

Is Now Part of

ON Semiconductor®

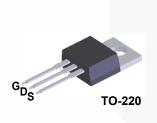
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

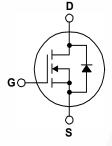
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and ovary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or una

FCP11N60F N-Channel SuperFET[®] FRFET[®] MOSFET 600 V, 11 A, 380 m Ω

Features


- 650 V @T_J = 150°C
- Typ. R_{DS(on)} = 320 mΩ
- Fast Recovery Type (t_{rr} = 120 ns)
- Ultra Low Gate Charge (Typ. Q_g = 40 nC)
- Low Effective Output Capacitance (Typ. C_{oss}.eff = 95 pF)
- 100% Avalanche Tested
- RoHS compliant


Application

- LCD/LED/PDP TV
- Lighting
- Solar Inverter
- AC-DC Power Supply

Description

SuperFET[®] MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. Super-FET FRFET[®] MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter Drain to Source Voltage			FCP11N60F	Unit V	
V _{DSS}				600		
I _D	Drain Current	- Continuous (T _C = 25 ^o C)		11		
		- Continuous (T _C = 100 ^o C)		7	— A	
DM	Drain Current	- Pulsed	(Note 1)	33	Α	
/ _{GSS}	Gate to Source Voltage			±30	V	
AS	Single Pulsed Avalanche	Energy	(Note 2)	340	mJ	
AR	Avalanche Current		(Note 1)	11	Α	
AR	Repetitive Avalanche Ene	ergy	(Note 1)	12.5	mJ	
dv/dt	Peak Diode Recovery dv/	dt	(Note 3)	4.5	V/ns	
P _D	Power Dissipation	(T _C = 25°C)		125	W	
		- Derate above 25ºC		1.0	W/ºC	
Г _Ј , Т _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
ΓL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

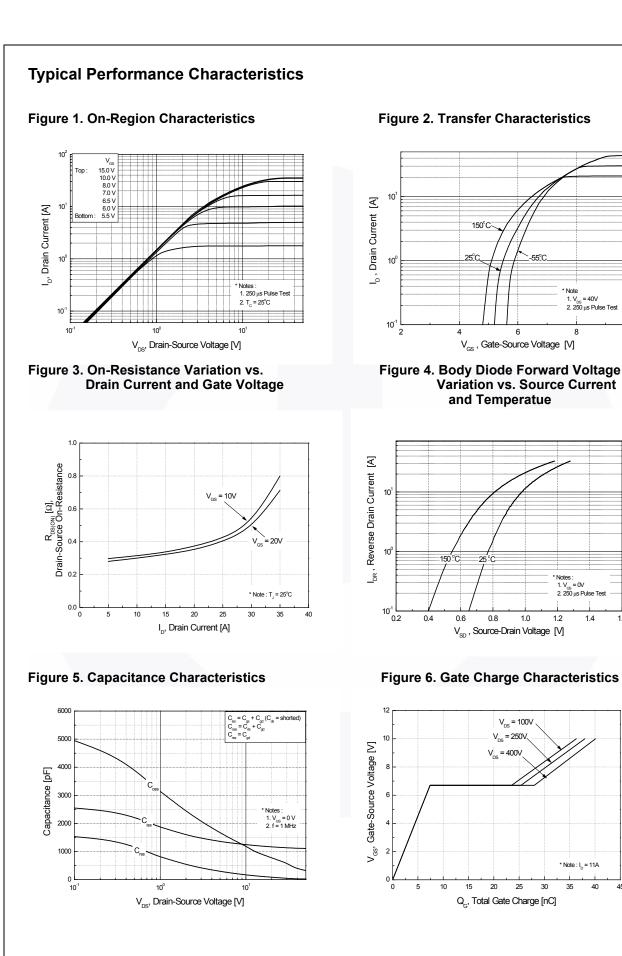
Symbol	Parameter	FCP11N60F	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max	1.0	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max	62.5	°C/W

November 2013

Device MarkingDeviceFCP11N60FFCP11N60F		Device	Package	Package Reel		Tape Width	Qua	antity
		FCP11N60F	TO-220 -		-	-	50	
Electric	al Characte	eristics T _C = 25°C un	less otherwise noted.					
Symbol		Parameter	Test Cond	litions	Min.	Тур.	Max.	Unit
Off Charact	teristics				1			
	Drain to Source Breakdown Voltage		$V_{GS} = 0 V, I_D = 250 \mu A, T_C = 25^{\circ}C$ $V_{GS} = 0 V, I_D = 250 \mu A, T_C = 150^{\circ}C$			-	-	V
BV _{DSS}						650	-	V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient		$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-	0.6	-	V/ºC
BV _{DS}	Drain-Source Avalanche Breakdown Voltage		V _{GS} = 0 V, I _D = 11 A		-	700	-	V
	Zero Gate Voltage Drain Current		V _{DS} = 600 V, V _{GS} = 0 V		-	-	1	μA
IDSS	Zero Gale volta	ige Drain Current	V _{DS} = 480 V, T _C = 125 ^o C			-	10	
I _{GSS}	Gate to Body L	eakage Current	$V_{GS} = \pm 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$		-	-	±100	nA
On Charact	teristics		·					
V _{GS(th)}	Gate Threshold	Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$		3.0	-	5.0	V
R _{DS(on)}	Static Drain to S	Source On Resistance	V _{GS} = 10 V, I _D = 5.5 A		-	0.32	0.38	Ω
9 _{FS}	Forward Transo	conductance	V _{DS} = 40 V, I _D = 5.5 A		-	6	-	S
Dynamic C	haracteristics							
C _{iss}	Input Capacitar	ice	V _{DS} = 25 V, V _{GS} = 0 V f = 1.0 MHz		-	1148	1490	pF
C _{oss}	Output Capacita	ance			-	671	870	pF
C _{rss}	Reverse Transf	er Capacitance	1 - 1.0 10112		-	63	82	pF
C _{oss}	Output Capacita	ance	V _{DS} = 480 V, V _{GS} =	0 V, f = 1.0 MH	z -	35	-	pF
C _{oss} eff.	Effective Outpu	t Capacitance	$V_{DS} = 0 V$ to 400 V, $V_{GS} = 0 V$		-	95	-	pF
Switching (Characteristics					i		
t _{d(on)}	Turn-On Delay	Time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 11 \text{ A}$ R _G = 25 Ω		-	34	80	ns
t _r	Turn-On Rise T	ime			-	98	205	ns
t _{d(off)}	Turn-Off Delay	Time			-	119	250	ns
t _f	Turn-Off Fall Ti	me		(Note -	4) -	56	120	ns
Q _{g(tot)}	Total Gate Cha	rge at 10V	V _{DS} = 480 V, I _D = 1 ⁴	1 A	-	40	52	nC
Q _{gs}	Gate to Source	Gate Charge	$V_{GS} = 10 V$ (Note 4)		-	7.2	-	nC
Q _{qd}	Gate to Drain "I	Viller" Charge			4) _	21	-	nC
Ū.	ce Diode Charac	teristics Maximum Rati	ngs			I		
I _S	Maximum Continuous Drain to Source Diode Forward Current			-	-	11	Α	
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-	33	Α	
V _{SD}	Drain to Source	Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 11	A	-	-	1.4	V
t _{rr}	Reverse Recov		V _{GS} = 0 V, I _{SD} = 11		-	120	-	ns
Q _{rr}	Reverse Recov	erv Charge	$dI_{F}/dt = 100 A/\mu s$		-	0.8		μC

Notes:

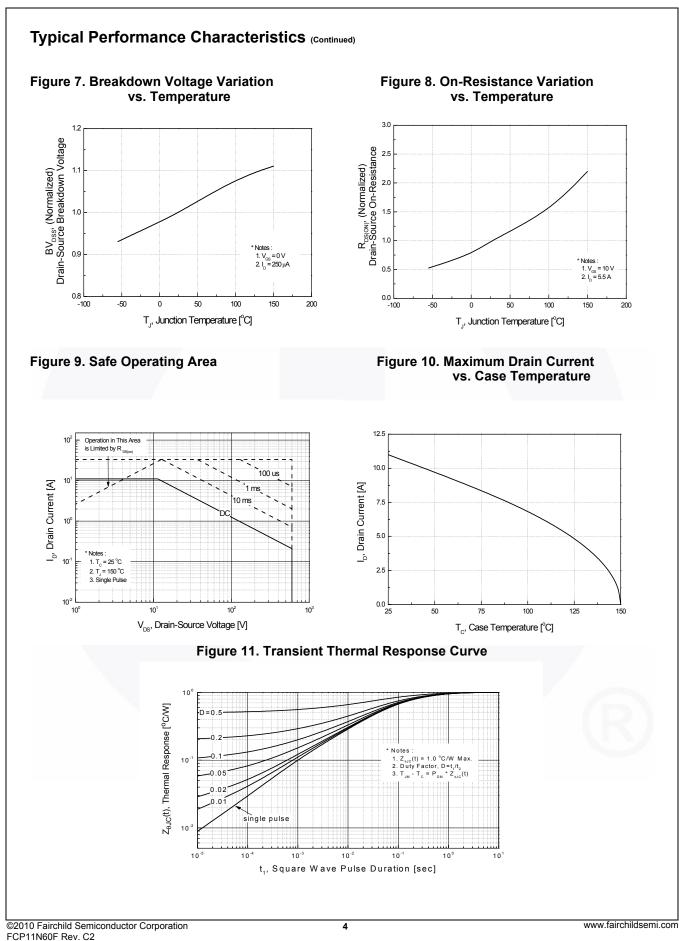
1. Repetitive Rating : Pulse width limited by maximum junction temperature.

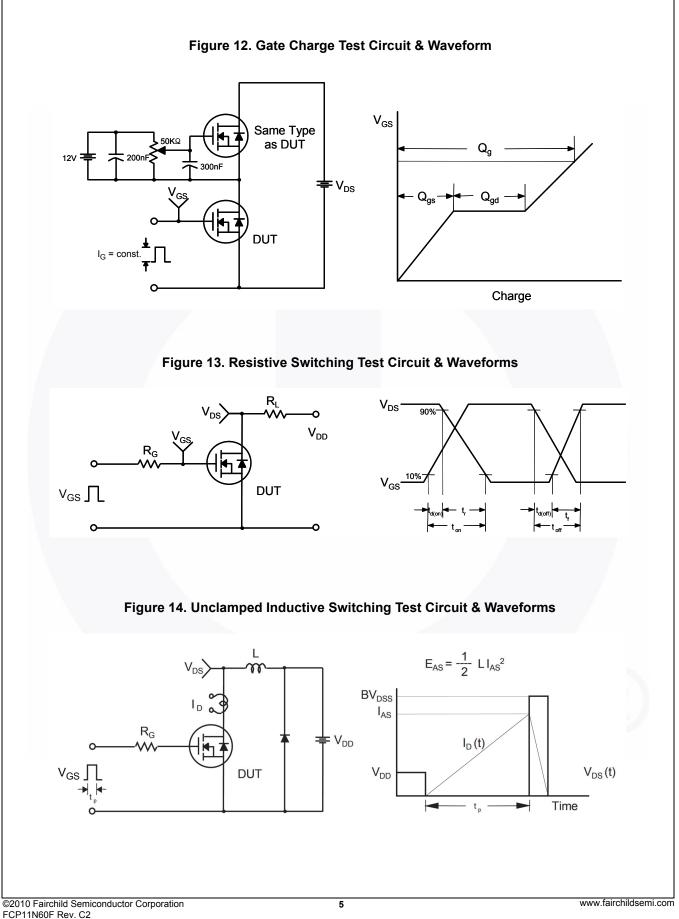

2. I_{AS} = 5.5 A, V_{DD} = 50 V, R_G = 25 Ω , Starting T_J = 25°C.

3. I_{SD} \leq 11 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS,} starting ~T_J = 25°C.

4. Essentially independent of operating temperature.

10


1.6



©2010 Fairchild Semiconductor Corporation FCP11N60F Rev. C2

www.fairchildsemi.com

45

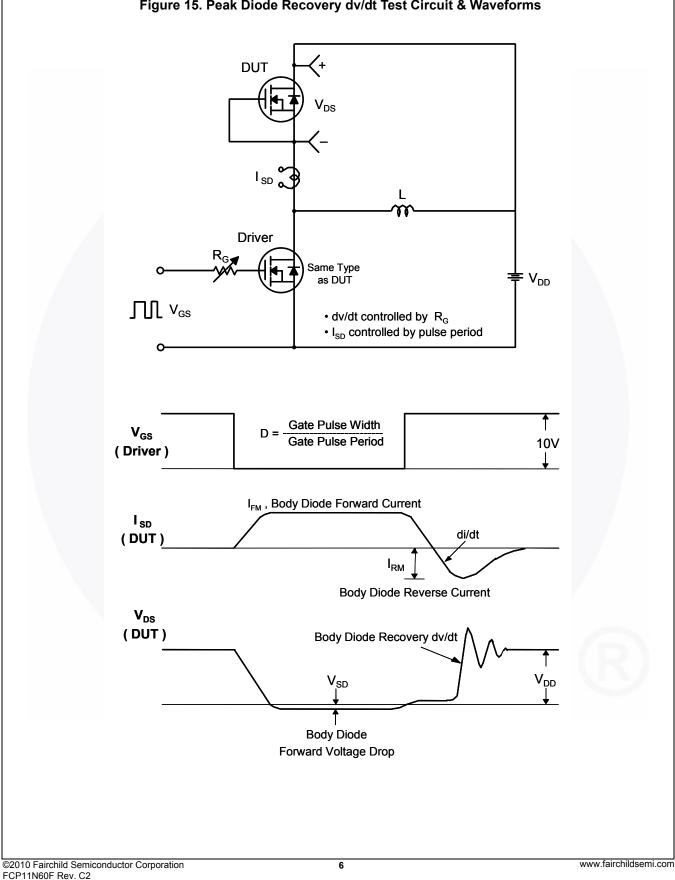
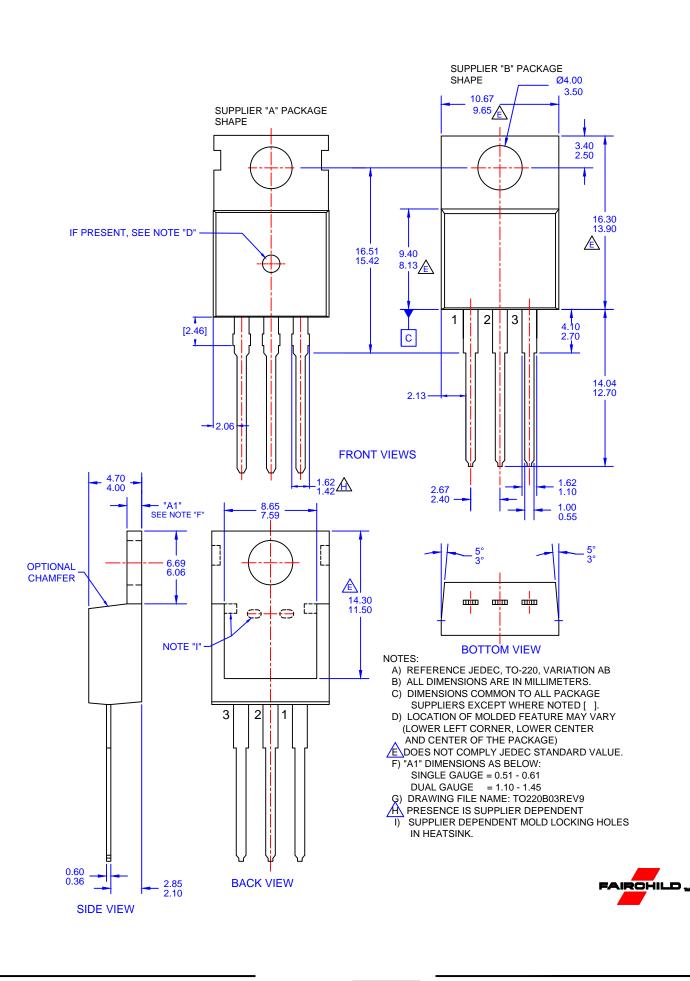



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)