

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and ovary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or una

FAIRCHILD

SEMICONDUCTOR

NC7S86 TinyLogic® HS 2-Input Exclusive-OR Gate

General Description

The NC7S86 is a single 2-Input high performance CMOS Exclusive-OR Gate. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both inputs and output with respect to the $V_{\mbox{\scriptsize CC}}$ and GND rails. Inputs are well buffered from the output to assure high noise immunity and reduced sensitivity to input edge rate.

Features

■ Space saving SOT23 or SC70 5-lead package

October 1995

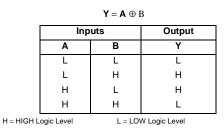
Revised August 2004

- Ultra small MicroPak[™] leadless package
- High Speed; t_{PD} 4.5 ns typ
- Low Quiescent Power; I_{CC} < 1 μA
- Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}
- Broad V_{CC} Operating Range; 2V–6V
- Balanced Propagation Delays
- Specified for 3V operation

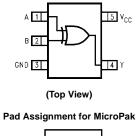
Ordering Code:

Order Number	Package Number	Product Code Top Mark	Supplied As	
NC7S86M5X	MA05B	7S86	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7S86P5X	MAA05A	S86	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7S86L6X	MAC06A	ZZ	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

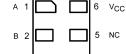
Logic Symbol



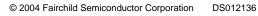
IEEE/IEC =1 R


Pin Descriptions

Pin Names	Description
А, В	Input
Y	Output
NC	No Connect


Function Table

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.


Pin Assignments for SC70 and SOT23

Υ

GND 3 4

(Top Thru View)

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@ V _{IN} ≤ −0.5V	–20 mA
@ $V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VIN)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–20 mA
@ $V_{OUT} > V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _{OUT})	–0.5V to V_{CC} + 0.5V
DC Output Source	
or Sink Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature (T _J)	150°C
Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V_{CC}) 2.0V to 6.0V Input Voltage (VIN) 0V to V_{CC} Output Voltage (V_{OUT}) 0V to V_{CC} $-40^{\circ}C$ to $+85^{\circ}C$ Operating Temperature (T_A) Input Rise and Fall Time (t_r , t_f) $V_{CC} @ 2.0V$ 0 to 1000 ns V_{CC} @ 3.0V 0 to 750 ns V_{CC} @ 4.5V 0 to 500 ns V_{CC} @ 6.0V 0 to 400 ns Thermal Resistance (θ_{JA}) SOT23-5 300°C/W SC70-5 425°C/W

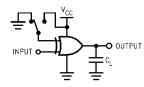
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

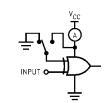
Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	conditions
V _{IH}	HIGH Level Input Voltage	2.0	1.50			1.50		V	
		3.0-6.0	0.7 V _{CC}			0.7 V _{CC}		v	
V _{IL}	LOW Level Input Voltage	2.0			0.50		0.50	v	
		3.0-6.0			0.3 V _{CC}		0.3 V _{CC}	v	
V _{ОН}	HIGH Level Output Voltage	2.0	1.90	2.0		1.90			
		3.0	2.90	3.0		2.90		v	$I_{OH} = -20 \ \mu A$ $V_{IN} = V_{IH}, \ V_{IL}$
		4.5	4.40	4.5		4.40		v	$V_{IN}=V_{IH},\ V_{IL}$
		6.0	5.90	6.0		5.90			
									$V_{IN} = V_{IH}, V_{IL}$
		3.0	2.68	2.85		2.63		V	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.35		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.85		5.63			$I_{OH} = -2.6 \text{ mA}$
V _{OL}	LOW Level Output Voltage	2.0		0.0	0.10		0.10		
		3.0		0.0	0.10		0.10	v	$I_{OL} = 20 \ \mu A$ $V_{IN} = V_{IH} \text{ or } V_{IL}$
		4.5		0.0	0.10		0.10	v	$V_{IN} = V_{IH} \text{ or } V_{IL}$
		6.0		0.0	0.10		0.10		
									$V_{IN} = V_{IH} \text{ or } V_{IL}$
		3.0		0.1	0.26		0.33	v	$I_{OL} = 1.3 \text{ mA}$
		4.5		0.1	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.1	0.26		0.33		$I_{OL} = 2.6 \text{ mA}$
I _{IN}	Input Leakage Current	6.0			±0.1		±1.0	μA	$V_{IN} = V_{CC}, \ GND$
I _{CC}	Quiescent Supply Current	6.0			1.0		10.0	μΑ	$V_{IN} = V_{CC}, GND$

www.fairchildsemi.com


2

Symbol	Parameter	Vcc	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	5.0		4.5	17			ns	$C_L = 15 \text{ pF}$	
t _{PHL}		2.0		22	100		125			٦
		3.0		12	27		35		C 50 - F	Figures 1, 3
		4.5		8.5	20		25	ns	C _L = 50 pF	1, 5
		6.0		7	17		21			
t _{TLH} ,	Output Transition Time	5.0		3	8			ns	$C_L = 15 \text{ pF}$	
t _{THL}		2.0		25	125		155			1
		3.0		16	35		45		C _L = 50 pF	Figures 1, 3
		4.5		11	25		31	ns		
		6.0		9	21		26			
CIN	Input Capacitance	Open		2	10		10	pF		
C _{PD}	Power Dissipation Capacitance	5.0		8				pF	(Note 3)	Figure 2

NC7S86


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{|N}) + (I_{CC}\text{static}).$

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_w = 500 ns

FIGURE 1. AC Test Circuit

Input = AC Waveform; PRR = variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

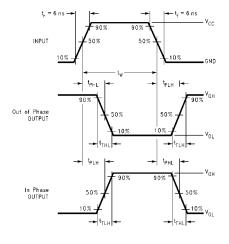
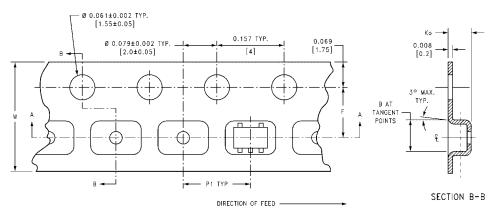
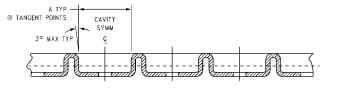
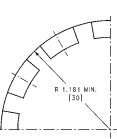


FIGURE 3. AC Waveforms



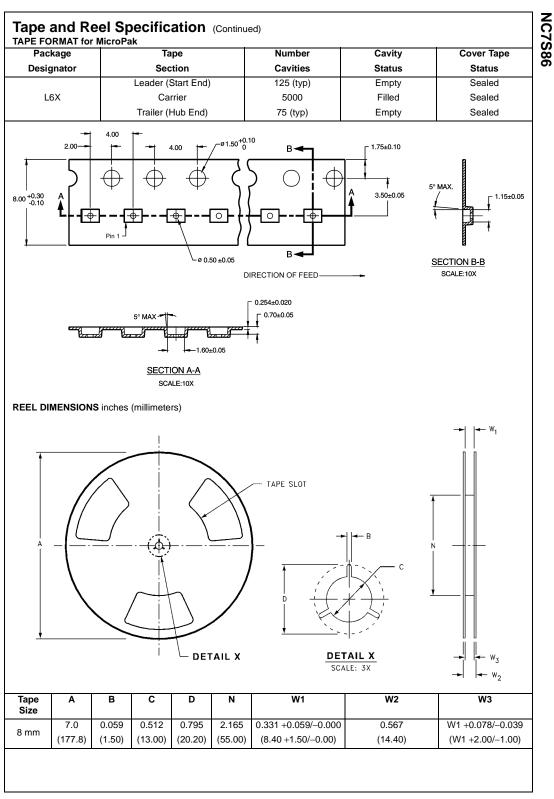

Tape and Reel Specification

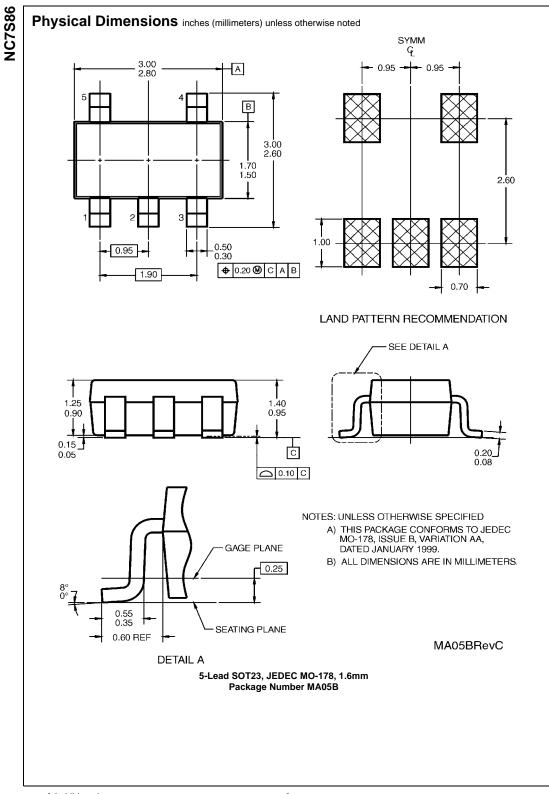
TAPE FORMAT for SC70 and SOT23


TAPE FORMAT for SC70 and SO123									
Package	Таре	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
M5X, P5X	Carrier	3000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					

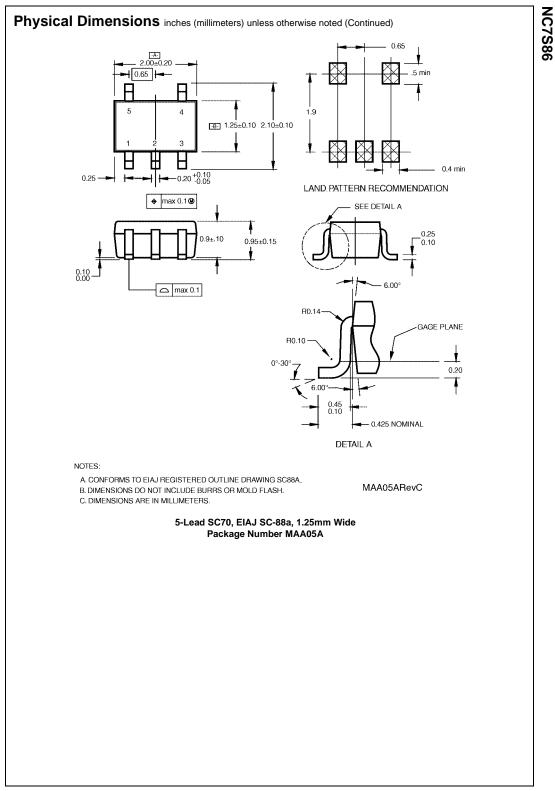
TAPE DIMENSIONS inches (millimeters)

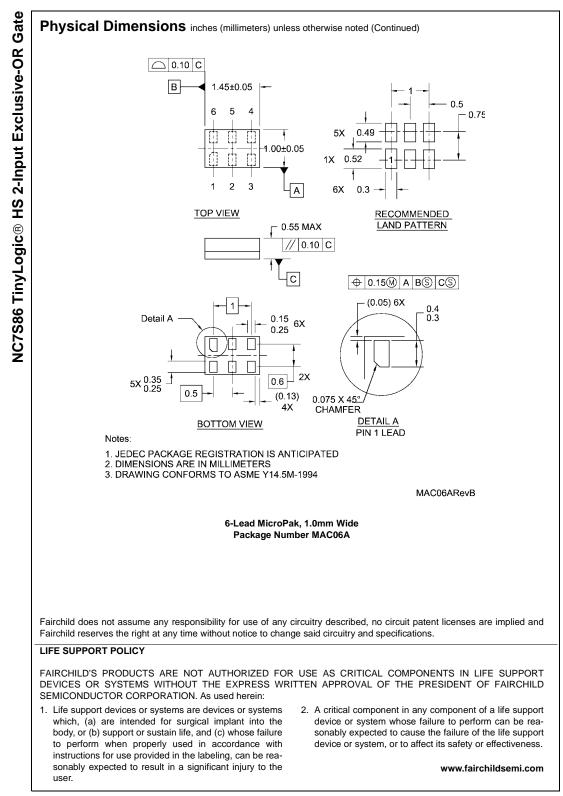
SECTION A-A




BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ±0.004	0.053 ±0.004	0.157	0.315 ±0.004
		(2.35)	(2.45)	(3.5 ±0.10)	(1.35 ±0.10)	(4)	(8 ±0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ±0.002	0.055 ±0.004	0.157	0.315 ±0.012
	0 11111	(3.3)	(3.3)	(3.5 ±0.05)	(1.4 ±0.11)	(4)	(8 ±0.3)


www.fairchildsemi.com


4

6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)