onsemi

MOSFET – Dual N-Channel, POWERTRENCH[®]

20 V, 5.0 A, 54 m Ω

FDMA1024NZ

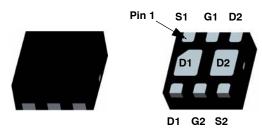
General Description

This is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses.

The MicroFET $^{\text{m}}$ 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Features

- Max $r_{DS(on)} = 54 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 5.0 \text{ A}$
- Max $r_{DS(on)} = 66 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$, $I_D = 4.2 \text{ A}$
- Max $r_{DS(on)} = 82 \text{ m}\Omega$ at $V_{GS} = 1.8 \text{ V}$, $I_D = 2.3 \text{ A}$
- Max $r_{DS(on)} = 114 \text{ m}\Omega$ at $V_{GS} = 1.5 \text{ V}$, $I_D = 2.0 \text{ A}$
- HBM ESD Protection Level = 1.6 kV (Note 3)
- Low Profile 0.8 mm Maximum in the New Package MicroFET[™] 2 x 2 mm
- Free from Halogenated Compounds and Antimony Oxides
- This Device is Pb-Free and is RoHS Compliant


Applications

- Baseband Switch
- Loadswitch
- DC–DC Buck Converters

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit			
V _{DS}	Drain to Source Voltage	20	V			
V _{GS}	Gate to Source Voltage	±8	V			
I _D	Drain Current – Continuous (Note 1a)	5.0	А			
	– Pulsed	6.0				
PD	Power Dissipation (Note 1a)	1.4	W			
	Power Dissipation (Note 1b)	0.7				
T _{J,} T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

WDFN6 2x2, 0.65P (MicroFET[™] 2x2) CASE 511DA

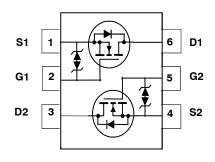
MARKING DIAGRAM

= Assembly Plant Code

= Numeric Date Code

= Lot Code

&Z


&2

&K

024

= Specific Device Code

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

1

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	86 (Single Operation)	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1b)	173 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1c)	69 (Dual Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1d)	151 (Dual Operation)	

PACKAGE MARKING AND ORDERING INFORMATION

Gate to Source Leakage Current

Device Marking	Device	Package	Shipping [†]
024	FDMA1024NZ	WDFN6 2x2, 0.65P (MicroFET 2x2) (Pb-Free)	3000 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	OFF CHARACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	20			V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25°C		19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ

 $V_{GS}=\pm 8~V,~V_{DS}=0~V$

±10

μΑ

ON CHARACTERISTICS

I_{GSS}

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	0.4	0.7	1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C		-3		mV/°C
r _{DS(on)}	Static Drain to Source On-Resistance	V_{GS} = 4.5 V, I _D = 5.0 A		37	54	mΩ
		V_{GS} = 2.5 V, I _D = 4.2 A		43	66	
		V _{GS} = 1.8 V, I _D = 2.3 A		52	82	
		V _{GS} = 1.5 V, I _D = 2.0 A		67	114	
		V_{GS} = 4.5 V, I _D = 5.0 A, T _J = 125°C		51	75	1
g fs	Forward Transconductance	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$		16		S

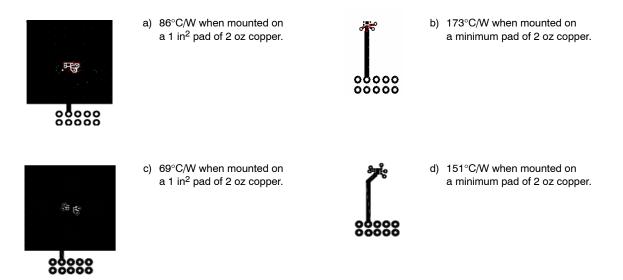
DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz	375	500	pF
C _{oss}	Output Capacitance		70	95	
C _{rss}	Reverse Transfer Capacitance		40	65	
R _G	Gate Resistance	f = 1 MHz	4.3		Ω

SWITCHING CHARACTERISTICS

td _(on)	Turn – On Delay Time	V_{DD} = 10 V, I _D = 5.0 A, V _{GS} = 4.5 V, R _{GEN} = 6 Ω	5.3	11	ns
t _r	Rise Time	$v_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega_2$	2.2	10	
t _{D(off)}	Turn – Off Delay Time	1	18	33	
t _f	Fall Time	1	2.3	10	
Qg	Total Gate Charge	$V_{GS} = 4.5 \text{ V}, V_{DD} = 10 \text{ V},$ $i_D = 5.0 \text{ A}$	5.2	7.3	nC
Q _{gs}	Gate to Source Gate Charge	$I_{\rm D} = 5.0 {\rm A}$	0.6		
Q _{gd}	Gate to Drain "Miller" Charge		0.9		

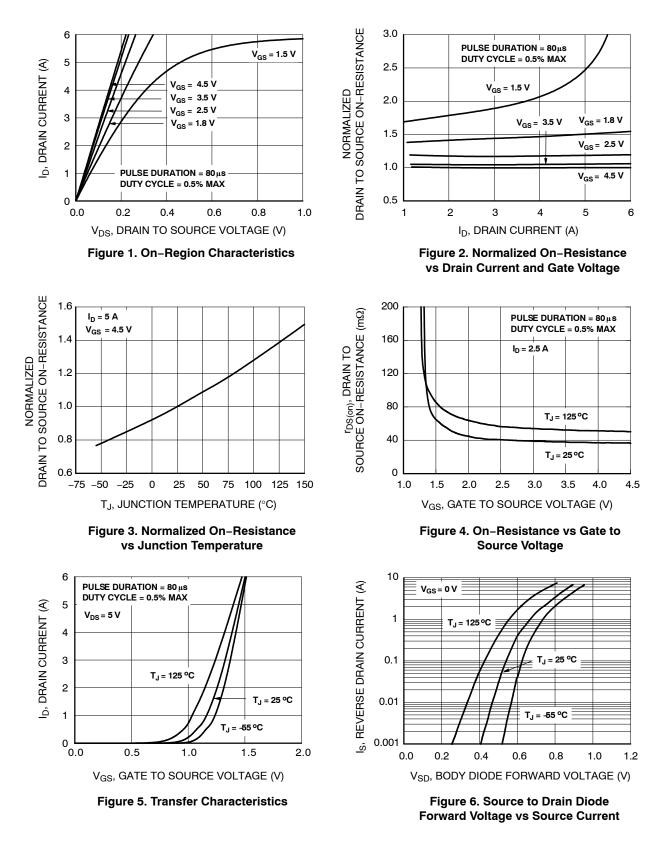
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit	
DRAIN-SOU	DRAIN-SOURCE DIODE CHARACTERISTICS						
۱ _S	Maximum Continuous Source-Drain Diode Forward Current				1.1	А	
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.1 A (Note 2)		0.7	1.2	V	
t _{rr}	Reverse Recovery Time	I _F = 5.0 A, di/dt = 100 A/μs		19	35	ns	
Q _{rr}	Reverse Recovery Charge			5	10	nC	

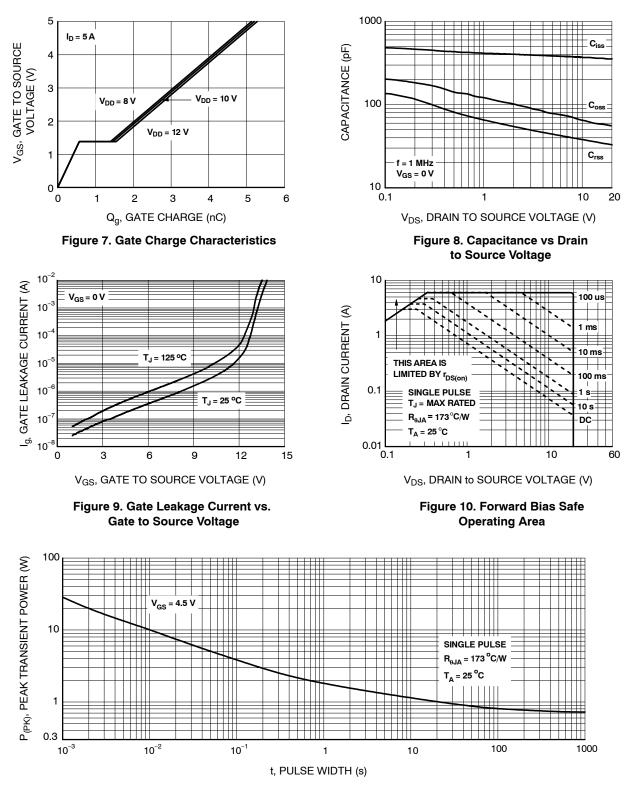
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

- 1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design. (a) $R_{\theta JA} = 86 \text{ }^{\circ}\text{C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For single operation.


 - (b) $R_{\theta JA} = 173 \text{ °C/W}$ when mounted on a a minimum pad of 2 oz copper. For single operation.
 - (c) R_{0JA}^{a} = 69 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For dual operation.
 - (d) $R_{\theta,JA} = 151 \text{ °C/W}$ when mounted on a a minimum pad of 2 oz copper. For dual operation.

- 2. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

<u>www.onsemi.com</u> 5

(T_J = 25°C unless otherwise noted)

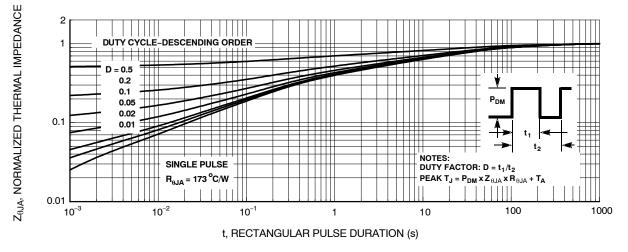
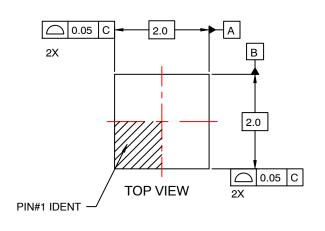
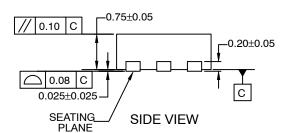
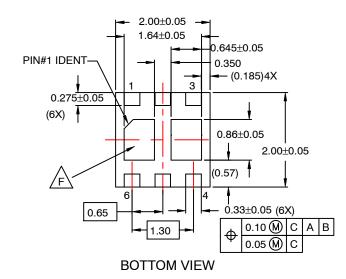


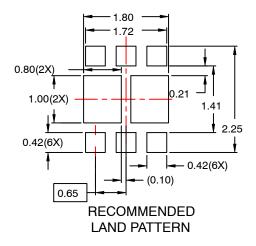
Figure 12. Junction to Ambient Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


MicroFET is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


www.onsemi.com 6




WDFN6 2x2, 0.65P CASE 511DA ISSUE O

DATE 31 JUL 2016

NOTES:

- A. CONFORM TO JADEC REGISTRATIONS MO-229, VARIATION VCCC, EXCEPT WHERE NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

F. NON-JEDEC DUAL DAP

DOCUMENT NUMBER:	98AON13615G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to any inticular purpose, nor does ON Semiconductor	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically			

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specification scan and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)