ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi nouses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated w

MOSFET - Power, Single N-Channel, μ8FL

100 V, 72 mΩ, 16 A

NTTFS080N10G

Features

- Wide SOA for Linear Mode Operation
- Low R_{DS(on)} to Minimize Conduction Losses
- High Peak UIS Current Capability for Ruggedness
- Small Footprint (3.3 x 3.3 mm) for Compact Design
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

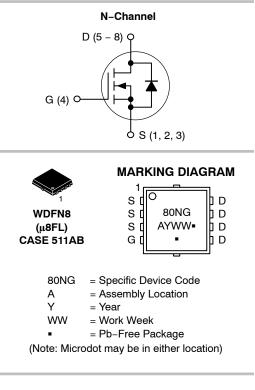
• 48 V Hot Swap System, Load Switch, Soft-Start, E-Fuse

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

			,			
Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	100	V	
Gate-to-Source Voltage			V _{GS}	±20	V	
Continuous Drain Current R _{θJC}	Steady	$T_{C} = 25^{\circ}C$	I _D	16	Α	
(Note 2)	State	T _C = 100°C		11		
Power Dissipation	Steady	$T_{C} = 25^{\circ}C$	P _D	39	W	
R _{θJC} (Note 2)	State	T _C = 100°C		19		
Continuous Drain Current R _{0.IA}	Steady	$T_A = 25^{\circ}C$	Ι _D	4.1	Α	
(Notes 1, 2)	State	$T_A = 100^{\circ}C$		2.8		
Power Dissipation	Steady	$T_A = 25^{\circ}C$	PD	2.5	W	
R _{θJA} (Notes 1, 2)	State	T _A = 100°C		1.2		
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	125	А	
Operating Junction and Range	Storage T	emperature	T _J , T _{stg}	–55 to +175	°C	
Source Current (Body D	iode)		I _S	32	А	
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)} = 5.2 \text{ A}, L = 3 \text{ mH}$)		E _{AS}	40	mJ		
Lead Temperature Soldering Reflow for Sol- dering Purposes (1/8" from case for 10 s)			ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using a 1 in², 1 oz. Cu pad.


The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ON Semiconductor®

www.onsemi.com

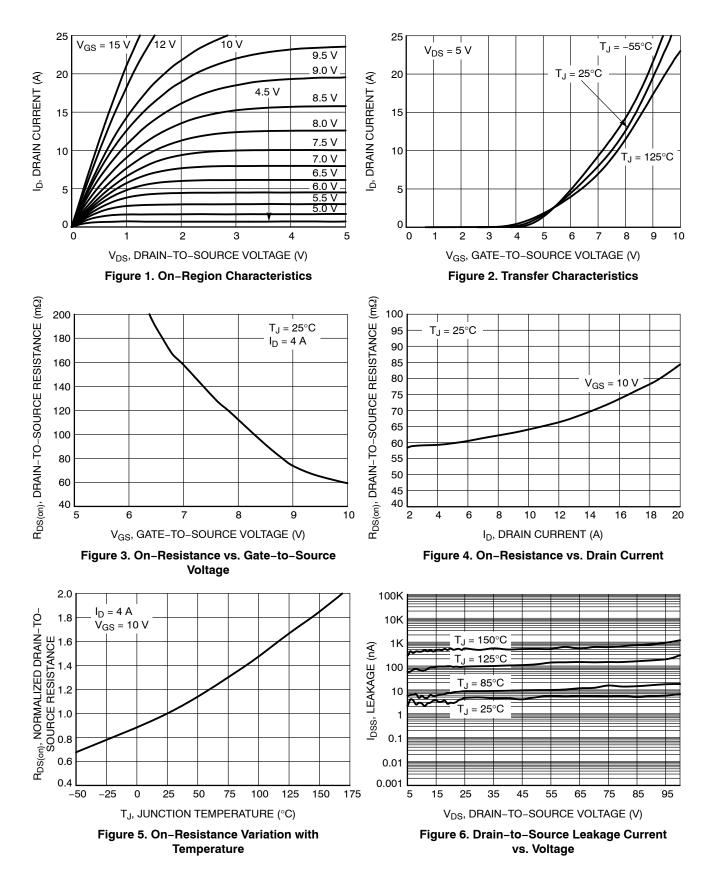
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
100 V	72 m Ω @ 10 V	16 A

ORDERING INFORMATION

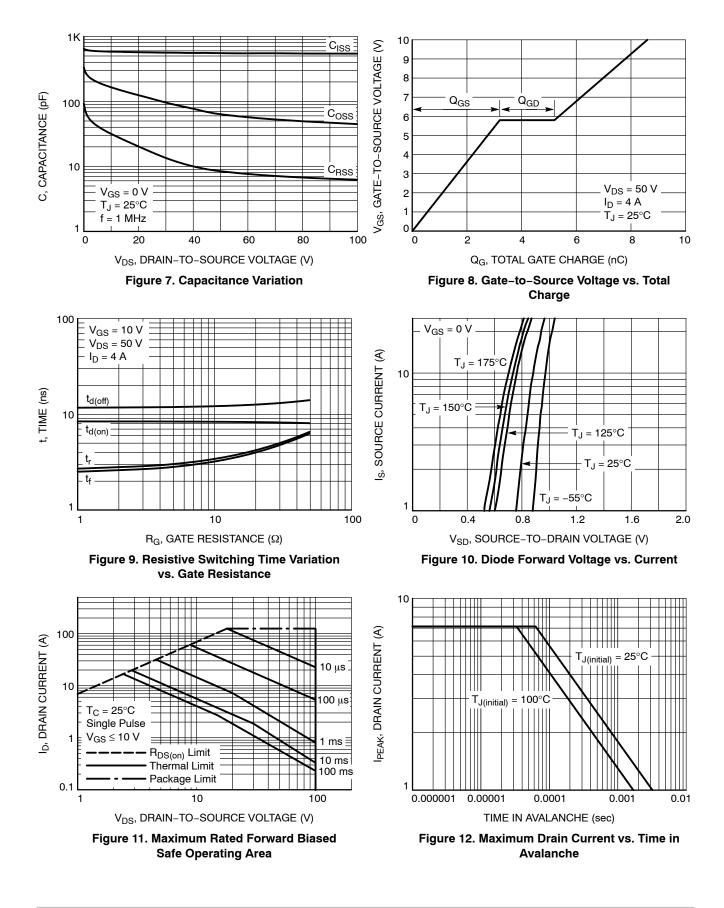
See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ extsf{ heta}JC}$	3.8	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	60	

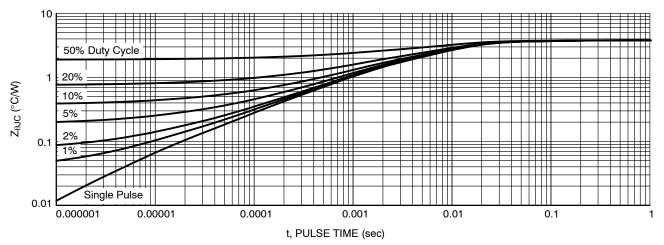

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 µA		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I_D = 250 µA, referenced to 25°C			87.6		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C		1	1	μA
		$V_{\rm DS} = 80$ V	T _J = 150°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _G	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)					•		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 22 μA	2.0		4.0	V
Negative Treshold Temperature Coefficient	V _{GS(TH)} /T _J	$I_D = 22 \ \mu A$, referen	nced to 25°C		-9.37		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	_D = 4 A		60	72	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 5 V, I	_D = 4 A		6		S
Gate-Resistance	R _G	T _A = 25°C			0.53		Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			560.5		pF
Output Capacitance	C _{oss}				64		-
Reverse Transfer Capacitance	C _{rss}				9		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 50 V, I _D = 4 A			8.6		nC
Threshold Gate Charge	Q _{G(TH)}				1.7		_
Gate-to-Source Charge	Q _{GS}				3.2		
Gate-to-Drain Charge	Q _{GD}		·		2		-
Output Charge	Q _{OSS}	V _{GS} = 10 V, V _I	_{DS} = 50 V		6.1		
SWITCHING CHARACTERISTICS (No	ote 4)				•		
Turn-On Delay Time	t _{d(on)}				8.4		ns
Rise Time	t _r	V _{CS} = 10 V. V _C	e = 50 V.		3		1
Turn-Off Delay Time	t _{d(off)}	V _{GS} = 10 V, V _D I _D = 4 A, R _G	= 4.7 Ω		11.9		1
Fall Time	t _f				2.8		
DRAIN-SOURCE DIODE CHARACTEI	RISTICS				•		
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $I_{S} = 4 A$	$T_J = 25^{\circ}C$		0.83	1.2	V
			T _J = 125°C		0.70		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V. dl _c /dt	= 300 A/us.		17		ns
Reverse Recovery Charge	Q _{RR}	V_{GS} = 0 V, dI _S /dt = 300 A/µs, I _S = 2 A			37		nC
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dl _S /dt = 1000 A/μs,			14		ns
Reverse Recovery Charge	Q _{RR}	$V_{GS} = 0$ V, dig/dt = 1000 A/µs, I _S = 2 A			60.5		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

4. Switching characteristics are independent of operating junction temperatures.

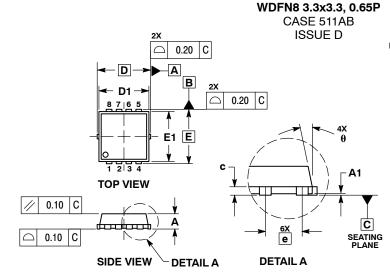
TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

www.onsemi.com 4

TYPICAL CHARACTERISTICS



DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTTFS080N10G	80NG	μ8FL (Pb–Free)	1500 / Tape & Reel

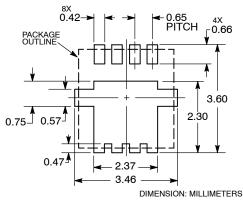
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

e/2

М

-0:0-


D2

BOTTOM VIEW

NOTES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.
DIMENSION DI AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
q	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	:	3.30 BSC		0	.130 BSC	;	
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
Ш	3.30 BSC			0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
e	0.65 BSC			0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
Г	0.30	0.43	0.56	0.012	0.017	0.022	
Ľ	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even is such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

sx b A B

4X I

E3 📕

0.10 С

С 0.05

A E2

۷

G-

 \oplus

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)