MOSFET – Dual, N-Channel, Small Signal

20 V, 540 mA

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage
- Small Footprint 1.6 x 1.6 mm
- ESD Protected Gate
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load/Power Switches
- Power Supply Converter Circuits
- Battery Management
- Cell Phones, Digital Cameras, PDAs, Pagers, etc.

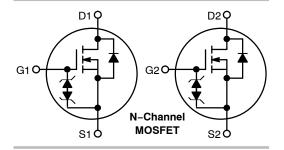
MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted.)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	20	V
Gate-to-Source Voltage			V_{GS}	±7.0	V
Continuous Drain Current	Steady T _A = 25°C		I_	540	mA
(Note 1)	State	$T_A = 85^{\circ}C$	I _D	390	
Power Dissipation (Note 1)	Steady State		P _D	250	mW
Continuous Drain Current	t ≤ 5 s	$T_A = 25^{\circ}C$	I _D	570	mA
(Note 1)	1 ≥ 5 5	$T_A = 85^{\circ}C$	טי	410	
Power Dissipation (Note 1)	t ≤ 5 s		P _D	280	mW
Pulsed Drain Current	t _p =	: 10 μs	I _{DM}	1.5	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode)			IS	350	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	500	°C/W
Junction-to-Ambient – $t \le 5$ s (Note 1)		447	

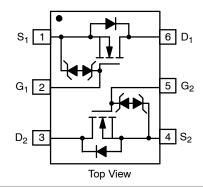
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface mounted on FR4 board using 1 in sq pad size (Cu. area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS} R _{DS(on)} Typ		I _D Max (Note 1)	
20	400 mΩ @ 4.5 V		
	500 mΩ @ 2.5 V	540 mA	
	700 mΩ @ 1.8 V		



TV = Specific Device Code M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

PINOUT: SOT-563

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	-		-	14	-	mV/°C
Zero Gate Voltage Drain Current		V _{GS} = 0 V	T _J = 25°C	-	-	1.0	μΑ
	I _{DSS}	V _{DS} = 16 V	T _J = 125°C	-	-	5.0	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 4	1.5 V	_	-	±5.0	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250$	μΑ	0.45	-	1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	-		-	2.0	-	mV/°C
Drain-to-Source On Resistance		$V_{GS} = 4.5 \text{ V}, I_D = 540$) mA	-	0.4	0.55	Ω
	R _{DS(on)}	V _{GS} = 2.5 V, I _D = 500) mA	-	0.5	0.7	
		V _{GS} = 1.8 V, I _D = 350 mA		-	0.7	0.9	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 540 mA		-	1.0	-	S
CHARGES AND CAPACITANCES	•						
Input Capacitance	C _{ISS}			-	80	150	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V	_{DS} = 16 V	-	13	25	
Reverse Transfer Capacitance	C _{RSS}			-	10	20	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 10 V; I_{D} = 540 mA		-	1.5	2.5	nC
Threshold Gate Charge	Q _{G(TH)}			-	0.1	-	
Gate-to-Source Charge	Q _{GS}			-	0.2	-	
Gate-to-Drain Charge	Q_{GD}			-	0.35	-	
SWITCHING CHARACTERISTICS, V _{GS} = V	Note 4)				-		
Turn-On Delay Time	t _{d(ON)}			-	6.0	-	ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 540 mA, R_{G} = 10 Ω		-	4.0	-	
Turn-Off Delay Time	t _{d(OFF)}			_	16	_	
Fall Time	t _f			-	8.0	-	
DRAIN-SOURCE DIODE CHARACTERISTIC	s			<u> </u>	<u> </u>	-	-
Forward Diode Voltage	.,	V _{GS} = 0 V,	T _J = 25°C	-	0.7	1.2	V
	V _{SD}	$I_{S} = 350 \text{ mA}$ $T_{J} = 125^{\circ}\text{C}$		-	0.6	-	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, d_{ISD}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 350 \text{ mA}$		-	6.5	_	ns
	•	1 1 1 1 1 1					

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Surface—mounted on FR4 board using 1 in. sq. pad size (Cu. area = 1.127 in sq [1 oz] including traces).

- Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

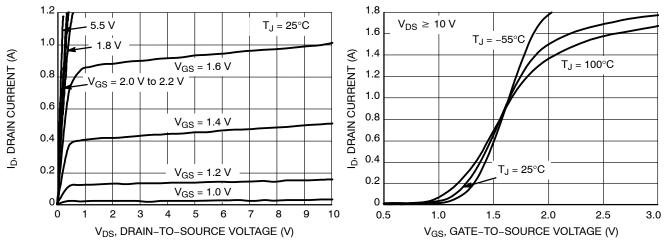


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

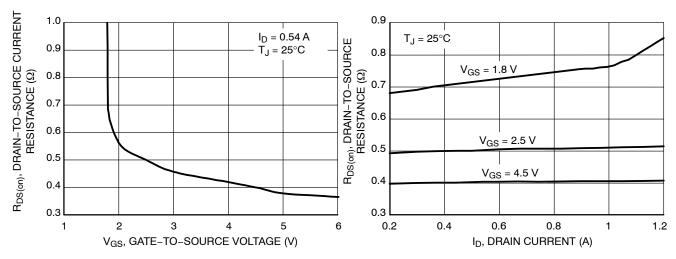


Figure 3. On-Resistance versus Gate-to-Source Voltage

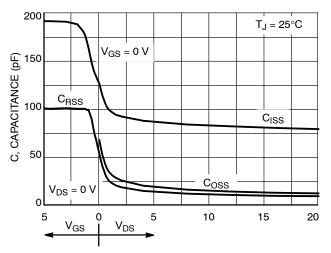
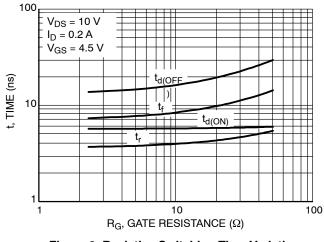

Figure 4. On-Resistance versus Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)


 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ OPAIN–TO–SOURCE VOLTAGE (V) V_{GS}, GATE-TO-SOURCE VOLTAGE (V) V_{DS} V_{GS} Q_{GS} Q_{GD} $I_D = 0.54 A$ $T_J = 25^{\circ}C$ 0 0.2 0 0.4 0.6 0.8 1.2 1.4 1.6 Qg, TOTAL GATE CHARGE (nC)

 Q_T

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

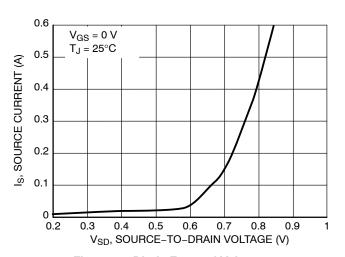


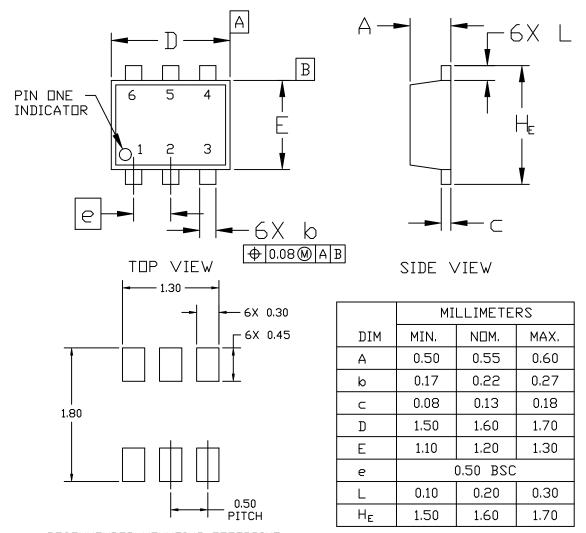
Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

ORDERING INFORMATION

Device	Package	Shipping
NTZD3154NT1G		
NTZD3154NT1H	SOT-563 (Pb-Free)	4000 / Tana 9 Basi
NTZD3154NT2G		4000 / Tape & Reel
NTZD3154NT2H		
NTZD3154NT5G		2000 / Tong 9 Dool
NTZD3154NT5H		8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT*

For additional information on our Pb-Free strategy and soldering details, please download the IIN Semiconductor Soldering and Mounting Techniques Reference Manual, SILDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 2	

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-563, 6 LEAD CASE 463A

ISSUE H

DATE 26 JAN 2021

STYLE 1: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 2: PIN 1. EMITTER 1 2. EMITTER 2 3. BASE 2 4. COLLECTOR 2 5. BASE 1 6. COLLECTOR 1	STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 2 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE 1
	STYLE 5: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE 5. CATHODE 6. CATHODE	
	STYLE 8: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SDURCE 5. DRAIN 6. DRAIN	
STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C 6. ANODE 1	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Month Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)