MOSFET – Power, Single, N-Channel 60 V, 61 A, 12 m Ω

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5844NLWF Wettable Flanks Product
- NVMFS Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

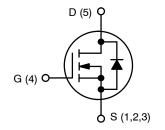
Parameter			Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	60	V		
Gate-to-Source Voltage	Э		V _{GS}	±20	V		
Continuous Drain Cur- rent R _{ΨJ-mb} (Notes 1,		T _{mb} = 25°C	Ι _D	61	A		
2, 3, 4)	Steady State	T _{mb} = 100°C		43			
Power Dissipation		T _{mb} = 25°C	PD	107	W		
R _{ΨJ-mb} (Notes 1, 2, 3)		$T_{mb} = 100^{\circ}C$		54			
Continuous Drain Cur- rent R _{0.IA} (Notes 1, 3,		T _A = 25°C	Ι _D	11.2	А		
4)	Steady	T _A = 100°C		8.0	1		
Power Dissipation	State	T _A = 25°C	PD	3.7	W		
$R_{\theta JA}$ (Notes 1 & 3)		T _A = 100°C		1.8			
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	247	Α		
Current Limited by Package $T_A = 25^{\circ}C$ (Note 4)			I _{DmaxPkg}	80	A		
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 175	°C		
Source Current (Body D	iode)		۱ _S	60	А		
Energy (T _J = 25°C, V _{DD}	Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 50 V, V _{GS} = 10 V, $I_{L(pk)}$ = 31 A, L = 0.1 mH, R _G = 25 Ω)			48	mJ		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C		

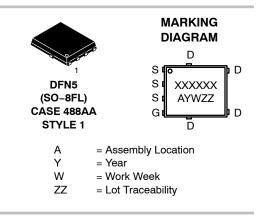
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	41	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.


ON Semiconductor®

http://onsemi.com

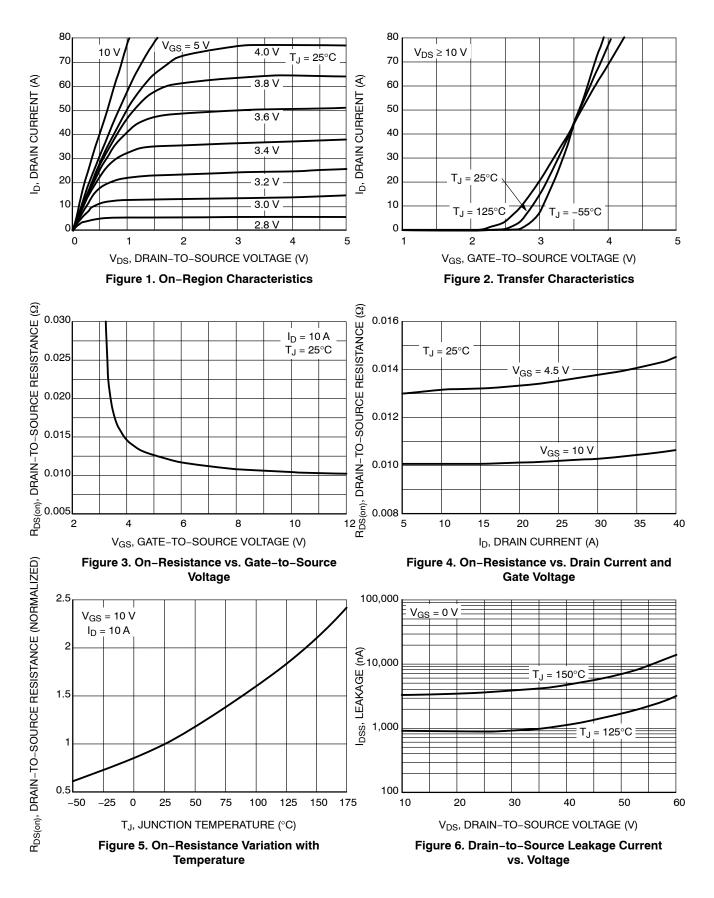
V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	$12 \text{ m}\Omega @ 10 \text{ V}$	61 A
	16 m Ω @ 4.5 V	UIA

N-CHANNEL MOSFET

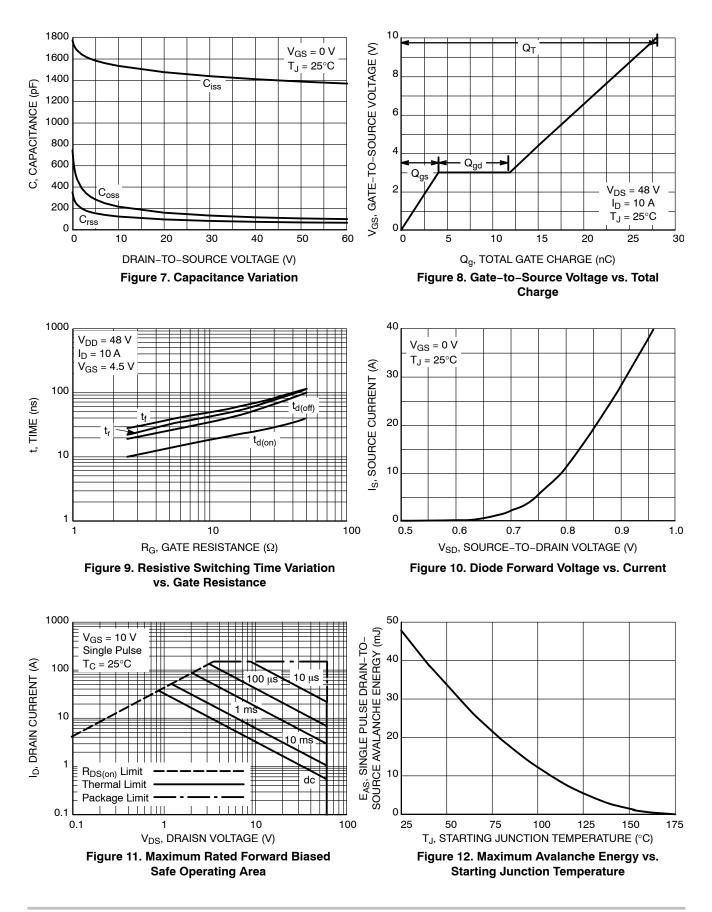
ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

1


Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		60			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				57		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	T _J = 25 °C			1		
		V _{DS} = 60 V	_S = 60 V T _J = 125°C			100	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA	
ON CHARACTERISTICS (Note 5)				-				
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.5		2.3	V	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				6.2		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		10.2	12	-	
		V _{GS} = 4.5 V	I _D = 10 A		13	16	mΩ	
Forward Transconductance	9fs	V _{DS} = 5 V, I _D = 10 A			27		S	
CHARGES, CAPACITANCES & GATE RESIS	STANCE							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			1460		pF	
Output Capacitance	C _{OSS}				150			
Reverse Transfer Capacitance	C _{RSS}				96			
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 48 V; I_{D} = 10 A			30		nC	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 48 V; I _D = 10 A			15			
Threshold Gate Charge	Q _{G(TH)}				1.0			
Gate-to-Source Charge	Q _{GS}				4.0			
Gate-to-Drain Charge	Q _{GD}				8.0			
Plateau Voltage	V _{GP}				3.0		V	
Gate Resistance	R _G				0.62		Ω	
SWITCHING CHARACTERISTICS (Note 6)								
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DS} = 48 V, I_D = 10 A, R_G = 2.5 Ω			12		ns	
Rise Time	t _r				25			
Turn-Off Delay Time	t _{d(OFF)}				20			
Fall Time	t _f				10			
DRAIN-SOURCE DIODE CHARACTERISTIC								
Forward Diode Voltage	V_{SD} $V_{GS} = 0 V$, $T_J = 25^{\circ}$		$T_J = 25^{\circ}C$		0.79	1.2		
		$I_{\rm S} = 10 \rm{A}$	T _J = 125°C		0.65		V	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 10 A			19		ns	
Charge Time	t _a				13			
Discharge Time	t _b				6.0			
Reverse Recovery Charge	Q _{BB}				15		nC	

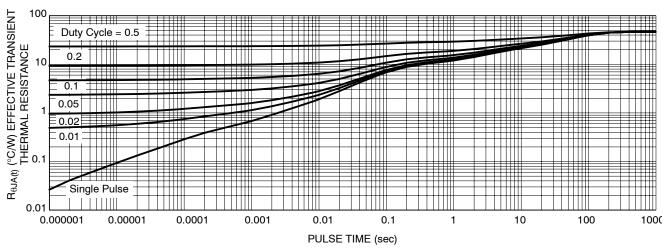
6. Switching characteristics are independent of operating junction temperatures.

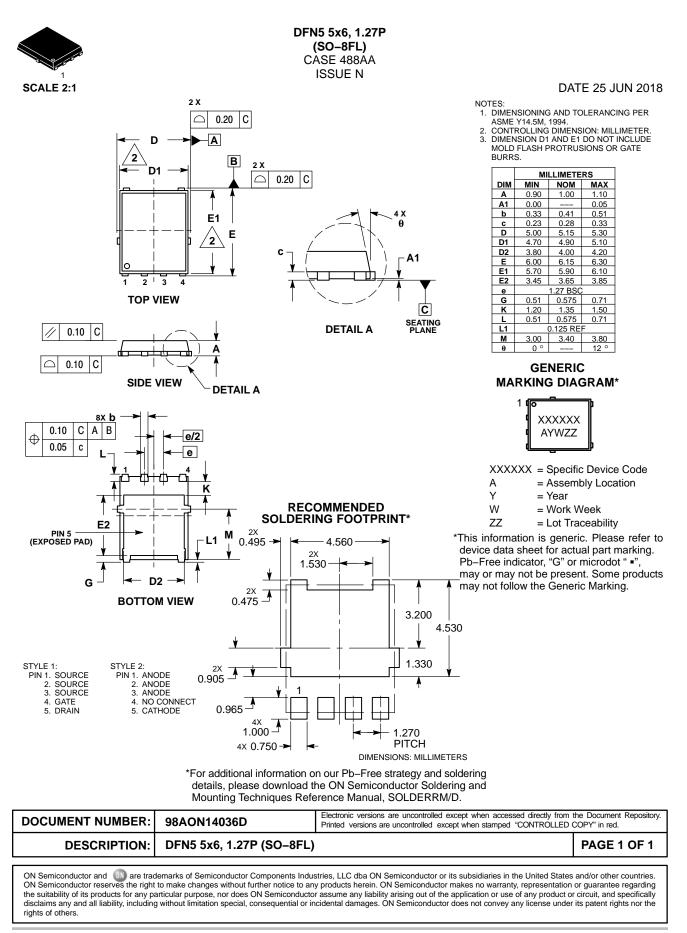
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

http://onsemi.com 4

TYPICAL CHARACTERISTICS




Figure 13. Thermal Response

Device	Marking	Package	Shipping [†]
NTMFS5844NLT1G	5844NL	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5844NLT1G	V5844L	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5844NLWFT1G	5844LW	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5844NLT3G	V5844L	DFN5 (Pb–Free)	5000 / Tape & Reel
NVMFS5844NLWFT3G	5844LW	DFN5 (Pb-Free)	5000 / Tape & Reel

DEVICE ORDERING INFORMATION

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi</u>.com/site/pdi/Patent-Marking.pdf. onsemi</u> reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)