LUW H9QP

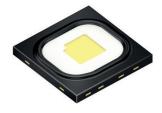
OSLON® Black Flat

OSLON Black Flat is a new small size high-flux LED for slim designs. The black package stands for high stability.

Applications

- Custom Tuning

- Headlamps, LED & Laser & Night Vision


Features:

- Package: SMD epoxy package
- Chip technology: UX:3
- Typ. Radiation: 120° (Lambertian emitter)
- Color: Cx = 0.32, Cy = 0.34 acc. to CIE 1931 (• ultra white)
- Corrosion Robustness Class: 3B

1 Version 1.13 | 2018-11-15

- Qualifications: The product qualification test plan is based on the guidelines of IEC60810, Lamps for road vehicles – Performance requirements – Requirements and test conditions for LED packages.
- ESD: 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)

Ordering Information

Туре	Luminous Flux ¹⁾ I _F = 700 mA Φ _V	Ordering Code	
LUW H9QP-5M8M-HNJN-1	180 280 lm	Q65111A3704	

Maximum Ratings

Parameter	Symbol		Values
Operating Temperature	T _{op}	min.	-40 °C
	σp	max.	125 °C
Storage Temperature	T _{stg}	min.	-40 °C
	0.9	max.	125 °C
Junction Temperature	T _j	max.	150 °C
Junction Temperature for short time applications*	Tj	max.	175 °C
Forward Current	I _F	min.	100 mA
T _s = 25 °C		max.	1200 mA
Surge Current t ≤ 1 ms; D = 0.005 ; T _s = 25 °C	I _{FS}	max.	2500 mA
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)	V_{ESD}		8 kV
Reverse current 2)	۱ _R	max.	200 mA

*The median lifetime (L70/B50) for Tj =175°C is 100h.

3 Version 1.13 | 2018-11-15

Downloaded From Oneyac.com

Characteristics

 $I_{_{\rm F}}$ = 700 mA; $T_{_{
m S}}$ = 25 °C

Parameter	Symbol		Values
Chromaticity Coordinate 3)	Cx Cy	typ. typ.	0.32 0.34
Viewing angle at 50 % I_v	2φ	typ.	120 °
Forward Voltage ⁴⁾ I _F = 700 mA	V _F	min. typ. max.	2.75 V 3.15 V 3.75 V
Reverse voltage (ESD device)	V _{r esd}	min.	45 V
Reverse voltage ²⁾ I _R = 20 mA	V _R	max.	1.2 V
Real thermal resistance junction/solderpoint ⁵⁾	$R_{thJS real}$	typ. max.	6.0 K / W 7.5 K / W
Electrical thermal resistance junction/solderpoint $^{\rm 5)}$ with efficiency $\eta_{\rm e}$ = 29 %	$R_{thJS elec.}$	typ. max.	4.3 K / W 5.3 K / W

Brightness Groups

Group	Luminous Flux ¹⁾ I _F = 700 mA min. Φ _v	Luminous Flux ¹⁾ I _F = 700 mA max. Φ _v	Luminous Intensity ⁶⁾ I _F = 700 mA typ. I _v
5M	180 lm	201 lm	63 cd
6M	201 lm	224 lm	70 cd
M7	210 lm	224 lm	72 cd
7M	224 lm	250 lm	78 cd
8M	250 lm	280 lm	88 cd

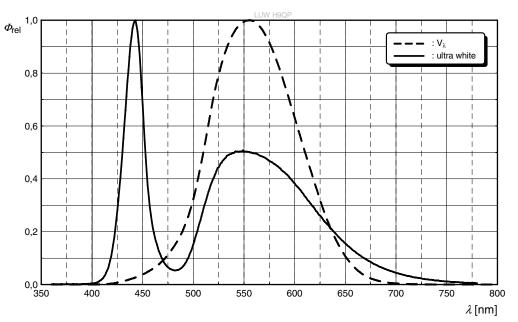
Forward Voltage Groups

Group	Forward Voltage ⁴⁾ I _F = 700 mA min. V _F	Forward Voltage ⁴⁾ I _F = 700 mA max. V _F	
8E	2.75 V	3.00 V	
8F	3.00 V	3.25 V	
8G	3.25 V	3.50 V	
8H	3.50 V	3.75 V	

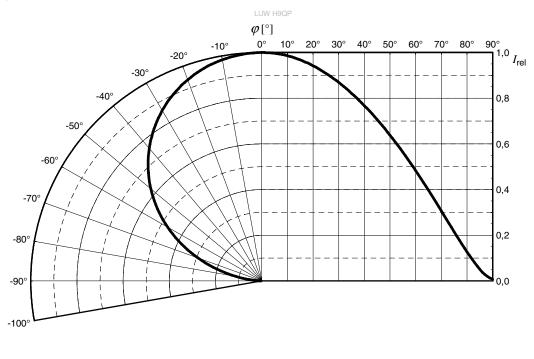
Chromaticity Coordinate Groups ³⁾

Color Chromaticity Groups ³⁾

Group	Сх	Су	Group	Cx	Су	Group	Сх	Су
HN	0.3127	0.3093	IN	0.3163	0.3181	JN	0.3203	0.3274
	0.3255	0.3216		0.3300	0.3308		0.3349	0.3404
	0.3246	0.3424		0.3298	0.3526		0.3355	0.3633
	0.3096	0.3282		0.3138	0.3381		0.3186	0.3484


Group Name on LabelExample: 5M-HN-8EBrightnessColor Chromaticity5MHN8E

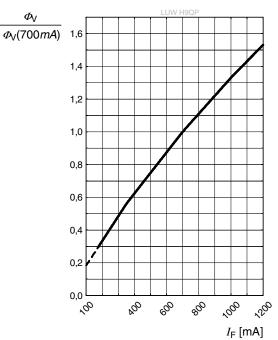
Relative Spectral Emission⁶⁾


 Φ_{rel} = f (λ); I_F = 700 mA; T_S = 25 °C

Note: Percentage of red: >5% acc. to ECE regulation Percentage of UV: <10-5 W/Im acc. to ECE regulation

Radiation Characteristics⁶⁾

 $I_{rel} = f(\phi); T_{s} = 25 \ ^{\circ}C$



Forward current ^{6), 7)}

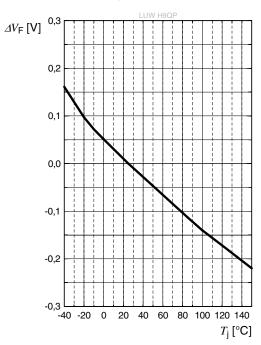
$I_{F} = f(V_{F}); T_{S} = 25 °C$ $I_{F} [mA] 1200 I_{LUW H9OP} I_{IOO} I_{IO$

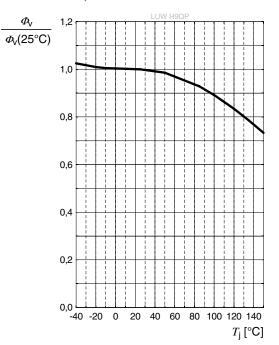
Relative Luminous Flux ^{6), 7)}


 $\Phi_{v}/\Phi_{v}(700 \text{ mA}) = f(I_{F}); T_{S} = 25 \text{ °C}$

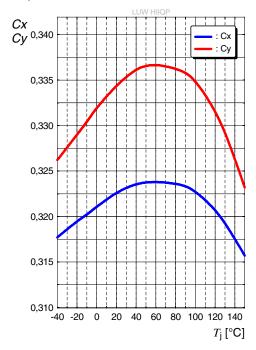
Chromaticity Coordinate Shift ⁶⁾

Cx, Cy = $f(I_F)$; $T_S = 25^{\circ}C$

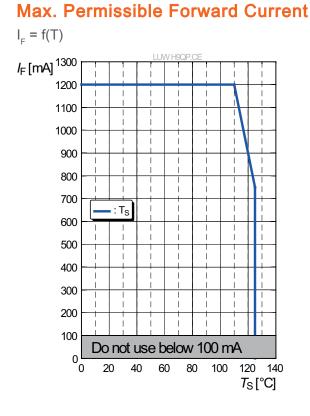

9 Version 1.13 | 2018-11-15


Forward Voltage ⁶⁾

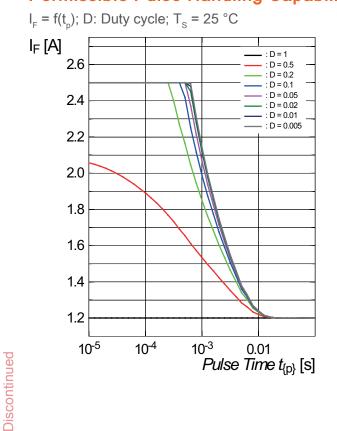
 $\Delta V_{_F} = V_{_F} - V_{_F}(25 \text{ °C}) = f(T_{_J}); I_{_F} = 700 \text{ mA}$

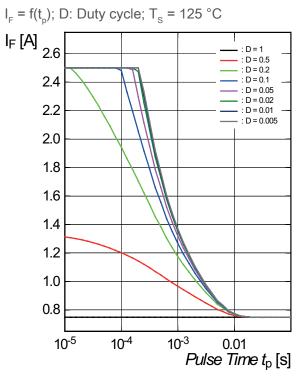

Relative Luminous Flux⁶⁾

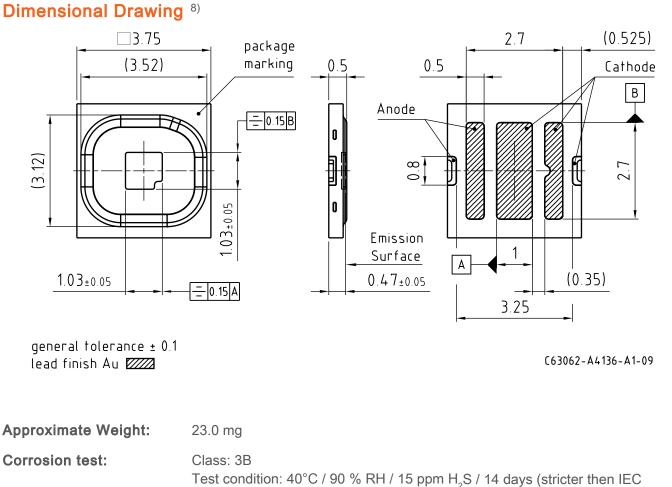
 $\Phi_v/\Phi_v(25 \text{ °C}) = f(T_i); I_F = 700 \text{ mA}$



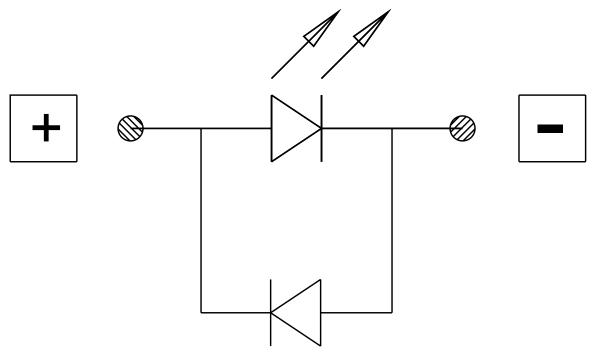
Chromaticity Coordinate Shift ⁶⁾

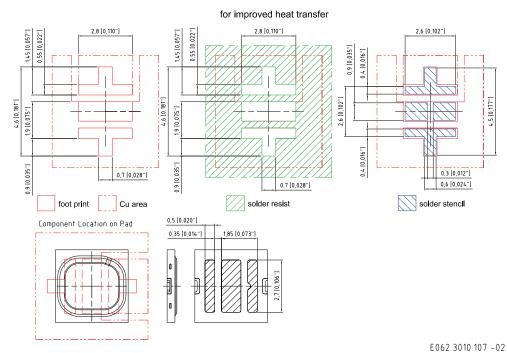

Cx, Cy = $f(T_i)$; $I_F = 700 \text{ mA}$




Permissible Pulse Handling Capability

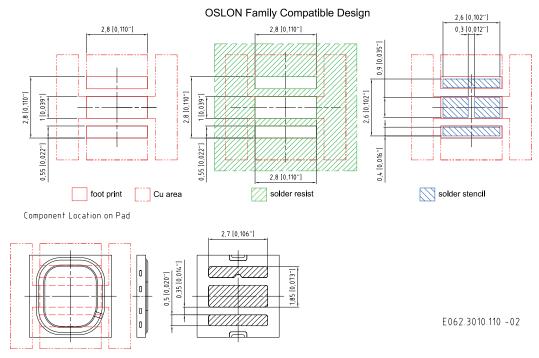
Permissible Pulse Handling Capability




ESD advice: The device is protected by ESD device which is connected in parallel to the Chip.

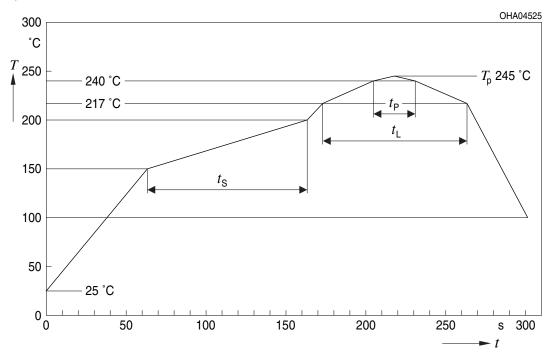
Electrical internal circuit

Recommended Solder Pad⁸⁾



Discontinued

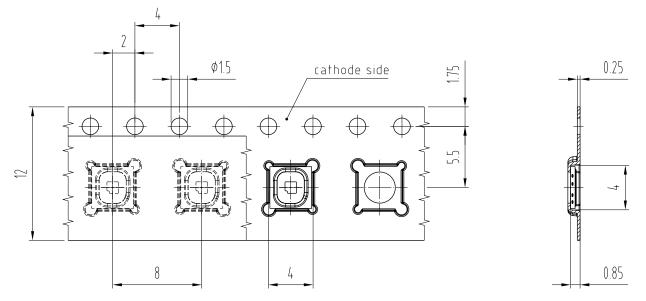
Recommended Solder Pad⁸⁾



For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. In case the PCB layout of the application is intended to be used with other OSLON derivates or in future developed OSLON derivates, the heat sink must not be electrically connected to anode or cathode solder pad because of possible chip inverted polarity. Package not suitable for ultra sonic cleaning.

Reflow Soldering Profile

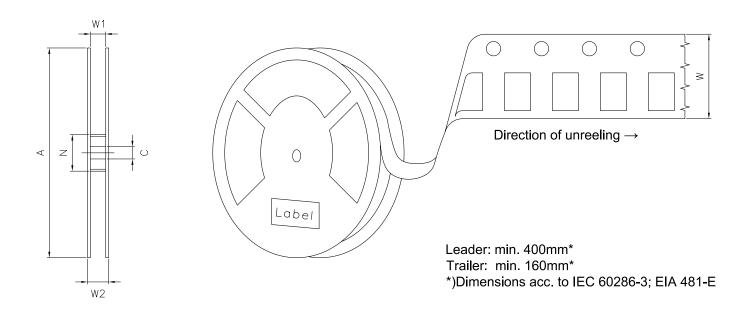
Product complies to MSL Level 2 acc. to JEDEC J-STD-020E


Profile Feature	Symbol	Symbol Pb-Free (SnAgCu) Assembly			
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat ^{*)} 25 °C to 150 °C			2	3	K/s
Time t _s T _{Smin} to T _{Smax}	t _s	60	100	120	S
Ramp-up rate to peak ^{*)} T_{smax} to T_{p}			2	3	K/s
Liquidus temperature	TL		217		°C
Time above liquidus temperature	t		80	100	S
Peak temperature	Τ _Ρ		245	260	°C
Time within 5 °C of the specified peak temperature T_p - 5 K	t _P	10	20	30	S
Ramp-down rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S

All temperatures refer to the center of the package, measured on the top of the component

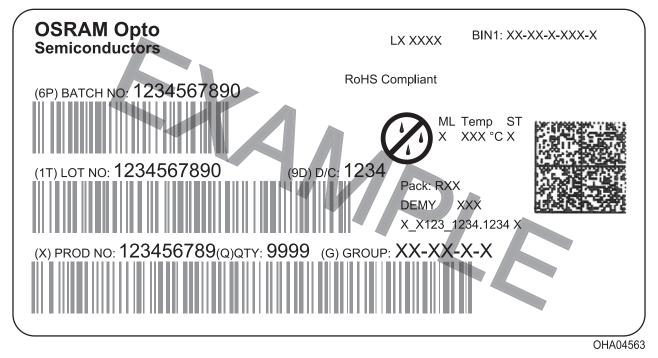
Discontinued

LUW H9QP

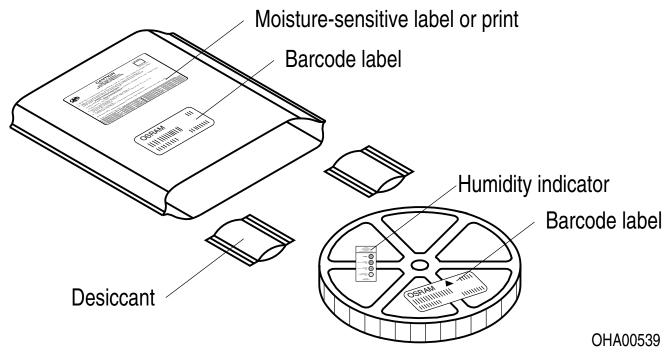


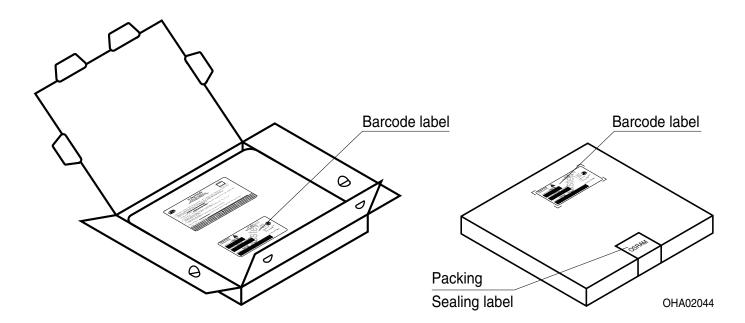
C63062-A4136-B10-03

Tape and Reel ⁹⁾



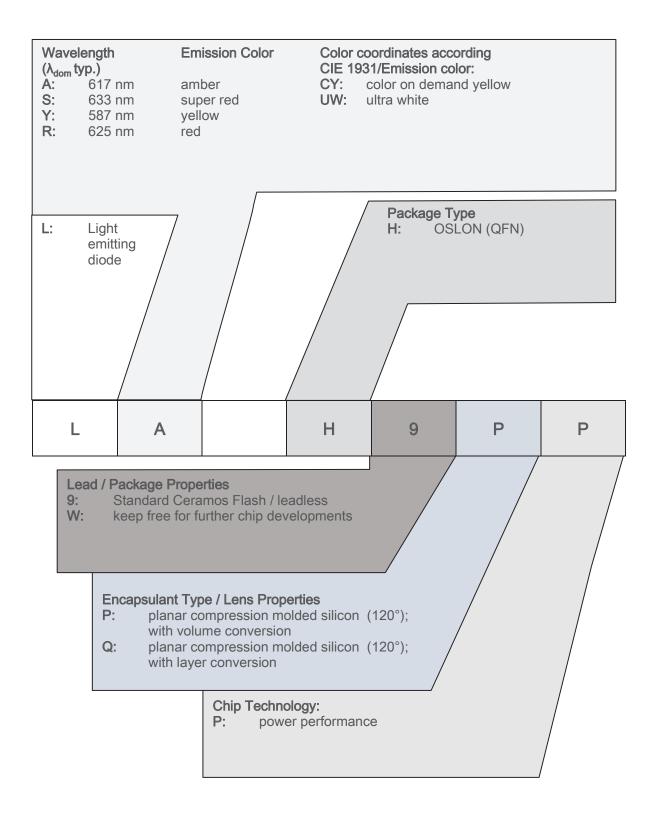
Reel dimensions [mm]


А	W	N_{min}	W_1	$W_{2 \max}$	Pieces per PU	
180 mm	12 + 0.3 / - 0.1	60	12.4 + 2	18.4	2000	
330 mm	12 + 0.3 / - 0.1	60	12.4 + 2	18.4	8000	


Barcode-Product-Label (BPL)

Dry Packing Process and Materials⁸⁾

Transportation Packing and Materials⁸⁾


Dimensions of transportation box in mm

Width	Length	Height	
195 ± 5 mm	195 ± 5 mm	30 ± 5 mm	
349 ± 5 mm	349 ± 5 mm	33 ± 5 mm	

Type Designation System

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet falls into the class **moderate risk (exposure time 0.25 s)**. Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related informations please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on the OSRAM OS webside.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

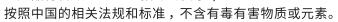
In case Buyer – or Customer supplied by Buyer– considers using OSRAM OS components in product safety devices/applications or medical devices/applications, Buyer and/or Customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and Buyer and /or Customer will analyze and coordinate the customer-specific request between OSRAM OS and Buyer and/or Customer.

22 Version 1.13 | 2018-11-15

Glossary

- ¹⁾ **Brightness:** Brightness values are measured during a current pulse of typically 25 ms, with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (acc. to GUM with a coverage factor of k = 3).
- ²⁾ **Reverse Operation:** Reverse Operation of 10 hours is permissible in total. Continuous reverse operation is not allowed.
- ³⁾ **Chromaticity coordinate groups:** Chromaticity coordinates are measured during a current pulse of typically 25 ms, with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (acc. to GUM with a coverage factor of k = 3).
- ⁴⁾ **Forward Voltage:** The forward voltage is measured during a current pulse of typically 8 ms, with an internal reproducibility of ± 0.05 V and an expanded uncertainty of ± 0.1 V (acc. to GUM with a coverage factor of k = 3).
- ⁵⁾ **Thermal Resistance:** Rth max is based on statistic values (6σ).
- ⁶⁾ **Typical Values:** Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- ⁷⁾ **Characteristic curve:** In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
- ⁸⁾ **Tolerance of Measure:** Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- ⁹⁾ **Tape and Reel:** All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

23 Version 1.13 | 2018-11-15


LUW H9QP

Discontinued

 Published by OSRAM Opto Semiconductors GmbH
 EU RoHS and China RoHS compliant product

 Leibnizstraße 4, D-93055 Regensburg
 www.osram-os.com © All Rights Reserved.

 此产品符合欧盟 RoHS 指令的要求;

e

单击下面可查看定价,库存,交付和生命周期等信息

>>OSRAM(欧司朗光电半导体)