MOSFET – Power, Single, N-Channel, μ8FL 30 V, 52 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

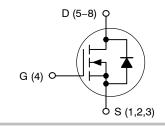
Applications

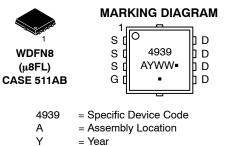
- Low-Side DC-DC Converters
- Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	30	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	14.3	Α
Current $R_{\theta JA}$ (Note 1)		T _A = 85°C	1	10.3	1
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	P _D	2.21	W
Continuous Drain		T _A = 25°C	I _D	20.3	А
Current R _{θJA} ≤ 10 s (Note 1)		T _A = 85°C	1	14.7	1
Power Dissipation $R_{\theta JA} \leq 10 \text{ s} \text{ (Note 1)}$	Steady	$T_A = 25^{\circ}C$	P _D	4.48	W
Continuous Drain	State	T _A = 25°C	I _D	8.9	А
Current $R_{\theta JA}$ (Note 2)		T _A = 85°C	1	6.4	1
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	0.85	W
Continuous Drain		$T_{C} = 25^{\circ}C$	I _D	52	А
Current $R_{\theta JC}$ (Note 1)		$T_C = 85^{\circ}C$		38	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	29.8	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	170	А
Operating Junction and S	Т _Ј , T _{stg}	–55 to +150	°C		
Source Current (Body Die	ا _S	35	А		
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to-So $(T_J = 25^{\circ}C, V_{DD} = 50 \text{ V}, \text{V} $ $I_L = 31 \text{ A}_{pk}, L = 0.1 \text{ mH}, F$	E _{AS}	48	mJ		
Lead Temperature for So (1/8" from case for 10 s)	dering Pur	poses	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	5.5 mΩ @ 10 V	52 A
	8.0 mΩ @ 4.5 V	52 A

N-Channel MOSFET

(Note: Microdot may be in either location)

= Work Week = Pb-Free Package

WW

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4939NTAG	WDFN8 (Pb-Free)	1500/Tape & Reel
NTTFS4939NTWG	WDFN8 (Pb-Free)	5000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	4.2	°C/W
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	56.5	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	146.5	
Junction-to-Ambient – (t \leq 10 s) (Note 3)	$R_{\theta JA}$	28	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size (40 mm², 1 oz. Cu).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					-		-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 125^{\circ}C$			10	1
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V				±100	nA

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.2		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 V$	l _D = 20 A		4.1	5.5	mΩ
			I _D = 10 A		4.1		
		I _D = 20 A		6.0	8.0		
		V _{GS} = 4.5 V	I _D = 10 A		5.9		
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _D = 15 A			35		S

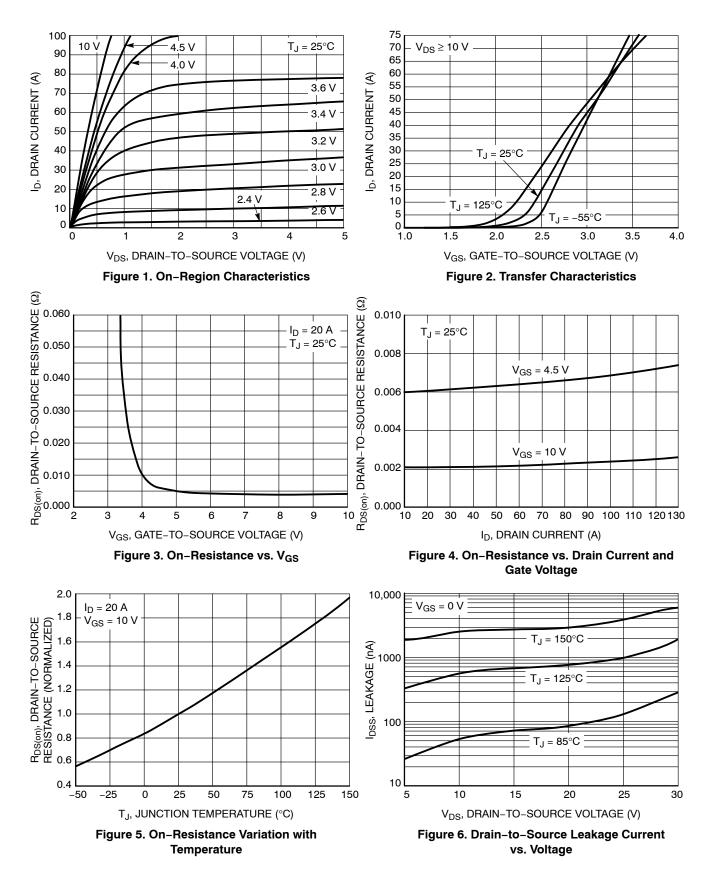
CHARGES AND CAPACITANCES

C _{iss}			1979		pF
C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V		711		
C _{rss}	1		20.2		
Q _{G(TOT)}			12.4		nC
Q _{G(TH)}			3.2		
Q _{GS}	$v_{GS} = 4.5 \text{ V}, v_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$		6.0		
Q _{GD}	1		1.8		
Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 20 A		28		nC
	Coss Crss QG(TOT) QG(TH) QGS QGD	$\begin{tabular}{ c c c c c c } \hline C_{oss} & $V_{GS} = 0 $V, $f = 1.0 $MHz, $V_{DS} = 15 V \\ \hline C_{rss} & $Q_{G(TOT)}$ \\ \hline $Q_{G(TOT)}$ & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $$	$\begin{tabular}{ c c c c c c } \hline C_{oss} & $V_{GS} = 0 $ V, $f = 1.0 $ MHz, $V_{DS} = 15 $ V$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{tabular}{ c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 711 \\ \hline C_{rss} & 20.2 \\ \hline $Q_{G(TOT)}$ & 12.4 \\ \hline $Q_{G(TH)}$ & V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 20 A & 3.2 \\ \hline Q_{GD} & 1.8 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 711 & 20.2 & $$

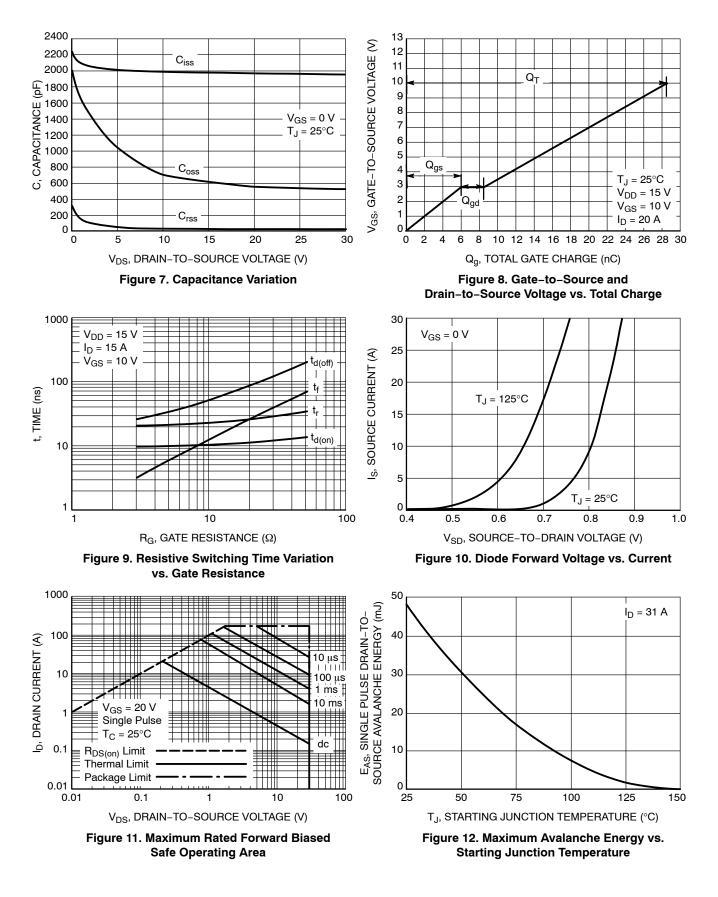
SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(on)}		12.2	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	20.6	
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D}$ = 15 A, $R_{\rm G}$ = 3.0 Ω	20.8	
Fall Time	t _f		3.9	

5. Pulse Test: pulse width = 300 $\mu s,$ duty cycle \leq 2%.


6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC	S (Note 6)						
Turn-On Delay Time	t _{d(on)}				8.7		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS}	= 15 V,		19.5		
Turn-Off Delay Time	t _{d(off)}	V_{GS} = 10 V, V_{DS} I _D = 15 A, R _G =	3.0 Ω		25.3		
Fall Time	t _f				3.2		
DRAIN-SOURCE DIODE CHARA	ACTERISTICS						
Forward Diode Voltage	V _{SD}	$ \begin{array}{c} V_{GS} = 0 \ V, \\ I_{S} = 20 \ A \end{array} \qquad \begin{array}{c} T_{J} = 25^{\circ}C \\ T_{J} = 125^{\circ}C \end{array} $		0.84	1.2	V	
			$T_J = 125^{\circ}C$		0.71		
Reverse Recovery Time	t _{RR}				35.5		ns
Charge Time	t _a	$V_{GS} = 0 V, d_{IS}/d_t =$	100 A/μs,		19		1
Discharge Time	t _b	$I_{\rm S} = 20 \rm A$			16.5		1
Reverse Recovery Charge	Q _{RR}				28		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S	- T _A = 25°C			0.38		nH
Drain Inductance	L _D				0.054		1
Gate Inductance	L _G				1.3		1
Gate Resistance	R _G				1.1	2.0	Ω

5. Pulse Test: pulse width = 300 μs, duty cycle ≤ 2%.
 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

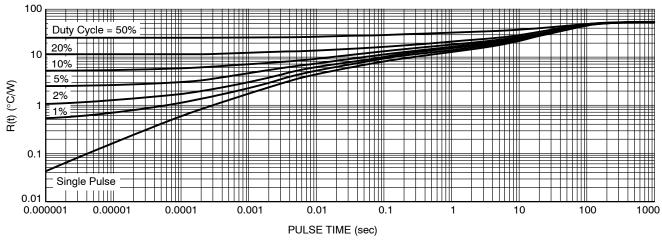
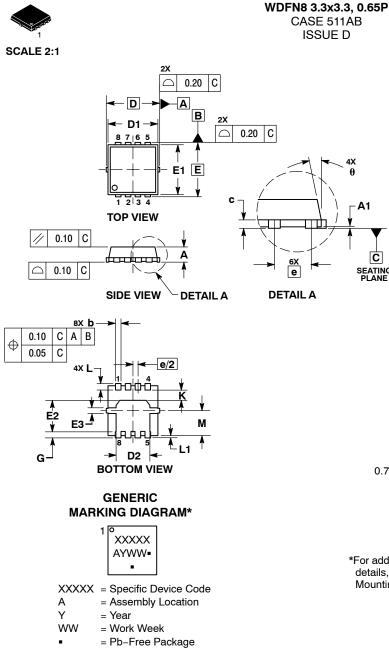



Figure 13. Thermal Response

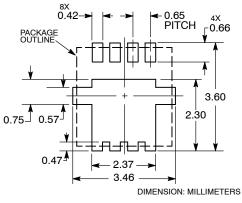
DURSEM

DATE 23 APR 2012

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

NOTES:

A1


C

SEATING PLANE

- LES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. 1. 2.
- 3.

	MI	LLIMETE	RS		INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	;	3.30 BSC		0	.130 BSC)	
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
Е	:	3.30 BSC		0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е		0.65 BSC	;	0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	FION: WDFN8 3.3X3.3, 0.65P PAGE 1 OF						
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.							

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)