8-Bit Serial-Input/Parallel-Output Shift Register

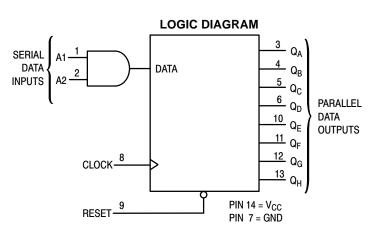
High–Performance Silicon–Gate CMOS

The MC74HC164B is identical in pinout to the LS164. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The MC74HC164B is an 8-bit, serial-input to parallel-output shift register. Two serial data inputs, A1 and A2, are provided so that one input may be used as a data enable. Data is entered on each rising edge of the clock. The active-low asynchronous Reset overrides the Clock and Serial Data inputs. Schmitt-trigger action at the Clock input enhances the device's tolerance to slower rise and fall times and immunity to noise of the input clock signal.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 V to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 244 FETs or 61 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


		MARKING DIAGRAMS
14 1	SOIC-14 D SUFFIX CASE 751A	14 R R R R R R R HC164BG O AWLYWW 18 8 8 8 8 8
14 (1	TSSOP–14 DT SUFFIX CASE 948G	14 AAAAAAA HC 164B ALYW- 0 - 1 HHHHHHH
A L, W Y W, V G or	/L = Wafer L = Year VW = Work W	
(Note: Mi	crodot may be i	n either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

PIN ASSIGNMENT

A1 [1•		v _{cc}
A2 [2	13	D QH
Q _A [3	12] Q _G
Q _B [4	11] Q _F
Q _C [5	10] Q _E
Q _D [6	9] RESET
gnd [7	8	СГОСК

FUNCTION TABLE

Inputs					Outp	outs	
Reset	Clock	A1	A2	$\mathbf{Q}_{\mathbf{A}}$	Q_B		Q _H
L	Х	Х	Х	L	L		L
н	~	Х	Х	No Change			
н		н	D	D	Q _{An}		Q _{Gn}
н	7	D	Н	D	Q_{An}		Q _{Gn}

D = data input

 $Q_{An} - Q_{Gn}$ = data shifted from the preceding stage on a rising edge at the clock input.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC164BDG		55 Units / Rail
MC74HC164BDR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC164BDR2G*	(2500 / Tape & Reel
MC74HC164BDTR2G	TSSOP-14	2500 / Tape & Reel
NLV74HC164BDTR2G*	(Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	– 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V_CC + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to V_CC + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 50	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	– 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

+Derating — SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V	
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Refere GND)	0	V _{CC}	V	
T _A	Operating Temperature, All Package Type	S	- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time V (Figure 1) V	$V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$	0 0 0	No Limit No Limit No Limit	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	v _{cc} v	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
V _{T+} max	Maximum Positive–Going Input Threshold Voltage (Figure 3)	V _{out} = 0.1V I _{out} ≤ 20µA	2.0 3.0 4.5 6.0	1.50 2.15 3.15 4.20	1.50 2.15 3.15 4.20	1.50 2.15 3.15 4.20	V
V _{T+} min	Minimum Positive–Going Input Threshold Voltage (Figure 3)	$V_{out} = 0.1V$ $ I_{out} \le 20\mu A$	2.0 3.0 4.5 6.0	1.0 1.5 2.3 3.0	0.95 1.45 2.25 2.95	0.95 1.45 2.25 2.95	V
V _{T-} max	Maximum Negative–Going Input Threshold Voltage (Figure 3)	$V_{out} = V_{CC} - 0.1V$ $ I_{out} \le 20\mu A$	2.0 3.0 4.5 6.0	0.9 1.4 2.0 2.6	0.95 1.45 2.05 2.65	0.95 1.45 2.05 2.65	V
V _{T-} min	Minimum Negative–Going Input Threshold Voltage (Figure 3)	$V_{out} = V_{CC} - 0.1V$ $ I_{out} \le 20\mu A$	2.0 3.0 4.5 6.0	0.3 0.5 0.9 1.2	0.3 0.5 0.9 1.2	0.3 0.5 0.9 1.2	V
V _H max (Note 1)	Maximum Hysteresis Voltage (Figure 3)	$\begin{split} V_{out} &= 0.1 V \text{ or } V_{CC} - 0.1 V \\ I_{out} &\leq 20 \mu A \end{split}$	2.0 3.0 4.5 6.0	1.20 1.65 2.25 3.00	1.20 1.65 2.25 3.00	1.20 1.65 2.25 3.00	V
V _H min (Note 1)	Minimum Hysteresis Voltage (Figure 3)	$V_{out} = 0.1V \text{ or } V_{CC} - 0.1V$ $ I_{out} \le 20\mu A$	2.0 3.0 4.5 6.0	0.20 0.25 0.40 0.50	0.20 0.25 0.40 0.50	0.20 0.25 0.40 0.50	V
V _{OH}	Minimum High–Level Output Voltage	$ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\ I_{out} &\leq 20 \ \mu \text{A} \end{aligned} $	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 4.0 \text{ mA} \\ I_{out} \leq 5.2 \text{ mA} \end{array} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$ V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 4.0 \text{ mA} \\ I_{out} \leq 5.2 \text{ mA} \end{array} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	± 1.0	± 1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)		6.0	4	40	160	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. $V_H min > (V_{T+} min) - (V_{T-} max); V_H max = (V_{T+} max) - (V_{T-} min).$

www.onsemi.com 4

			Gu	aranteed Li	mit	
Symbol	Parameter	v _{cc} v	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4)	2.0 3.0 4.5 6.0	10 20 40 50	10 20 35 45	10 20 30 40	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q (Figures 1 and 4)	2.0 3.0 4.5 6.0	160 100 32 27	200 150 40 34	250 200 48 42	ns
t _{PHL}	Maximum Propagation Delay, Reset to Q (Figures 2 and 4)	2.0 3.0 4.5 6.0	175 100 35 30	220 150 44 37	260 200 53 45	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 4)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance	—	10	10	10	pF
			Typical	@ 25°C, V _C	_C = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Package)*			180		pF

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6 ns)

TIMING REQUIREMENTS (Input t_r = t_f = 6 ns)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC} V	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, A1 or A2 to Clock (Figure 3)	2.0 3.0 4.5 6.0	25 15 7 5	35 20 8 6	40 25 9 6	ns
t _h	Minimum Hold Time, Clock to A1 or A2 (Figure 3)	2.0 3.0 4.5 6.0	3333	3 3 3 3	3 3 3 3	ns
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock (Figure 2)	2.0 3.0 4.5 6.0	3 3 3 3	3 3 3 3	3 3 3 3	ns
t _w	Minimum Pulse Width, Clock (Figure 1)	2.0 3.0 4.5 6.0	50 26 12 10	60 35 15 12	75 45 20 15	ns
t _w	Minimum Pulse Width, Reset (Figure 2)	2.0 3.0 4.5 6.0	50 26 12 10	60 35 15 12	75 45 20 15	ns

PIN DESCRIPTIONS

INPUTS

A1, A2 (Pins 1, 2)

Serial Data Inputs. Data at these inputs determine the data to be entered into the first stage of the shift register. For a high level to be entered into the shift register, both A1 and A2 inputs must be high, thereby allowing one input to be used as a data–enable input. When only one serial input is used, the other must be connected to V_{CC} .

Clock (Pin 8)

Shift Register Clock. A positive–going transition on this pin shifts the data at each stage to the next stage. The shift

register is completely static, allowing clock rates down to DC in a continuous or intermittent mode.

OUTPUTS

Q_A – Q_H (Pins 3, 4, 5, 6, 10, 11, 12, 13)

Parallel Shift Register Outputs. The shifted data is presented at these outputs in true, or noninverted, form.

CONTROL INPUT

Reset (Pin 9)

Active–Low, Asynchronous Reset Input. A low voltage applied to this input resets all internal flip–flops and sets Outputs $Q_A - Q_H$ to the low level state.

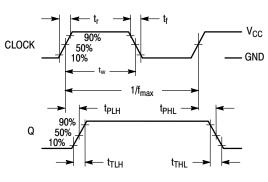


Figure 1.

SWITCHING WAVEFORMS

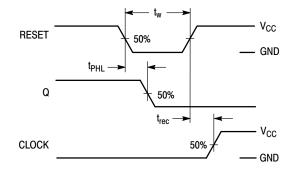
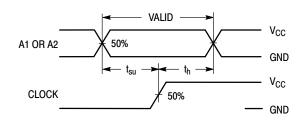
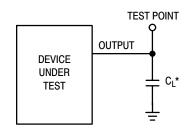
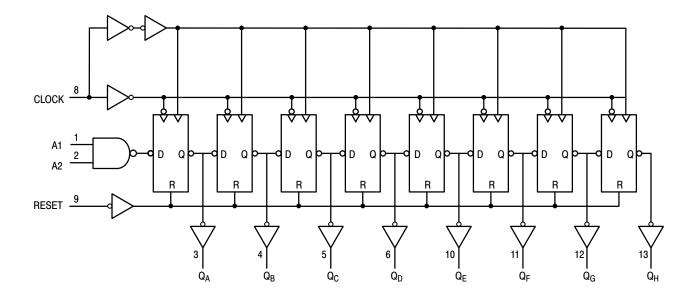


Figure 2.


Figure 3.

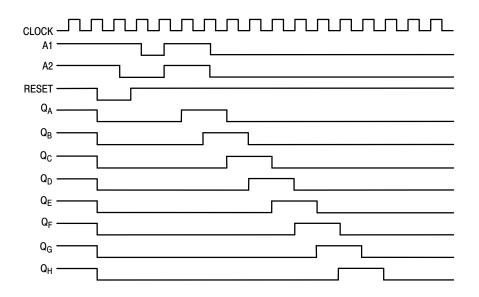
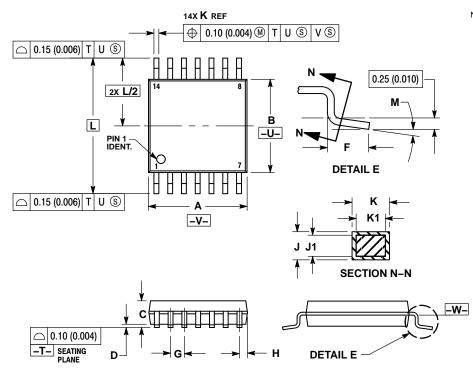

*Includes all probe and jig capacitance

Figure 4. Test Circuit

EXPANDED LOGIC DIAGRAM


TIMING DIAGRAM

<u>www.onsemi.com</u> 7

PACKAGE DIMENSIONS

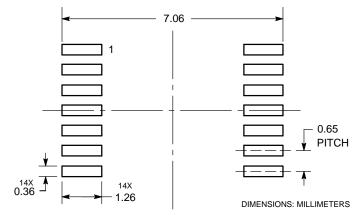
TSSOP-14 DT SUFFIX CASE 948G **ISSUE B**

NOTES:

DIES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EVOLUTION OF DOED OF DOING SHALL NOT

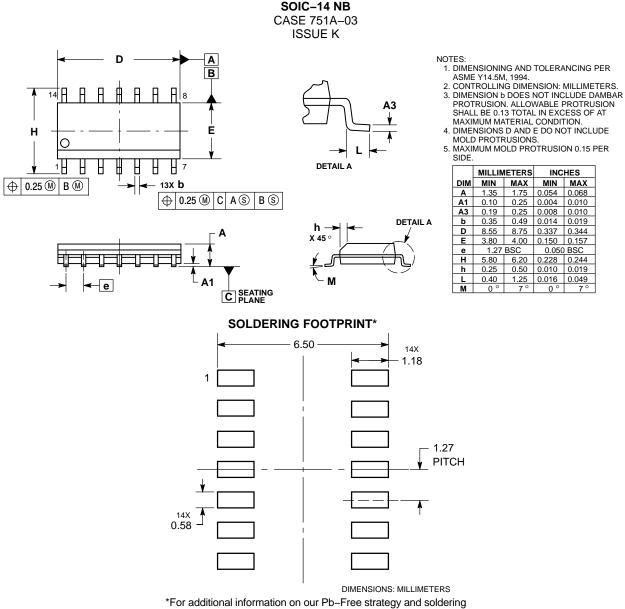
EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE


DAMBAR PROTRUSION A DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL

CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. 7


	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252	BSC
Μ	0 °	8 °	0° 8'	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient patient patient patient of the patient of the patient of the patient of the patient patient patient patient of the patient patient patient patient of the patient patient

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)