°C. At a 2.7 V supply, the high bandwidth provides a slew rate of 2.8 V/µs while only consuming 405 µA of quiescent current per channel. The wide supply range allows the NCx2007x to run on supply voltages as high as 36 V, making it ideal for a broad range of applications. Since this is a CMOS device, high input impedance and low bias currents make it ideal for interfacing to a wide variety of signal sensors. The NCx2007x devices are available in a variety of compact packages. Automotive qualified options are available under the NCV prefix.

Features

- Rail-To-Rail Output
- Wide Supply Range: 2.7 V to 36 V
- Wide Bandwidth: 3 MHz typical at $V_S = 2.7 \text{ V}$
- High Slew Rate: 2.8 V/ μ s typical at V_S = 2.7 V
- Low Supply Current: 405 μA per channel at $V_S = 2.7 \ V$
- Low Input Bias Current: 5 pA typical
- Wide Temperature Range: -40°C to 125°C
- Available in a variety of packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Current Sensing
- Signal Conditioning
- Automotive

End Products

- Notebook Computers
- Portable Instruments
- Power Supplies

ON Semiconductor®

www.onsemi.com

SOT-553 CASE 463B TSOP-5 CASE 483

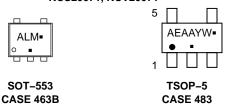
Micro8[™] CASE 846A SOIC-8 CASE 751

TSSOP-8 CASE 948S

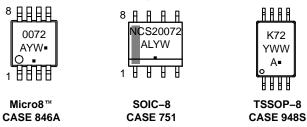
TSSOP-14 CASE 948G

SOIC-14 NB CASE 751A

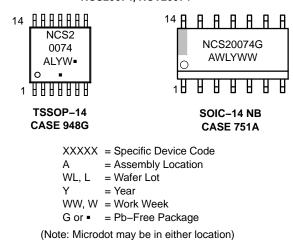
DEVICE MARKING INFORMATION

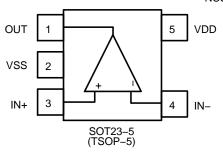

See general marking information in the device marking section on page 2 of this data sheet.

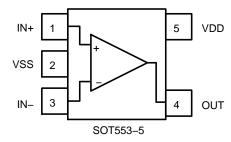
ORDERING INFORMATION


See detailed ordering and shipping information on page 4 of this data sheet.

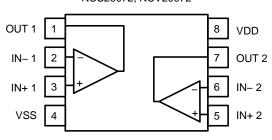
MARKING DIAGRAMS


Single Channel Configuration NCS20071, NCV20071


Dual Channel Configuration NCS20072, NCV20072



Quad Channel Configuration NCS20074, NCV20074



Single Channel Configuration NCS20071, NCV20071

Dual Channel Configuration NCS20072, NCV20072

Quadruple Channel Configuration NCS20074, NCV20074

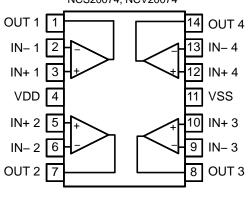


Figure 1. Pin Connections

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS20071SN2T1G		Na	AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCS20071XV53T2G	Cinala	No	AL	SOT553-5 (Pb-Free)	4000 / Tape and Reel
NCV20071SN2T1G*	Single	V	AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCV20071XV53T2G*		Yes	AL	SOT553-5 (Pb-Free)	4000 / Tape and Reel
NCS20072DMR2G			0072	Micro8 (MSOP8) (Pb-Free)	4000 / Tape and Reel
NCS20072DR2G		No	NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20072DTBR2G	Dord		K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DMR2G*	Dual		0072	Micro8 (MSOP8) (Pb-Free)	4000 / Tape and Reel
NCV20072DR2G*		Yes	NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DTBR2G*			K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCS20074DR2G		N	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCS20074DTBR2G	Overl	No	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DR2G*	Quad	Va a	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DTBR2G*		Yes	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

ABSOLUTE MAXIMUM RATINGS (Note 1)

	Rating	Symbol	Limit	Unit	
Supply Voltage (V _{DD} – V _{SS}) (Note 4)	V _S	40	V	
Input Voltage		V _{CM}	$V_{SS} - 0.2$ to $V_{DD} + 0.2$	V	
Differential Input Voltage (N	lote 2)	V_{ID}	±V _s	V	
Maximum Input Current		I _{IN}	±10	mA	
Maximum Output Current (Note 3)	I _O	±100	mA	
Continuous Total Power Dis	ssipation (Note 4)	P_{D}	P _D 200		
Maximum Junction Temper	ature	T_J	150	°C	
Storage Temperature Rang	e	T _{STG}	-65 to 150	°C	
Mounting Temperature (Infr	rared or Convection – 20 sec)	T _{mount}	260	°C	
ESD Capability (Note 5)	Human Body Model Machine Model – NCx20071 Machine Model – NCx20072, NCx20074 Charged Device Model – NCx20071, NCx20072 Charged Device Model – NCx20074	HBM MM MM CDM CDM	2000 200 150 2000 (C6) 1000 (C6)	V	
Latch-Up Current (Note 6)		I _{LU}	100	mA	
Moisture Sensitivity Level (Note 7)	MSL	Level 1		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
- 2. Maximum input current must be limited to ±10 mA. Series connected resistors of at least 500 Ω on both inputs may be used to limit the maximum input current to ±10 mA.
- 3. Total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit.
- 4. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.
- 5. This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per JEDEC standard JS-001 (AEC-Q100-002)
 - ESD Machine Model tested per JEDEC standard JESD22-A115 (AEC-Q100-003)
 - ESD Charged Device Model tested per JEDEC standard JESD22-C101 (AEC-Q100-011)
- 6. Latch-up Current tested per JEDEC standard JESD78 (AEC-Q100-004)
- 7. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A

THERMAL INFORMATION

Parameter	Symbol	Package	Single Layer Board (Note 8)	Multi–Layer Board (Note 9)	Unit
		SOT23-5 / TSOP5	265	195	
		SOT553-5	325	244]
	$\theta_{\sf JA}$	Micro8 / MSOP8	236	167]
Junction-to-Ambient		SOIC-8	190	131	°C/W
		TSSOP-8	253	194	
		SOIC-14	142	101	
		TSSOP-14	179	128	

- 8. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area
- Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

OPERATING RANGES

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (Single Supply)	Vs	2.7	36	V
Operating Supply Voltage (Split Supply)	Vs	±1.35	±18	V
Differential Input Voltage (Note 10)	V_{ID}		V _S	V
Input Common Mode Voltage Range	V _{CM}	V _{SS}	V _{DD} – 1.35	V
Ambient Temperature	T _A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

10. Maximum input current must be limited to ± 10 mA. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT $V_S = 2.7 \text{ V}$

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ -supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						•	
		NO	20074		1.3	±3.5	
Innut Officet Valtage	\ <i>/</i>	NCX.	20071			±4.5	\/
Input Offset Voltage	V _{OS}	NCv20072	NCv20074		1.3	±3	mV
		NCX20072	, NCx20074			±4	
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	T _A = 25°0	C to 125°C		2		μV/°C
Input Bias Current (Note 12)	L.				5	200	рA
input bias Current (Note 12)	I _{IB}					1500	PΑ
		NCv20071	NCv20072		2	75	
Input Officet Current (Note 12)	,	NCX20071	, NCx20072			500	- A
Input Offset Current (Note 12)	los	NCv	20074		2	75	рA
		INCX.	20074			200]
Channel Congretion	VTLV	DC	NCx20072		100		٩D
Channel Separation	XTLK	DC NCx20074			115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Common Mode Dejection Detic	CMPP	$V_{CM} = V_{SS} + 0.2 \text{ V to } V_{DD} - 1.35 \text{ V}$		90	110		dB
Common Mode Rejection Ratio	CMRR	$v_{CM} = v_{SS} + 0.2$	V 10 V _{DD} – 1.35 V	69			ub
OUTPUT CHARACTERISTICS							
Open Leen Voltage Coin	۸			96	118		٩D
Open Loop Voltage Gain	A_{VOL}			86			dB
Output Compat Comphility (Nata 42)	,	Op amp sir	nking current		70		^
Output Current Capability (Note 13)	Ι _Ο	Op amp sou	rcing current		50		mA
Output Valta and High	M	Valta na autout aud			0.006	0.15	
Output Voltage High	V _{OH}	voitage output swi	ng from positive rail			0.22	V
Outrot Valta and Laur	\ /	Valta an autout audi	an financia na matika maji		0.005	0.15	
Output Voltage Low	V _{OL}	voltage output swii	ng from negative rail			0.22	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.8		V/μs
Phase Margin	φm	C _L =	25 pF		50		٥
Gain Margin	A _m	C _L =	25 pF		14		dB
Cattling Time		V _O = 1 Vpp,	Settling time to 0.1%		0.6		
Settling Time	ttling Time		Settling time to 0.01%		1.2		μs

^{11.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{12.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{13.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ -supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS							-
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 0.5 Vpp, f		0.05		%	
Inner Deferred Valters Naise	_	f = 1	kHz		30		\ //
Input Referred Voltage Noise	e _n	f = 10 kHz			20		nV/√ Hz
Input Referred Current Noise	i _n	f = 1 kHz			90		fA/√ Hz
SUPPLY CHARACTERISTICS							
Davisa Comple Daisetica Datis	2022			114	135		٩D
Power Supply Rejection Ratio	PSRR	NO L	₋oad	100			dB
		NC-20074	Noteed		420	625	
David Original Original		NCx20071	No load			765	1
Power Supply Quiescent Current	I _{DD}				405	525	μΑ
		NCx20072, NCx20074 Per channel, no load				625	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 13. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V

 $T_A = 25$ °C; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ -supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40$ °C to 125°C. (Notes 14, 15)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
			1000074		1.3	±3.5	
Innut Offert Veltage	V	NCx20071				±4.5	\/
Input Offset Voltage	Vos	NCoo	1070 NO. 20074		1.3	±3	mV
		NCx20072, NCx20074				±4	
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$T_A = 2$	25°C to 125 °C		2		μV/°C
Innut Bigg Current (Note 15)					5	200	n 1
Input Bias Current (Note 15)	I _{IB}					1500	pА
		NCx20071, NCx20072			2	75	
Innut Offeet Comment (Note 45)						500	
Input Offset Current (Note 15)	los		10-00074		2	75	- pA
		ſ	NCx20074			200	
0, 10,	VTII	D 0	NCx20072		100		i.
Channel Separation	XTLK	DC	NCx20074		115		dB
Differential Input Resistance	R _{ID}		•		5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF

- 14. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 15. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 16. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V $T_A = 25^{\circ}C$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 14, 15)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	•,	1			-71		
				102	125		
Common Mode Rejection Ratio	CMRR	$V_{CM} = V_{SS} + 0.2$	V to V _{DD} – 1.35 V	80	0		dB
OUTPUT CHARACTERISTICS		l					
				96	120		
Open Loop Voltage Gain	A_{VOL}			86			dB
		Op amp sin	king current		50		
Output Current Capability (Note 16)	I _O	Op amp sou	rcing current		60		mA
0	.,,				0.013	0.20	.,
Output Voltage High	V _{OH}	Voltage output swii	ng from positive rail			0.25	- V
Output Valta as I am	V	Valta and acceptant accept	a fue as a section well		0.01	0.10	
Output Voltage Low	V_{OL}	voltage output swir	ng from negative rail			0.15	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.7		V/μs
Phase Margin	ϕ_{m}	C _L =	25 pF		50		0
Gain Margin	A_{m}	C _L =	25 pF		14		dB
Settling Time	4	$V_O = 3 \text{ Vpp},$ Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.1%		1.2		0
Settling Time	t _S	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		5.6		μS
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 2.5 Vpp, f	= 1 kHz, Av = 1		0.009		%
Input Referred Voltage Noice	0	f = 1	kHz		30		nV/√ Hz
Input Referred Voltage Noise	e _n	f = 10) kHz		20		TIV/ V⊓Z
Input Referred Current Noise	i _n	f = 1	kHz		90		fA/√Hz
SUPPLY CHARACTERISTICS							
Dower Cumply Dejection Datio	DCDD	No.1	and	114	135		dD
Power Supply Rejection Ratio	wer Supply Rejection Ratio PSRR No Load		_0au	100			dB
	_	NCv20071	No load		430	635	
Power Supply Ouiocoopt Current	I _{DD} NO	NCx20071	No load			775	
Power Supply Quiescent Current		NCv20072 NCv20074	Per channel, no load		410	530	μΑ
		NCx20072, NCx20074 Per channel, no load				630]

^{14.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{15.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{16.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT $V_S = 10 \text{ V}$

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS					•	_	•
Leaved Office (Malliane	.,	NO	20074		1.3	±3.5	mV
Input Offset Voltage	V _{OS}	NCX2	20071			±4.5	mV
Input Offset Voltage	V	NCv20072	, NCx20074		1.3	±3	mV
input Onset voltage	V _{OS}	NGX20072	, NOX20074			±4	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	T _A = 25°C	C to 125°C		2		μV/°C
Input Bias Current (Note 18)	I _{IB}				5	200	pА
mpat ziao cament (treto re)	,ID					1500	μ
		NCx20071	, NCx20072		2	75	
Input Offset Current (Note 18)	los	110/20011	, 110/20072			500	рА
input offset outrefit (Note 10)	108	NCx:	20074		2	75	PΛ
		140%	2007 4			200	
Channel Separation	XTLK	DC	NCx20072		100		dB
Grianner Geparation	XILK	NCx20074			115		ub.
Differential Input Resistance	R_{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C_{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Common Mode Rejection Ratio	CMRR	V	V to V _{DD} – 1.35 V	110	130		dB
Common wode rejection ratio	CIVILLIA	VCM - VSS + 0.2	V 10 VDD - 1.33 V	87			uB
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	Δ			98	120		dB
Open Loop Voltage Gain	A _{VOL}			88			uБ
Output Current Capability (Note 19)	I.	Op amp sin	king current		50		mA
Output Current Capability (Note 19)	Io	Op amp sou	rcing current		65		IIIA
Output Voltage High	V	Voltago output swi	ng from positive rail		0.023	0.08	V
Output voltage riigh	V _{OH}	voltage output swi	ng nom positive rail			0.10	V
Output Voltage Low	V _a ,	Voltago output swir	ng from negative rail		0.022	0.3	V
Output Voltage Low	V _{OL}	voltage output swii	ig nom negative rail			0.35	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.6		V/μs
Phase Margin	ϕ_{m}	C _L =	C _L = 25 pF		50		0
Gain Margin	A _m	C _L =	25 pF		14		dB
Settling Time	t-	$V_{O} = 8.5 \text{ Vpp},$	Settling time to 0.1%		3.4		
Columny Time	t _S	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		6.8		μS

^{17.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{18.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{19.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 10 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ -supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 7.5 Vpp, f		0.004		%	
Innuit Defermed Valteria Naisa	_	f = 1	kHz		30		->/// -
Input Referred Voltage Noise	e _n	f = 10 kHz			20		nV/√ Hz
Input Referred Current Noise	i _n	f = 1 kHz			90		fA/√ Hz
SUPPLY CHARACTERISTICS							
Davisa Comple Daiastica Datis	2022	No Load		114	135		٩D
Power Supply Rejection Ratio	PSRR	NO L	-oad	100			dB
		NC-20074	No load		430	645	
Davisa Comple Ordanas Compant		NCx20071	No load			785	
Power Supply Quiescent Current	I _{DD}				416	540	μΑ
		NCx20072, NCx20074 Per channel, no loa				640	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 17. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 18. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 19. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Cond	Conditions		Тур	Max	Unit
INPUT CHARACTERISTICS							
		NCx20071			1.3	±3.5	mV
Innut Officet Voltage		NCX	20071			±4.5	mV
Input Offset Voltage	Vos	NCv20073	2, NCx20074		1.3	±3	mV
		NCX20072	z, NCX20074			±4	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$T_A = 25^{\circ}$	C to 125°C		2		μV/°C
Input Bias Current (Note 21)					5	200	
	I _{IB}	NCx20071	NCx20071, NCx20072			2000	pА
		NCx			1500		
		NCv20074	NCx20071, NCx20072		2	75	
lanut Offeet Comment (Nets 24)		NCX20071				1000	
Input Offset Current (Note 21)	los	NO	20074		2	75	pА
		NCX	20074			200	1
Oh a saad Oan and Car	VTLIC	DO	NCx20072		100		-ID
Channel Separation	XTLK	DC	NCx20074		115		dB
Differential Input Resistance	R _{ID}		•		5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ

- 20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS		•	•		•		
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
			Vov. = Voo. + 0.2 V to	118	135		
		NCx20071	$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	95			
			$V_{CM} = V_{SS} + 0.2 \text{ V to}$	120	145		
Common Mode Rejection Ratio	CMRR	NCx20072	V _{DD} – 1.35 V	95			dB
		NCx20074	$V_{CM} = V_{SS} + 0.2 \text{ V to}$	120	145		
			V _{DD} – 1.35 V	85			
OUTPUT CHARACTERISTICS							
On and Learn Walter to Online	Δ.			98	120		·ID
Open Loop Voltage Gain	A_{VOL}		88			dB	
Output Coment Comehility (Nata 20)		Op amp sinking current			50		A
Output Current Capability (Note 22)	I _O	Op amp sou	Op amp sourcing current		65		mA
			NC::00074		0.074	0.15	
			NCx20071			0.22	
Output Voltage High	\/	Voltage output swing	NCv20072		0.074	0.10	V
	V _{ОН}	from positive rail	NCx20072			0.15	
			NC::20074		0.074	0.10	
		NCX20074	NCx20074			0.12	
Output Voltage Low	V	Valtage output out	og from pogotivo roil		0.065	0.3	\/
Output Voltage Low	V _{OL}	voltage output swir	ng from negative rail			0.35	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.4		V/μs
Phase Margin	ϕ_{m}	C _L =	25 pF		50		0
Gain Margin	A _m	C _L =	25 pF		14		dB
Cottling Time		$V_{O} = 10 \text{ Vpp},$ Gain = 1, C _L = 20 pF	Settling time to 0.1%		3.2		0
Settling Time	t _S	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		7		μS
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 28.5 Vpp,	f = 1 kHz, Av = 1		0.001		%
Input Referred Voltage Noise		f = 1	kHz		30		nV/√ Hz
input Neieneu voltage Noise	e _n	f = 10 kHz			20		110/ 1172
Input Referred Current Noise	i _n	f = 1	kHz		90		fA/√ Hz

^{20.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{21.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{22.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
SUPPLY CHARACTERISTICS							
Dawar Cumply Dejection Datio	DODD	R No Load		114	135		٩D
Power Supply Rejection Ratio	PSRR			100			dB
		NCx20071	No load		480	700	
		NCX20071	No load			840	
Bower Supply Ouisesent Current		NCv20072	Der abannal na laad		465	570	^
Power Supply Quiescent Current	I _{DD}	NCx20072	Per channel, no load			700	μΑ
		NCv20074	Der abannal na laad		465	600	
		NCx20074	Per channel, no load			700	

^{20.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{21.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{22.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

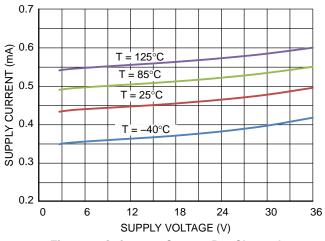


Figure 2. Quiescent Current Per Channel vs. Supply Voltage

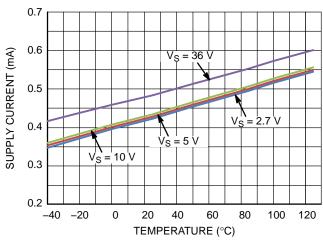


Figure 3. Quiescent Current vs. Temperature

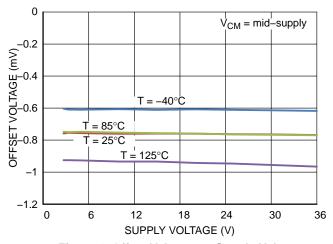


Figure 4. Offset Voltage vs. Supply Voltage

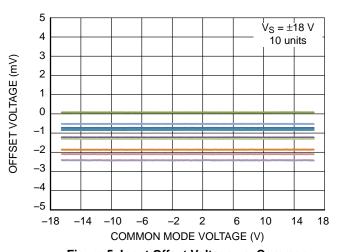


Figure 5. Input Offset Voltage vs. Common Mode Voltage

180

135

90

0 0 -45 DHASE

-90

-135

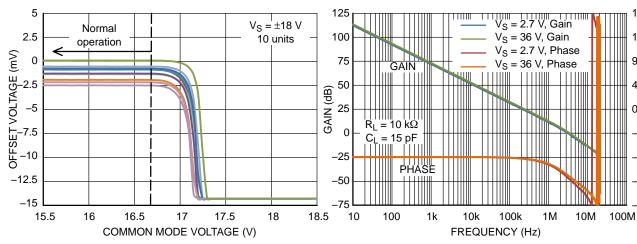


Figure 6. Input Offset Voltage vs. Common Mode Voltage

Figure 7. Gain and Phase vs. Frequency

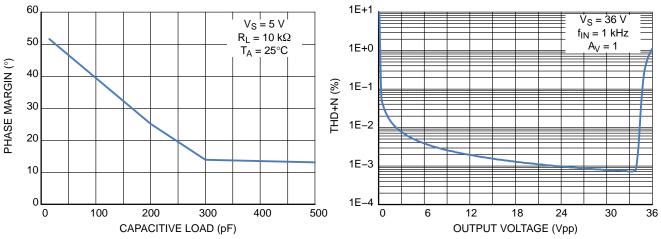


Figure 8. Phase Margin vs. Capacitive Load

Figure 9. THD+N vs. Output Voltage

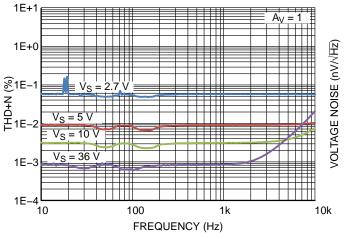


Figure 10. THD+N vs. Frequency

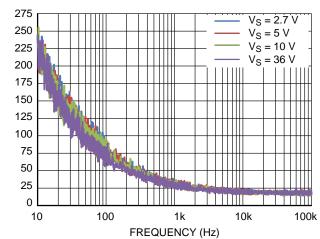


Figure 11. Input Voltage Noise vs. Frequency

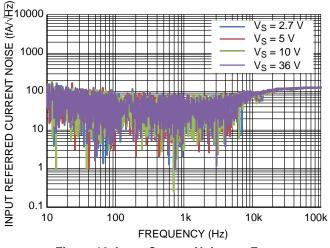


Figure 12. Input Current Noise vs. Frequency

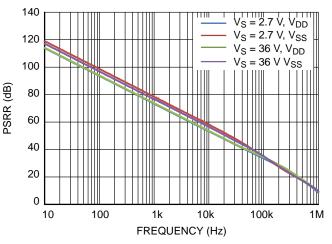


Figure 13. PSRR vs. Frequency

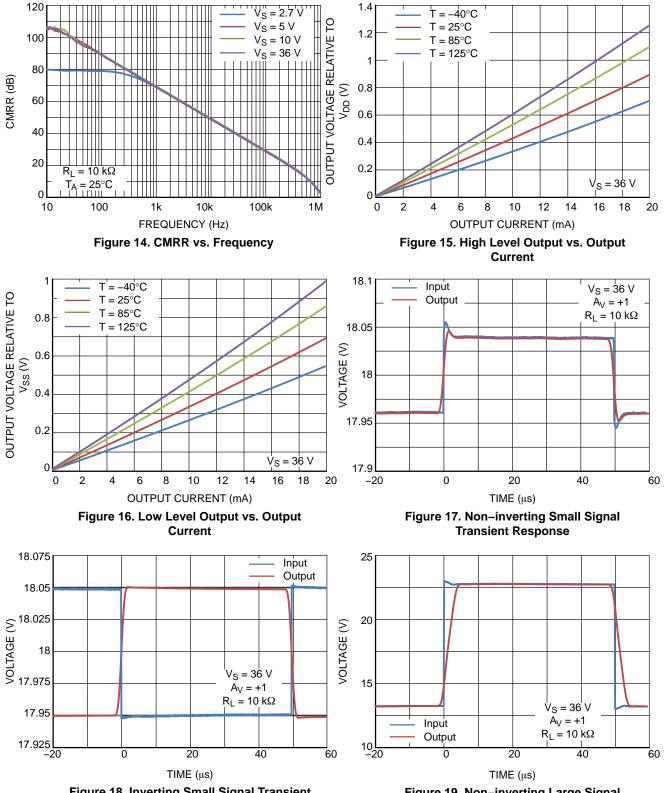


Figure 18. Inverting Small Signal Transient Response

Figure 19. Non-inverting Large Signal Transient Response

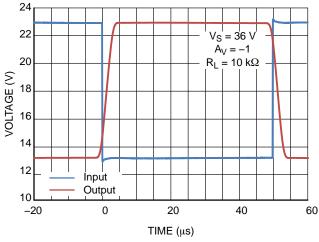


Figure 20. Inverting Large Signal Transient Response

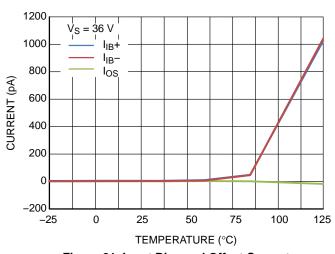


Figure 21. Input Bias and Offset Current vs.
Temperature

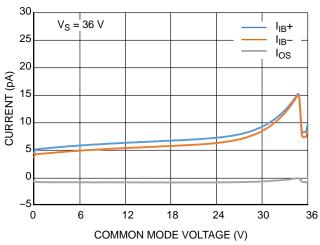


Figure 22. Input Bias Current vs. Common Mode Voltage

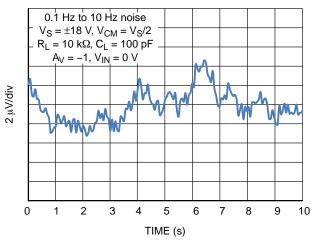


Figure 23. 0.1 Hz to 10 Hz Noise

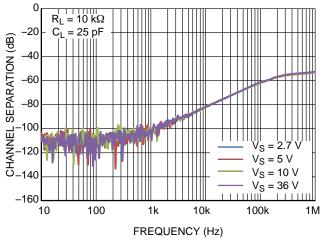


Figure 24. Channel Separation vs. Frequency

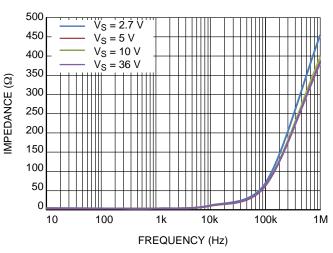


Figure 25. Open Loop Output Impedance

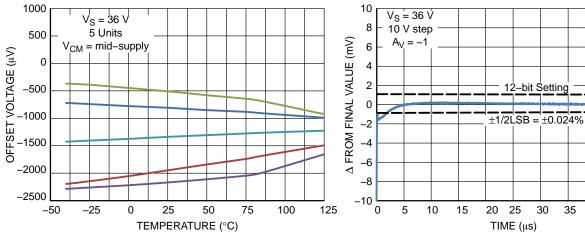


Figure 26. Offset Voltage vs. Temperature

Figure 27. Large Signal Settling Time

40

45

50

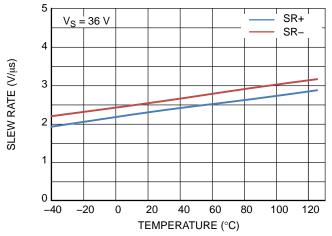


Figure 28. Slew Rate vs. Temperature

APPLICATIONS INFORMATION

Input Circuit

The NCS2007x input stage has a PMOS input pair and ESD protection diodes. The input pair is internally connected by back–to–back Zener diodes with a reverse voltage of 5.5 V. To protect the internal circuitry, the input current must be limited to 10 mA. When operating the

NCS2007x at differential voltages greater than $V_{ID}=26~V$, series resistors can be added externally to limit the input current flowing between the input pins. Adding 500 Ω resistors in series with the input prevents the current from exceeding 10 mA over the entire operating range up to 36 V.

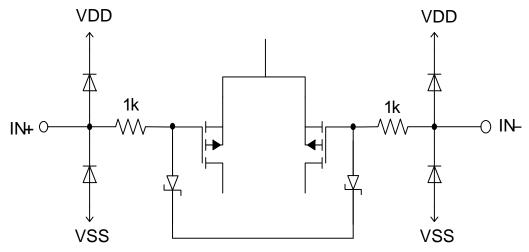


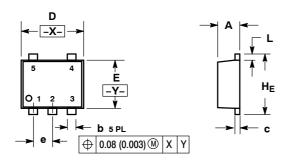
Figure 29. Differential Input Pair

Output

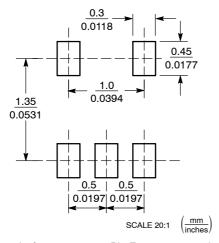
The NCS2007x has a class AB output stage with rail-to-rail output swing.

High output currents can cause the junction temperature to exceed the 150°C absolute maximum rating. In the case of a short circuit where the output is connected to either supply rail, the amount of current the op amp can source and sink is described by the output current capability parameter

listed in the Electrical Characteristics. The junction temperature at a given power dissipation, P, can be calculated using the following formula:


$$T_J = T_A + P \times \theta_{JA}$$

The thermal resistance between junction and ambient, θ_{JA} , is provided in the Thermal Information section of this datasheet.



SOT-553, 5 LEAD CASE 463B ISSUE C

DATE 20 MAR 2013

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETERS

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS: MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.

	М	ILLIMETE	RS	INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC			0.020 BSC)
L	0.10	0.20	0.30	0.004	0.008	0.012
He	1 55	1.60	1.65	0.061	0.063	0.065

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

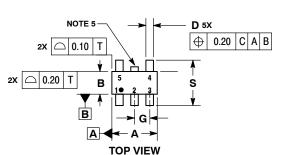
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	CATHODE 2	3. ANODE 2	SOURCE 1	3. BASE
4. COLLECTOR	CATHODE 3	CATHODE 2	4. GATE 1	4. COLLECTOR
COLLECTOR	CATHODE 4	CATHODE 1	5. GATE 2	CATHODE
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 1 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	

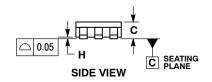
DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolle	'
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 2

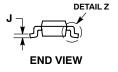
DOCUMENT NUMBER: 98AON11127D

PAGE 2 OF 2

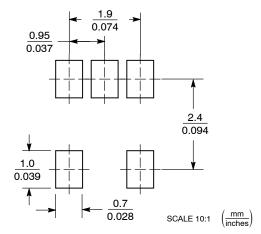

ED STYLES 3-9. REQ. BY D. BARLOW ED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. ONG XIAO ATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	11 NOV 2003 27 MAY 2005 20 MAR 2013
ONG XIAO	
ATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.




TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.85	3.15		
В	1.35	1.65		
С	0.90	1.10		
D	0.25	0.50		
G	0.95	BSC		
Н	0.01	0.10		
J	0.10	0.26		
K	0.20	0.60		
М	0 °	10 °		
S	2.50	3.00		

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location

= Date Code = Year = Pb-Free Package

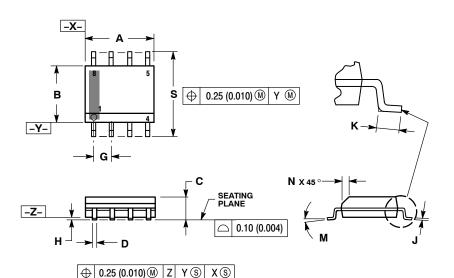
= Work Week W

= Pb-Free Package

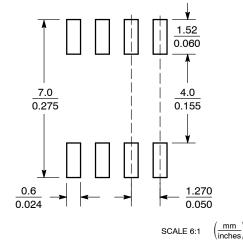
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

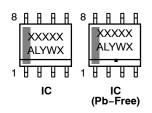
DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	TSOP-5		PAGE 1 OF 1


ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**


DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week W = Pb-Free Package

XXXXXX AYWW AYWW H \mathbb{H} Discrete **Discrete** (Pb-Free) XXXXXX = Specific Device Code

= Assembly Location Α = Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

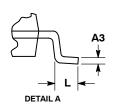
SOIC-8 NB CASE 751-07 ISSUE AK

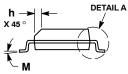
DATE 16 FEB 2011

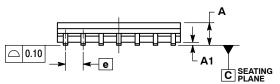
			D, 112 101 2D 2
STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 6:	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 7:	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 8:
PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER #2
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

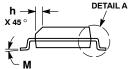
DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED or Printed versions are uncontrolled except when stamped "CONTROLLED or Printed versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED or Printed versions are uncontrolled except when a printed version or Printed version or	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

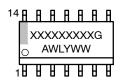
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.






SOIC-14 NB CASE 751A-03 ISSUE L

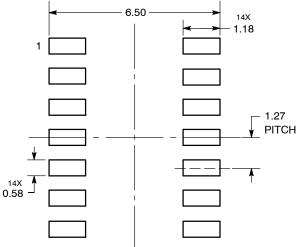

DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIMETERS		IMETERS INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7 °

GENERIC MARKING DIAGRAM*



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2

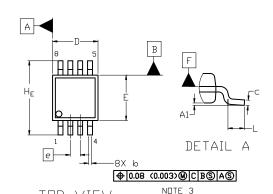
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

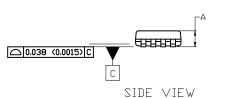
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

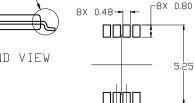
SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

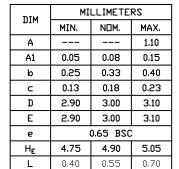
STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE


DOCUMENT NUMBER:	98ASB42565B Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CO		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020



0.65

RECOMMENDED MOUNTING FOOTPRINT

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

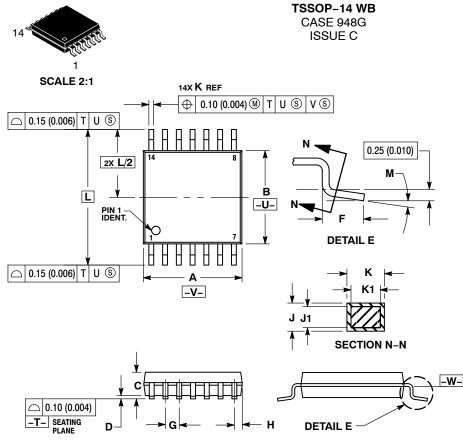
GENERIC MARKING DIAGRAM*

TOP VIEW

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 2:	STYLE 3:
PIN 1. SOURCE 1	PIN 1. N-SOURCE
2. GATE 1	2. N-GATE
3. SOURCE 2	P-SOURCE
4. GATE 2	4. P-GATE
5. DRAIN 2	5. P-DRAIN
6. DRAIN 2	6. P-DRAIN
7. DRAIN 1	7. N-DRAIN
8. DRAIN 1	8. N-DRAIN
	PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1

DOCUMENT NUMBER:	98ASB14087C Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	MICRO8		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2016

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026	BSC
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0°	8 °	0 °	8 °

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot V = Year

W = Work Week

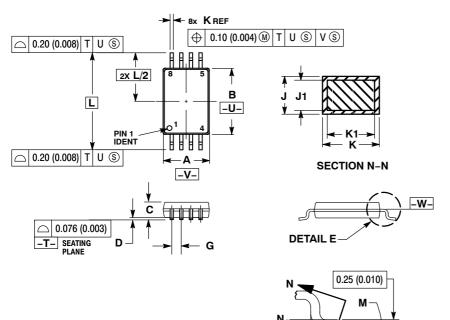
= Pb-Free Package

(Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

SOLDERIN	G FOOTPRINT
14X 0.36	7.06 — — — — — — — — — — — — — — — — — — —
1.20	DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.



TSSOP-8 CASE 948S-01 ISSUE C

≺ F⇒

DETAIL E

DATE 20 JUN 2008

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 FM 1092
- Y14.5M, 1982.

 ! CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- (U.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
- 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	4.30	4.50	0.169	0.177
С		1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65 BSC		0.026 BSC	
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolle	•
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-8		PAGE 1 OF 2

DOCUMENT NUMBER: 98AON00697D

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION.	18 APR 2000
Α	ADDED MARKING DIAGRAM INFORMATION. REQ. BY V. BASS.	13 JAN 2006
В	CORRECTED MARKING DIAGRAM PIN 1 LOCATION AND MARKING. REQ. BY C. REBELLO.	13 MAR 2006
С	REMOVED EXPOSED PAD VIEW AND DIMENSIONS P AND P1. CORRECTED MARKING INFORMATION. REQ. BY C. REBELLO.	20 JUN 2008
		-

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)