

ORIENT

Photo coupler

Product Data Sheet

Part Number:	OR-341
Customer:	
Date:	

SHENZHEN ORIENT COMPONENTS CO., LTD

Block A 3rd Floor No.4 Building, Tian'an Cyber Park, Huangge Rd, Long Gang Dist, Shenzhen, GD

TEL: 0755-29681816 FAX: 0755-29681200 www.orient-opto.com

1. Features

- (1) 3.0 A maximum peak output current
- (2) 2.5 A minimum peak output current
- (3) Rail-to-rail output voltage
- (4) 200 ns maximum propagation delay
- (5) 70 ns maximum propagation delay difference
- (6) LED current input with hysteresis
- (7) $20 \text{ kV/}\mu\text{s}$ minimum Common Mode Rejection (CMR) at VCM = 1500 V
- (8) ICC = 3.0 mA maximum supply current
- (9) Under Voltage Lock-Out protection (UVLO) with hysteresis
- (10) Wide operating VCC Range: 15 to 30 V
- (11) Industrial temperature range: -40° C to 105° C
- (12) Safety approval

UL approved(No.E323844)

VDE approved(No.40029733)

CQC approved (No.CQC19001231480)

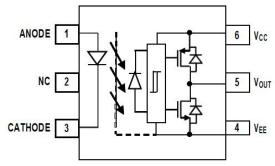
- (13) In compliance with RoHS, REACH standards
- (14) MSL Level 1

2. Description

The OR-341 contains an AlGaAs LED, which is optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and high peak output current supplied by this optocoupler make it ideally suited for direct driving IGBT with ratings up to 1200 V/ 100 A. For IGBTs with higher ratings, this optocoupler can be used to drive a discrete power stage which drives the IGBT gate.

3. Application Range

(1)IGBT/MOSFET gate drive


(2)AC and Brushless DC motor drives

(3)Renewable energy inverters

(4)Industrial inverters

(5) Switching power supplies

4. Functional Diagram

 $\label{eq:Note:A1} Note: A1 \quad F \ by pass \ capacitor \ must be \ connected \\ between \ pins \ V_{CC} \ and \ V_{EE}.$

	Truth Table					
	VCC – VEE	VCC – VEE	VO			
LED	"POSITIVE	"NEGATIVE				
	GOING"	GOING"				
	(i.e., TURN-ON)	(i.e., TURN-OFF)				
OFF	0-30 V	0 - 30 V	LOW			
ON	0 - 12.1 V	0 – 11.1 V	LOW			
ON	12.1 – 13.5 V	11.1 – 12.4 V	TRANSITION			
ON	13.5 – 30 V	12.4 – 30 V	HIGH			

5. Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rated Value	Unit
Input	Average Forward Input Current	I_{F}	25	mA
Input	Reverse Input Voltage	V_R	5	V
Output	"High" Peak Output Current	I _{OH(PEAK)}	3	A
Output	"Low" Peak Output Current	I _{OL(PEAK)}	3	A
Output Collector Power Dissipation		Po	700	mW
	Total Power Dissipation	P _T	745	mW
	Total Output Supply Voltage	V _{CC} - V _{EE}	35	V
	Input Current (Rise/Fall Time)	$t_{r(IN)}/t_{f(IN)}$	500	ns
	Insulation Voltage	Viso	5000	Vrms
Working Temperature		T_{opr}	-40 ∼+ 105	°C
Storage Temperature		$T_{ m stg}$	<i>-</i> 55∼ + 125	-
	*2 Soldering Temperature	T_{sol}	260	

^{*1.} Room temperature = 25 °C. Exceeding the maximum absolute rating can permanently damage the device. Working long hours at the maximum absolute rating can affect reliability.

^{*2.} soldering time is 10 seconds.

6. Electrical Optical Characteristics

Unless otherwise noted, all typical values are at TA = 25° C, VCC - VEE = 30 V, VEE = Ground; all minimum and maximum specifi cations are at recommended operating conditions (TA = -40 to 105° C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VEE = Ground, VCC = 15 to 30 V).

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
		-1.0	-2.3	wax.		$V_O = (V_{CC} - 4V)$
High Level Output Current	I_{OH}	-1.0	-2.3	_	A	· · · · · · · · · · · · · · · · · · ·
		-2.5	_			$V_{CC}-V_{O} \leq 15V$
Low Level Output Current	I_{OL}	1.0	3.0		A	$V_{\rm O} = (V_{\rm EE} + 2.5V)$
		2.5				$V_{CC} - V_O \leq 15V$
High Output Transistor RDS(ON)	$R_{\mathrm{DS,OH}}$	_	1.7	3.0		$I_{OH} = -2.5 \text{ A}$
Low Output Transistor RDS(ON)	$R_{\mathrm{DS,OL}}$	_	0.8	1.8		$I_{OH} = 2.5 A$
High Level Output Voltage	V_{OH}	$(V_{CC} - 0.3)$	(V _{CC} – 0.2)	_	V	$I_{O} = -100 \text{ mA}$
		_	$V_{\rm CC}$	_	V	$I_O=0\ mA,\ I_F=10\ mA$
Low Level Output Voltage	V_{OL}	_	0.1	0.2	V	$I_O = 100 \text{ mA}$
High Level Supply Current	I_{CCH}	_	1.48	3.0	mA	$R_g=10, C_g=25 \text{ nF}, I_F=10 \text{ mA}$
Low Level Supply Current	I_{CCL}	_	1.58	3.0	mA	$R_g = 10$, $C_g = 25nF$, $V_F = 0$ V
Threshold Input Current Low to High	I_{FLH}	_	1.79	4.0	mA	R _g =10, C _g =25nF, V _O >5 V
Threshold Input Voltage High to Low	$V_{\scriptscriptstyle FHL}$	0.8		—	V	<i>5</i>
Input Forward Voltage	$V_{\rm F}$	1.2	1.55	1.95	V	$I_F = 10 \text{ mA}$
Temperature Coefficient of Forward Voltage	$\Delta V_{\rm F}/\Delta T_{\rm A}$	_	-1.7	_	mV/°C	$I_F = 10 \text{ mA}$
Input Reverse Breakdown Voltage	$\mathrm{B}_{\mathrm{V}_{\mathrm{R}}}$	5		_	V	$I_R = 100 \mu A$
Input Capacitance	C _{IN}	_	70		pF	$f = 1 \text{ MHz}, V_F = 0V$
UVLO Threshold	V_{UVLO^+}	12.1	12.5	13.5		
	V _{UVLO-}	10.0	11.0	12.0	V	$V_O > 5 V$
UVLO Hysteresis	$U_{\text{VLO}_{\text{HYS}}}$		1.5			$I_F = 10 \text{ mA}$

7. Switching Characteristics

Unless otherwise noted, all typical values are at TA = 25° C, VCC - VEE = 30 V, VEE = Ground; all minimum and maximum specifications are at recommended operating conditions (TA = -40 to 105° C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VEE = Ground, VCC = 15 to 30 V).

Parameter	Symbol	Min.	Тур	Max.	Units	Test Conditions
Propagation Delay Time to High Output Level	t _{PLH}	50	140	200	ns	$R_g = 10$
Propagation Delay Time to Low Output Level	t _{PHL}	50	140	200	μs	$C_g = 25 \text{ nF}$ f = 20 kHz Duty Cycle = 50%
Pulse Width Distortion	PWD	_	25	70	ns	$I_F = 7 \text{ mA to } 16 \text{ mA}$
Propagation Delay Difference Between Any Two Parts	$P_{DD} \\ (t_{PHL} - t_{PLH})$	-100		100	ns	$V_{CC} = 15 \text{ V to } 30 \text{ V}$
Rise Time	t _r	_	46	_	ns	$V_{CC} = 30 \text{ V}$
Fall Time	t_{f}	_	43	_	ns	
Output High Level Common Mode Transient Immunity	CM _H	20	30	_	kV/ s	T_A = 25°C, I_F =10mA V_{CC} =30V, V_{CM} =1500V with split resistors
Output Low Level Common Mode Transient Immunity	CM _L	20	30	_		T_A =25°C, V_F =0V, V_{CC} =30V, V_{CM} =1500V with split resistors

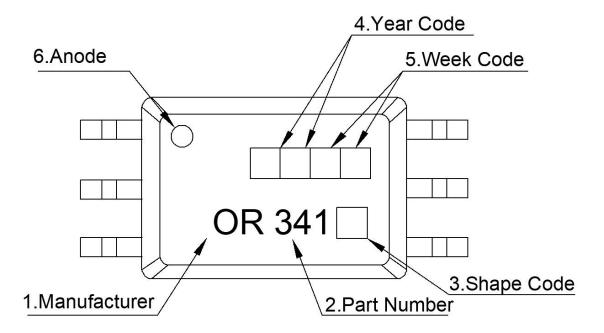
8. Order Information

Part Number

OR-341Y-Z

Note

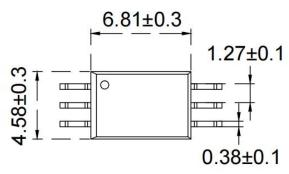
341= Part Number

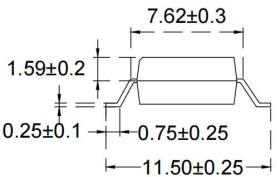

Y = Lead form option, W or W1

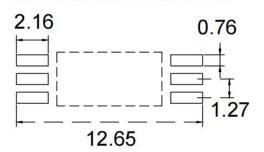
Z =Tape and reel option (TA,TA1 or none).

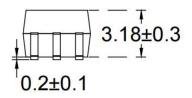
Option	Description	Packing quantity
S(TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S(TA1)	Surface mount lead form (low profile) + TA1 tape & reel option	1000 units per reel

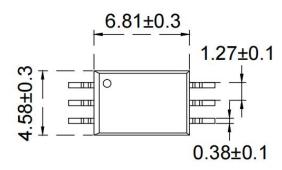
9. Naming Rule



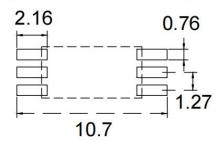

- 1. Manufacturer: ORIENT.
- 2. Part Number: 341.
- 3. Shape Code : Lead form option, W or W1.
- 4. Year Code : '21' means '2021' and so on.
- 5. Week Code : 01 means the first week, 02 means the second week and so on.
- 6. Anode.

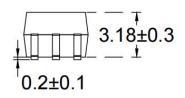

10. Package Dimension


(1).OR-341W

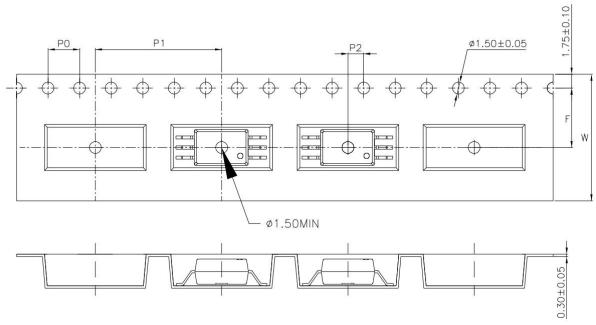


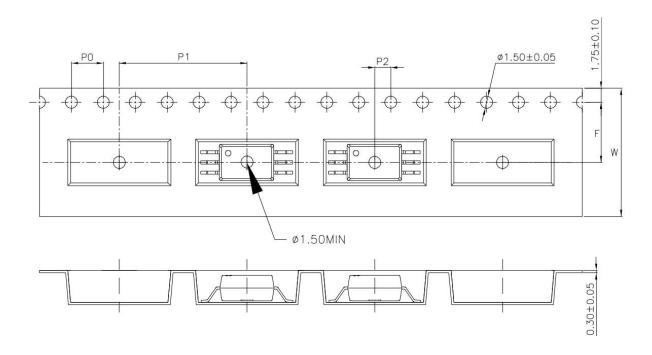
Land Pattern Recommendation




(2).OR-341W1

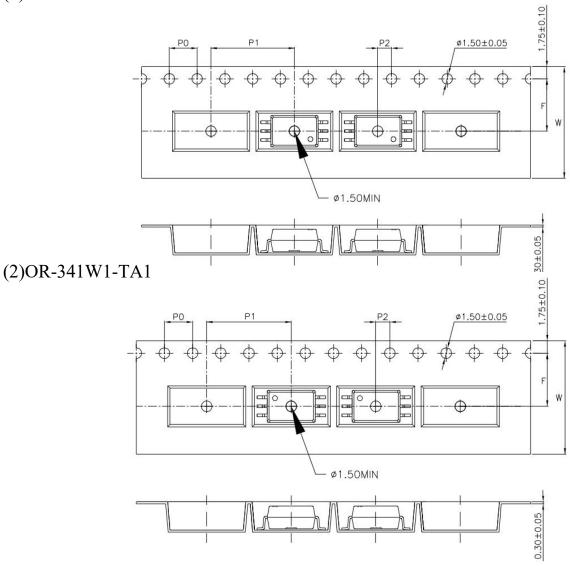
Land Pattern Recommendation





11. Taping Dimensions

(1)OR-341W-TA



(2)OR-341W-TA1

(1)OR-341W1-TA

Туре	symbol	Dimension in mm (inch) For W type	Dimension in mm (inch) For W1 type
bandwidth	W	16±0.3 (0.63)	16±0.3 (0.63)
pitch	P0	4±0.1 (0.16)	4±0.1 (0.16)
pitch	F	7.5±0.1 (0.3)	7.5±0.1 (0.3)
p.v.	P2	2±0.1 (0.079)	2±0.1 (0.079)
interval	P1	16±0.1 (0.63)	12±0.1 (0.47)

Encapsulation type	TA/TA1
amount (pcs)	1000

12. Package Dimension

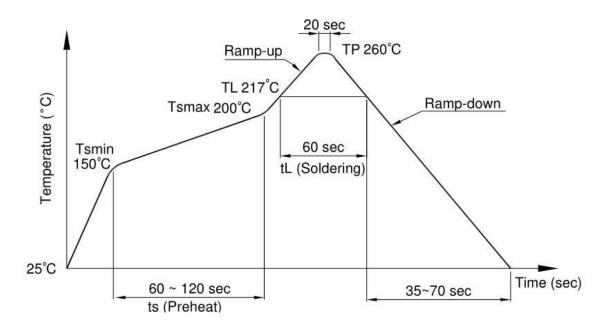
(1) package dimension

Packing Information				
Packing type	Reel type			
Tape Width	16mm			
Qty per Reel	1,000pcs			
Small box (inner) Dimension	345*345*58.5mm			
Large box (Outer) Dimension	620x360x360mm			
Max qty per small box	2,000pcs			
Max qty per large box	20,000pcs			

(2)Packing Label Sample

Note:

- P/N :Contents with "Order Information" in the specification.
- LOT NO: The production lot.
- 3. BATCH: The Electrical rank.
- 4. Quantity: Packaging quantity.
- Product Data: Date of manufacture.

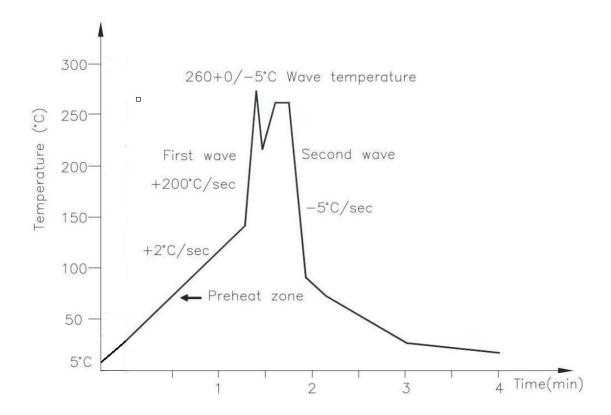


13. Temperature Profile Of Soldering

(1).IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min (T Smin) - Temperature Max (T Smax) - Time (min to max) (ts)	150°C 200°C 90±30 sec
Soldering zone - Temperature (TL) - Time (t L)	217°C 60 sec
Peak Temperature Peak Temperature time	260°C 20 sec
Ramp-up rate	3°C / sec max.
Ramp-down rate from peak temperature Reflow times	3~6°C / sec ≤3



(3) .Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature	260+0/-5°C
Time	10 sec
Preheat temperature	5 to 140°C
Preheat time	30 to 80 sec

(3). Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature	380+0/-5°C
Time	3 sec max

14. CHARACTERISTICS CURVES (TYPICAL PERFORMANCE)

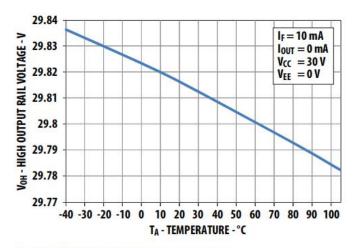


Figure 1. High output rail voltage vs. temperature

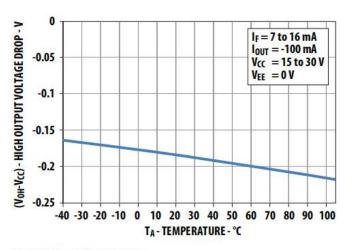


Figure 2. V_{OH} vs. temperature

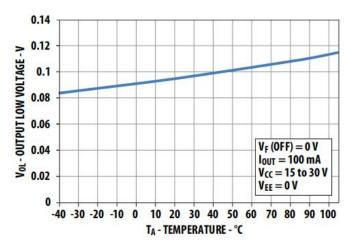


Figure 3. Vol vs. temperature

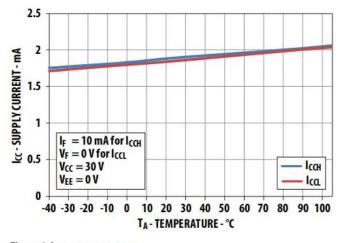


Figure 4. I_{CC} vs. temperature

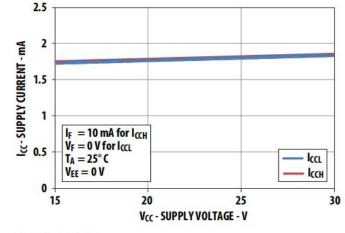


Figure 5. Icc vs. Vcc

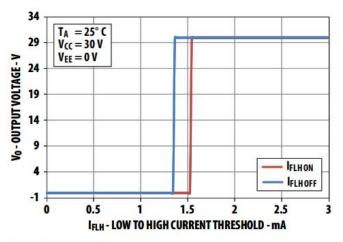


Figure 6. IFLH hysteresis

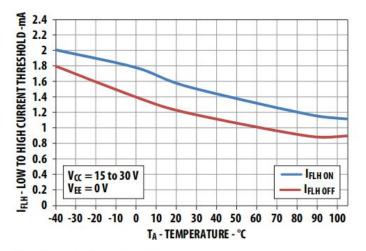


Figure 7. IFLH vs. temperature

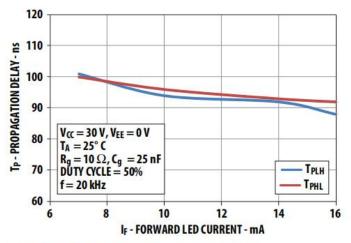


Figure 9. Propagation delays vs. IF

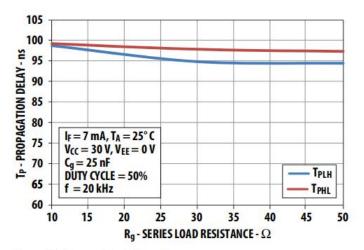


Figure 11. Propagation delay vs. Rg

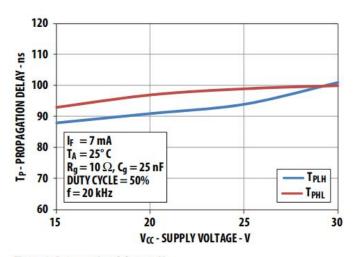


Figure 8. Propagation delays vs. V_{CC}

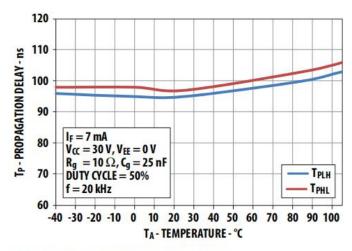


Figure 10. Propagation delays vs. temperature

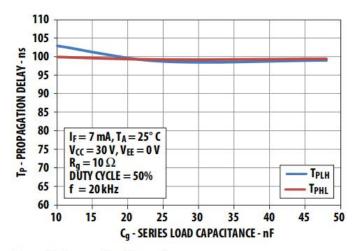


Figure 12. Propagation delay vs. Cg

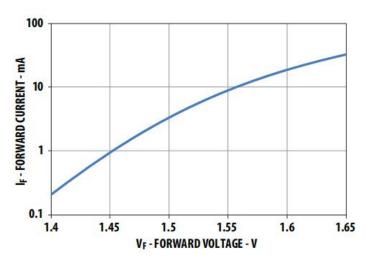


Figure 13. Input current vs. forward voltage

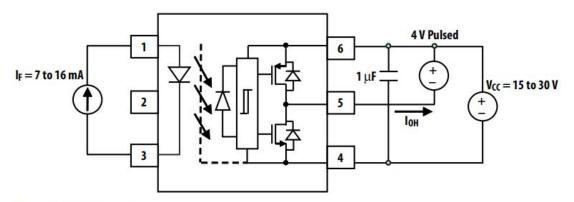


Figure 14. I_{OH} test circuit

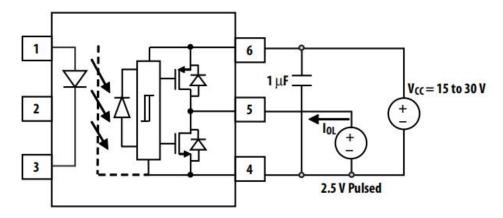


Figure 15. I_{OL} test circuit

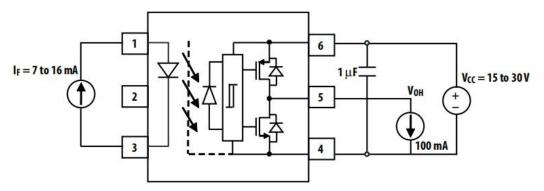


Figure 16. V_{OH} test circuit

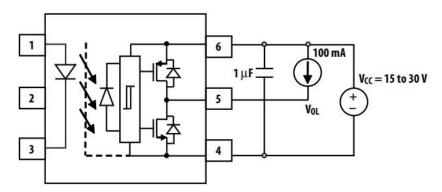


Figure 17. Vol test circuit

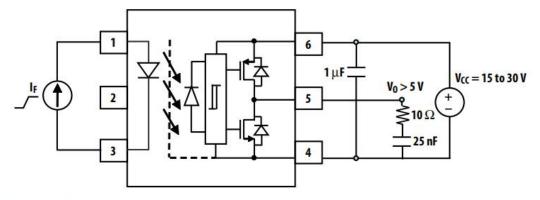


Figure 18. I_{FLH} test circuit

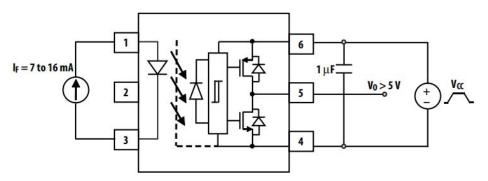


Figure 19. UVLO test circuit

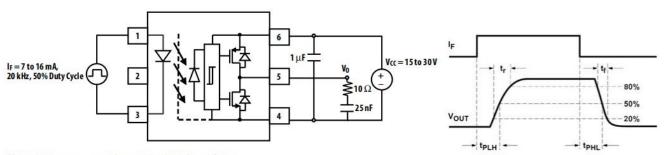


Figure 20. t_{PHL}, t_{PHL}, t_r and t_f test circuit and waveforms

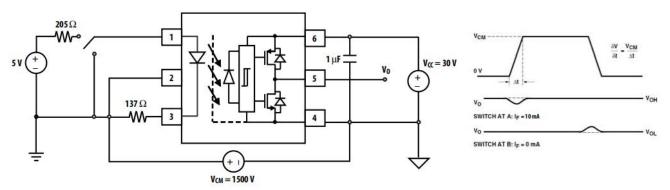


Figure 21. CMR test circuit with split resistors network and waveforms

单击下面可查看定价,库存,交付和生命周期等信息

>>ORIENT(奥伦德)