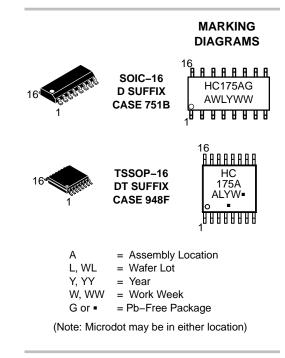
## Quad D Flip-Flop with Common Clock and Reset

## High–Performance Silicon–Gate CMOS

The MC74HC175A is identical in pinout to the LS175. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of four D flip-flops with common Reset and Clock inputs, and separate D inputs. Reset (active-low) is asynchronous and occurs when a low level is applied to the Reset input. Information at a D input is transferred to the corresponding Q output on the next positive going edge of the Clock input.


#### Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity 166 FETs or 41.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



## **ON Semiconductor®**

http://onsemi.com



#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

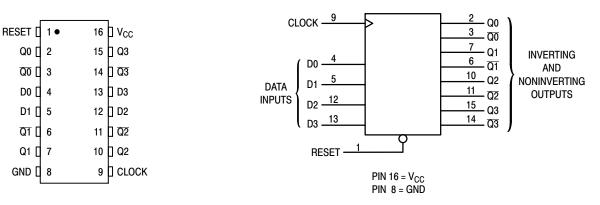



Figure 1. Pin Assignment

Figure 2. Logic Diagram

#### **FUNCTION TABLE**

| Inputs |       |   | Outputs   |   |  |
|--------|-------|---|-----------|---|--|
| Reset  | Clock | D | Q 0       |   |  |
| L      | Х     | Х | L         | Н |  |
| Н      |       | Н | н         | L |  |
| н      |       | L | L         | н |  |
| н      | L     | Х | No Change |   |  |

#### **ORDERING INFORMATION**

| Device            | Package               | Shipping <sup>†</sup> |
|-------------------|-----------------------|-----------------------|
| MC74HC175ADG      | SOIC-16<br>(Pb-Free)  | 48 Units / Rail       |
| MC74HC175ADR2G    | SOIC-16<br>(Pb-Free)  | 2500 / Tape & Reel    |
| MC74HC175ADTR2G   | TSSOP-16<br>(Pb-Free) | 2500 / Tape & Reel    |
| NLV74HC175ADTR2G* | TSSOP-16<br>(Pb-Free) | 2500 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

\*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable

### MAXIMUM RATINGS

| Symbol           | Parameter                                                                               | Value                | Unit |
|------------------|-----------------------------------------------------------------------------------------|----------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage (Referenced to GND)                                                   | - 0.5 to + 7.0       | V    |
| V <sub>in</sub>  | DC Input Voltage (Referenced to GND)                                                    | $-0.5$ to V_CC + 0.5 | V    |
| Vout             | DC Output Voltage (Referenced to GND)                                                   | $-0.5$ to V_CC + 0.5 | V    |
| l <sub>in</sub>  | DC Input Current, per Pin                                                               | ± 20                 | mA   |
| I <sub>out</sub> | DC Output Current, per Pin                                                              | ± 25                 | mA   |
| I <sub>CC</sub>  | DC Supply Current, V <sub>CC</sub> and GND Pins                                         | ± 50                 | mA   |
| P <sub>D</sub>   | Power Dissipation in Still Air, SOIC Package†<br>TSSOP Package†                         | 500<br>450           | mW   |
| T <sub>stg</sub> | Storage Temperature                                                                     | – 65 to + 150        | °C   |
| TL               | Lead Temperature, 1 mm from Case for 10 Seconds<br>(Plastic DIP, SOIC or TSSOP Package) | 260                  | °C   |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

+Derating — SOIC Package: - 7 mW/°C from 65° to 125°C

TSSOP Package: – 6.1 mW/°C from 65° to 125°C

### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                          | Parameter                                                                                                |            | Min         | Max                       | Unit |
|---------------------------------|----------------------------------------------------------------------------------------------------------|------------|-------------|---------------------------|------|
| V <sub>CC</sub>                 | DC Supply Voltage (Referenced to GND)                                                                    |            | 2.0         | 6.0                       | V    |
| $V_{\text{in}}, V_{\text{out}}$ | DC Input Voltage, Output Voltage (Referenced to GND)                                                     |            | 0           | V <sub>CC</sub>           | V    |
| T <sub>A</sub>                  | Operating Temperature, All Package Types                                                                 |            | - 55        | + 125                     | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time $V_{CC} = 2.0$<br>(Figure 1) $V_{CC} = 3.0$<br>$V_{CC} = 4.5$<br>$V_{CC} = 6.0$ | 0 V<br>5 V | 0<br>0<br>0 | 1000<br>600<br>500<br>400 | ns   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

| DC ELECTRICAL CHARACTERISTICS | (Voltages Referenced to GND) |
|-------------------------------|------------------------------|
|-------------------------------|------------------------------|

|                 |                                                   | Test Conditions                                                                                                                                                                         |                          | Guaranteed Limit           |                            |                            |      |
|-----------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|------|
| Symbol          | Parameter                                         |                                                                                                                                                                                         | v <sub>cc</sub><br>v     | – 55 to<br>25°C            | ≤ 85°C                     | ≤ 125°C                    | Unit |
| V <sub>IH</sub> | Minimum High–Level Input<br>Voltage               | $\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\  I_{out}   \leq  20 \; \mu \text{A} \end{array}$                                                                | 2.0<br>3.0<br>4.5<br>6.0 | 1.5<br>2.1<br>3.15<br>4.2  | 1.5<br>2.1<br>3.15<br>4.2  | 1.5<br>2.1<br>3.15<br>4 2  | V    |
| V <sub>IL</sub> | Maximum Low–Level Input<br>Voltage                | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$<br>$ I_{out}  \le 20 \ \mu\text{A}$                                                                                                | 2.0<br>3.0<br>4.5<br>6.0 | 0.5<br>0.9<br>1.35<br>1.80 | 0.5<br>0.9<br>1.35<br>1.80 | 0.5<br>0.9<br>1.35<br>1.80 | V    |
| V <sub>OH</sub> | Minimum High–Level Output<br>Voltage              |                                                                                                                                                                                         | 2.0<br>4.5<br>6.0        | 1.9<br>4.4<br>5.9          | 1.9<br>4.4<br>5.9          | 1.9<br>4.4<br>5.9          | V    |
|                 |                                                   | $ \begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} &  I_{out}  \leq 2.4 \text{ mA} \\  I_{out}  \leq 4.0 \text{ mA} \\  I_{out}  \leq 5.2 \text{ mA} \end{array} $                  | 4.5                      | 2.48<br>3.98<br>5.48       | 2.34<br>3.84<br>5.34       | 2.20<br>3.70<br>5.20       |      |
| V <sub>OL</sub> | Maximum Low–Level Output<br>Voltage               | $ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\  I_{out}  &\leq 20 \; \mu A \end{aligned} $                                                                                    | 2.0<br>4.5<br>6.0        | 0.1<br>0.1<br>0.1          | 0.1<br>0.1<br>0.1          | 0.1<br>0.1<br>0.1          | V    |
|                 |                                                   | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & \begin{array}{l}  I_{out}  \leq 2.4 \text{ mA} \\  I_{out}  \leq 4.0 \text{ mA} \\  I_{out}  \leq 5.2 \text{ mA} \end{aligned} $ | 4.5                      | 0.26<br>0.26<br>0.26       | 0.33<br>0.33<br>0.33       | 0.40<br>0.40<br>0.40       |      |
| l <sub>in</sub> | Maximum Input Leakage Current                     | V <sub>in</sub> = V <sub>CC</sub> or GND                                                                                                                                                | 6.0                      | ±0.1                       | ± 1.0                      | ± 1.0                      | μΑ   |
| I <sub>CC</sub> | Maximum Quiescent Supply<br>Current (per Package) | $V_{in} = V_{CC} \text{ or } GND$<br>$I_{out} = 0 \ \mu A$                                                                                                                              | 6.0                      | 4                          | 40                         | 160                        | μΑ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

|                                        |                                                                           |                          | Guaranteed Limit      |                        |                        |      |
|----------------------------------------|---------------------------------------------------------------------------|--------------------------|-----------------------|------------------------|------------------------|------|
| Symbol                                 | Parameter                                                                 | V <sub>CC</sub><br>V     | – 55 to<br>25°C       | ≤ 85°C                 | ≤ 125°C                | Unit |
| f <sub>max</sub>                       | Maximum Clock Frequency (50% Duty Cycle)<br>(Figures 1 and 4)             | 2.0<br>3.0<br>4.5<br>6.0 | 6<br>10<br>30<br>35   | 4.8<br>8.0<br>24<br>28 | 4<br>6<br>20<br>24     | MHz  |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, Clock to Q or Q<br>(Figures 1 and 4)           | 2.0<br>3.0<br>4.5<br>6.0 | 150<br>75<br>26<br>22 | 190<br>90<br>32<br>28  | 225<br>110<br>38<br>33 | ns   |
| t <sub>PHL</sub>                       | Maximum Propagation Delay, Reset to Q or $\overline{Q}$ (Figures 2 and 4) | 2.0<br>3.0<br>4.5<br>6.0 | 125<br>70<br>22<br>19 | 155<br>85<br>27<br>24  | 190<br>110<br>34<br>30 | ns   |
| t <sub>TLH</sub> ,<br>t <sub>THL</sub> | Maximum Output Transition Time, Any Output<br>(Figures 1 and 4)           | 2.0<br>3.0<br>4.5<br>6.0 | 75<br>27<br>15<br>13  | 95<br>32<br>19<br>16   | 110<br>36<br>22<br>19  | ns   |
| C <sub>in</sub>                        | Maximum Input Capacitance                                                 | —                        | 10                    | 10                     | 10                     | pF   |
|                                        |                                                                           |                          | Typical               | @ 25°C, V <sub>C</sub> | <sub>C</sub> = 5.0 V   |      |
| C <sub>PD</sub>                        | Power Dissipation Capacitance (Per Flip-Flop)*                            |                          |                       | 35                     |                        | pF   |

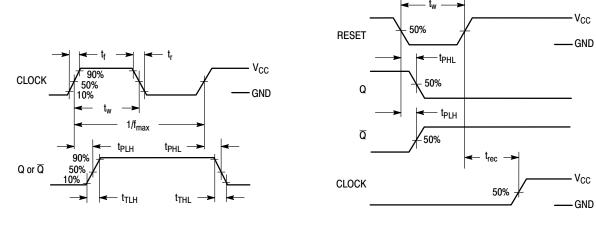
#### **AC ELECTRICAL CHARACTERISTICS** ( $C_L = 50 \text{ pF}$ , Input $t_r = t_f = 6 \text{ ns}$ )

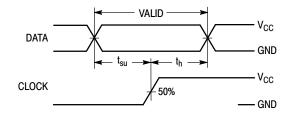
\* Used to determine the no-load dynamic power consumption:  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ .

## **TIMING REQUIREMENTS** (Input $t_r = t_f = 6 \text{ ns}$ )

|                                 |                                                              |                          | Guaranteed Limit          |                           |                           |      |
|---------------------------------|--------------------------------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|------|
| Symbol                          | Parameter                                                    | V <sub>CC</sub><br>V     | – 55 to<br>25°C           | ≤ 85°C                    | ≤ 125°C                   | Unit |
| t <sub>su</sub>                 | Minimum Setup Time, Data to Clock<br>(Figure 3)              | 2.0<br>3.0<br>4.5<br>6.0 | 100<br>45<br>20<br>17     | 125<br>65<br>25<br>21     | 150<br>85<br>30<br>26     | ns   |
| t <sub>h</sub>                  | Minimum Hold Time, Clock to Data<br>(Figure 3)               | 2.0<br>3.0<br>4.5<br>6.0 | 5<br>3<br>3<br>3          | 5<br>3<br>3<br>3          | 5<br>3<br>3<br>3          | ns   |
| t <sub>rec</sub>                | Minimum Recovery Time, Reset Inactive to Clock<br>(Figure 2) | 2.0<br>3.0<br>4.5<br>6.0 | 100<br>45<br>20<br>17     | 125<br>65<br>25<br>21     | 150<br>85<br>30<br>26     | ns   |
| t <sub>w</sub>                  | Minimum Pulse Width, Clock<br>(Figure 1)                     | 2.0<br>3.0<br>4.5<br>6.0 | 80<br>45<br>16<br>14      | 100<br>65<br>20<br>17     | 120<br>85<br>24<br>20     | ns   |
| t <sub>w</sub>                  | Minimum Pulse Width, Reset<br>(Figure 2)                     | 2.0<br>3.0<br>4.5<br>6.0 | 80<br>45<br>16<br>14      | 100<br>65<br>20<br>17     | 120<br>85<br>24<br>20     | ns   |
| t <sub>r</sub> , t <sub>f</sub> | Maximum Input Rise and Fall Times<br>(Figure 1)              | 2.0<br>3.0<br>4.5<br>6.0 | 1000<br>800<br>500<br>400 | 1000<br>800<br>500<br>400 | 1000<br>800<br>500<br>400 | ns   |

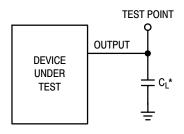
## SWITCHING WAVEFORMS





Figure 3.



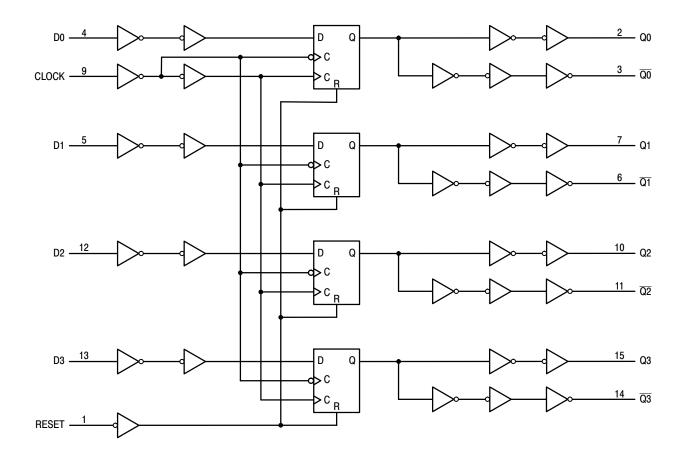
V<sub>CC</sub>


 $V_{\text{CC}}$ 

GND

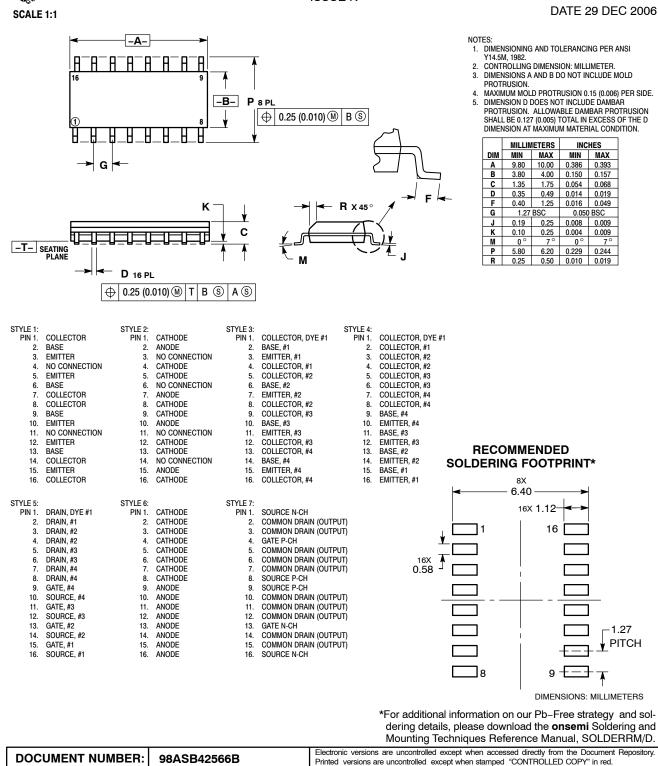









\*Includes all probe and jig capacitance


Figure 6.

## EXPANDED LOGIC DIAGRAM

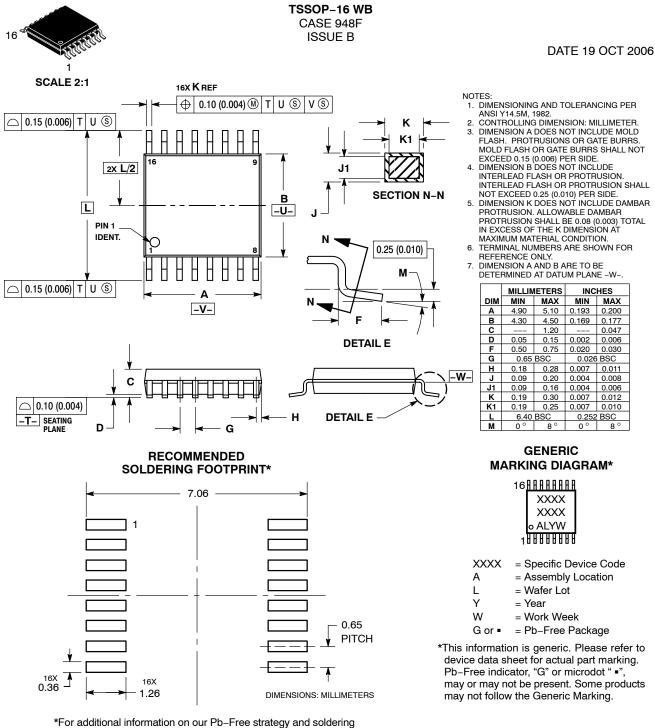


# ONSEMI

SOIC-16 CASE 751B-05 ISSUE K



onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


**DESCRIPTION:** 

SOIC-16

PAGE 1 OF 1

#### MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

# onsemi



\*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

 
 DOCUMENT NUMBER:
 98ASH70247A
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 TSSOP-16
 PAGE 1 OF 1

 onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights or the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such u

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales 单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)