Code No.: 1C3F4107

Total Pages Page

Product Standards

Part No.	AN30251A
Package Code No.	QFN016-P-0304B

Analogue LSI Business Unit Semiconductor Company Matsushita Electric Industrial Co., Ltd.

Established by	Applied by	Checked by	Prepared by
S.Okada	M. Hiramatsu	J. Hara	Sgoto
S.Okada	M.Hiramatsu	J.Hara	S.Goto

2005-09-26	2005-10-31	
Established	Revised	

AN30251A Total Pages Page 21 2

Contents

■ Overview	3
■ Features	3
■ Applications	3
■ Package	3
■ Type	3
■ Application Circuit Example	4
■ Block Diagram	5
■ Pin Descriptions	6
■ Absolute Maximum Ratings	7
■ Operating Supply Voltage Range	7
■ Allowed Voltage Ranges	7
■ Electrical Characteristics	8
■ Electrical Characteristics (Reference values for design)	9
■ Control Pin Mode Table	10
■ Test Circuit Diagram	11
■ Electrical Characteristics Test Procedures	13
■ Technical Data (1. I / O block circuit diagrams and pin functional descriptions)	14
■ Technical Data (2. Timing Chart)	16
■Usage Note	21

AN30251A		
Total Pages	Page	
21	3	

AN30251A

Driver IC for White LED's

Overview

AN30251A is a step-up DCDC converter that drives an external NMOS power transistor using a constant frequency PWM architecture.

■ Features

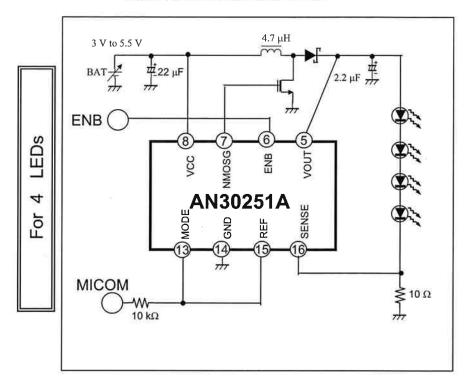
- Operation from 3.0 to 5.5 V supply voltage.
- Low Power Operation (1 mA typ.)
- Incorporates various protections (below).
 - Low Input voltage detection.
 - Short circuit detection of a timer.
 - Soft-start circuit.
- Over voltage detection.
- \bullet 1 μA or less shutdown current
- 2 current modes (Flash Mode / Torch Mode) selectable.

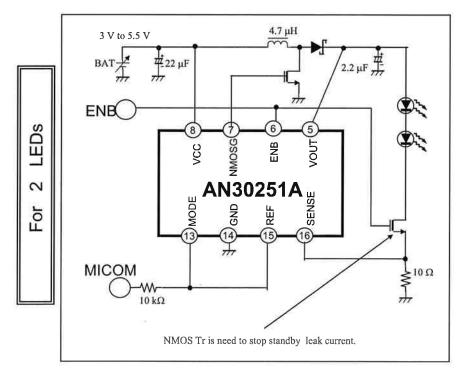
■ Applications

• White LED's of Mobile Phone

■ Package

• 16 pin Plastic Quad Flat Non-leaded Package (QFN type)

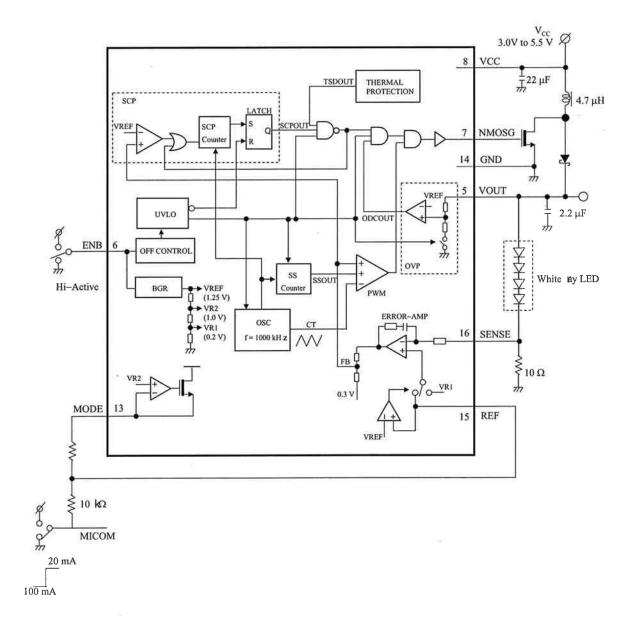

■ Type


• Bi-CMOS IC

AN30251A		
Total Pages	Page	
21	4	

■ Application Circuit Example

Flash Mode LED CURRENT 100 mA Torch Mode LED CURRENT 20 mA



2005-09-26	2005-10-31
Established	Revised

213025100405101

AN30251A		
Total Pages	Page	
21	5	

■ Block Diagram

2005-09-26	2005-10-31
Established	Revised

213025100505101

AN30251A		
Total Pages	Page	
21	6	

■ Pin Descriptions

Pin No.	Pin name	Type	Description
1	N.C.	_	Non connected
2	N.C.	-	Non connected
3	N.C.	_	Non connected
4	N.C.	<u></u>	Non connected
5	VOUT	Input	Booster Voltage Detection
6	ENB	Input	On / Off Control
7	NMOSG	Output	External Nch-MOS driving Pulse
8	VCC	Power Supply	Power Supply
9	N.C.		Non connected
10	N.C.		Non connected
11	N.C.	=	Non connected
12	N.C.		Non connected
13	MODE	Output	1 V Output
14	GND	GND	Ground
15	REF	Input	Flash Mode / Torch Mode Control and Reference Voltage Input at Flash Mode
16	SENSE	Input	LED Current Feedback

005-09-26 2005-10-31	
Established Revised	

213025100605101

AN30251A					
Total Pages	Page				
21	7				

■ Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Supply voltage	V _{CC}	6.0	V	*1
2	Supply current	I _{cc}	1.2	Α	_
3	Power dissipation	P _D	125.8	mW	*2
4	Operating ambient temperature	T _{opr}	-30 to +85	°C	*3
5	Storage temperature	T _{stg}	-55 to +125	°C	*3

Notes) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

- *2: The power dissipation shown is the value at $T_a = 75$ °C for the independent (unmounted) IC package. When using this IC, refer to the $P_D - T_a$ diagram of the package standard page 4 and use under the condition not exceeding the allowable value.
- *3: Except for the operating ambient temperature, and storage temperature, all ratings are for $T_a = 25$ °C.

■ Operating supply voltage range

Parameter	Symbol	Range	Unit	Notes
Supply Voltage range	V _{cc}	3.0 to 5.5	V	*

Note) *: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

■ Allowed Voltage Ranges

Note) • The ranges on the list are the voltages of respective pins in relation to GND.

- The VCCV represents the voltage of VCC Pin (Pin No. 8)
- Do not apply the voltages or the currents from external into the pins which are not on the list.

Pin No.	No. Pin name Range		Unit	Notes
5	VOUT	- 0.3 to (VCCV + 0.3)	V	*1
6	ENB	- 0.3 to (VCCV + 0.3)	V	*1
7	NMOSG	- 0.3 to (VCCV + 0.3)	V	*1
8	VCC	0 ~ 6.0	V	*1

Pin No.	Pin name	Range	Unit	Notes
13	MODE	- 0.3 to (VCCV+ 0.3)	V	*1
14	GND	0	V	*1
15	REF	-0.3 to (VCCV $+0.3$)	V	*1
16	SENSE	- 0.3 to (VCCV + 0.3)	V	*1

Note) *1 Valid for the input mode. Do not apply the voltages or the currents from external at output mode.

2005-09-26	2005-10-31
Established	Revised

213025100705101

AN30251A					
Total Pages Page					
21 8					

\blacksquare Electrical Characteristics at V $_{CC}=3.7$ V Note) $\rm T_a$ = 25°C±2°C unless otherwise specified.

В	Decemptor	Cumbal	Test	0 177	Limits			1.1240	
No.	Parameter	Symbol	circuits	Conditions	Min	Тур	Max	Unit	Notes
ALL	Devices								
1	Average Supply Current	I_{CC}	1	ENB = High	-	-	10	mA	
2	Average Stand-by Current	ISTB	1	ENB = Low	-	=	1	μΑ	
3	ENB pin high-level input voltage	Venbh	2	ENB = 1.5 V	1.55	-	_	V	
4	ENB pin low-level input voltage	Venbl	2	ENB = 1.0 V	-	=	0.95	V	
5	REF pin high-level input voltage	Vrefh	3	ENB = High, SENSE = 0.5 V, REF = 1.4 V	1.50	-	-	v	
6	REF pin low-level input voltage	Vrefl	3	ENB = High, SENSE = 0.5 V, REF = 1.1 V	22	=	1.00	V	
7	SENSE pin input threshold voltage1	Vsensel	3	ENB = High, REF = 3.7 V, SENSE = 0.182 V / 0.218 V	0.18	0.20	0.22	V	
8	SENSE pin input threshold voltage2	Vsense2	3	ENB = High, REF = 1.0 V, SENSE = 0.95V / 1.05 V	0.95	1.00	1.05	V	

2005-09-26	2005-10-31
Established	Revised

AN30251A					
Total Pages Page					
21	9				

\blacksquare Electrical Characteristics (Reference values for design) at $V_{CC} = 3.7 \text{ V}$

Note) $T_a = 25^{\circ}C\pm2^{\circ}C$ unless otherwise specified.

D 1	Danier de la constant	0	Test	04:4:	Ref	erence v	alues	11	Not
ΒN	lo. Parameter	Symbol	circuits	Conditions	Min	Тур	Max	Unit	es
DC	DC-Converter Block					VI	61		
9	Oscillation frequency	Fosc	4		0.7	1	1.3	MHz	*1
10	Operation start voltage	VCCon	5		2.6	2.8	3.0	v	*1
11	Operation stop voltage	VCCoff	5		2.4	2.6	2,8	v	*1
12	ENB Input Bias Current	Ienb	6		s—.	8	20	μА	*1
13	REF Input Bias Current	Iref	4		2-X	0.1	1	μА	*1
14	NMOSG Hi-Side On-Resistance	Ronp	7-1			6	15	Ω	*1
15	NMOSG Lo-Side On-Resistance	Ronn	s			6	15	Ω	*1
16	Timer time of Short Circuit Detection	Tscp			1	280	_	ms	*1
17	Mode Output Voltage	Vo1	5	$I_{MODE} = -100 \mu A$	0.96	1.00	1.04	V	*1
18	Max Duty 1 Flash mode	Duty1	4	REF = Low	2.—2	92	- 1	%	*1
19	Max Duty2 Torch mode	Duty2	4	REF = High	-	78	_	%	*1
20	Recommended L value	ZL	7		=	4.7		μН	*1

Note) *1: The above characteristics are logical values derived from the design of the IC and are not guaranteed by inspection.

If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

Note) *2: $V_{CC} \neq 3.7 \text{ V}$

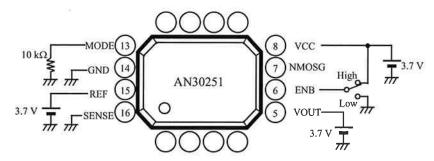
2005-09-26	2005-10-31
Established	Revised

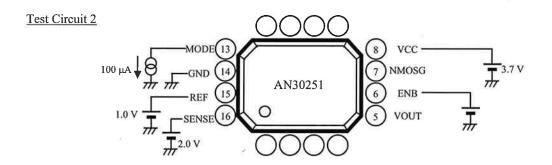
AN30	251A
Total Pages	Page
21	10

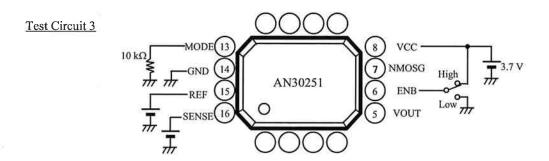
■ Control Pin Mode Table

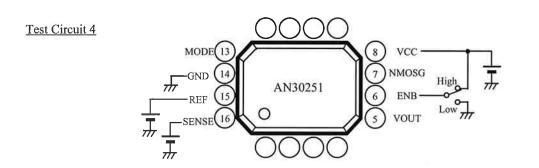
Note) See parameters 3 to 6 in the Electrical Characteristics for control voltage retention ranges.

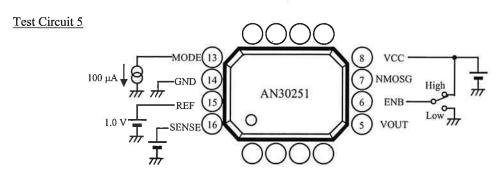
Pin No.	Description	, Pin vo	oltage	Demode
PIN NO.	Description	Low	High	Remarks
6	ENB	0.95 V or less	1.55 V or more	High: Active, Low: Standby
15	REF	to 1.00 V	1.50 V or more	High: Torch Mode, Low: Flash Mode

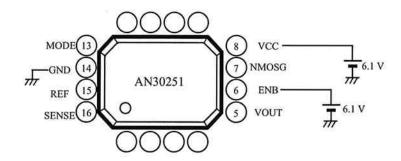

9-26 2005-10
lished Revise


213025101005101


AN30	251A
Total Pages	Page
21	11


■ Test Circuit Diagram






AN30	251A
Total Pages	Page
21	12

■ Test Circuit Diagram (Continued)

2005-09-26	2005-10-31
Established	Revised

213025101205101

AN30	251A
Total Pages	Page
21	13

■ Electrical Characteristics Test Procedures

С			Input		Output	TEST			Р	in set	tings		
No.	Parameter	Pin No.	Conditions	Pin No.	Conditions	Cir. No.	5 VOUT	6 ENB	7 NMOSG	8 VCC	13 MODE	15 REF	16 SENSE
I	Average Supply Current	5, 8	V (pin 5) = 3.7 V V (pin 8) = 3.7 V	5, 8	I (pin 5) + I (pin 8)	1	3.7 V	High	open	3.7 V	10 kΩ +GND	3.7 V	0 V
2	Average Stand-by Current	5, 8	V (pin 5) = 3.7 V V (pin 8) = 3.7 V	5, 8	I (pin 5) + I (pin 8)	1	3.7 V	Low	open	3.7 V	10 kΩ +GND	3.7 V	0 V
3	ENB pin high-level input voltage	6	V (pin 6) = 0 → 3.7 V	6	V (pin 6) at V (pin 13) = 0 → 1 V	2	open	1.5 V	open	3.7 V	-100 μΑ	1 V	2 V
4	ENB pin low-level input voltage	6	V (pin 6) = 3.7 → 0 V	6	V (pin 6) at V (pin 13) = 1 → 0 V	2	open	ιv	open	3.7 V	-100 μΑ	ιv	2 V
5	REF pin high-level Input voltage	15	$V \text{ (pin 15)} = 0 \rightarrow 3.7 \text{ V}$	15	V (pin 15) at waveform (pin 7) = Pulse → 0 V	3	open	High	open	3.7 V	10 kΩ +GND	1.4 V	0.5 V
6	REF pin low-level Input voltage	15	V (pin 15) = 3.7 → 0 V	15	V (pin 15) at waveform (pin 7) = 0 V → pulse	3	open	High	open	3.7 V	10 kΩ +GND	1.1 V	0,5 V
7	SENSE pin input threshold voltage1	16	$V \text{ (pin 16)} = 0 \rightarrow 3.7 \text{ V}$	16	V (pin 16) at waveform (pin 7) = Pulse → 0 V	3	open	High	open	3.7 V	10 kΩ +GND	3.7 V	0,182 V ↓ 0.218 V
8	SENSE pin input threshold voltage2	16	V (pin 16) = 0 → 3.7 V	16	V (pin 16) at waveform (pin 7) = Pulse → 0 V	3	open	High	open	3.7 V	I0 kΩ +GND	1 V	0.95 V ↓ 1.05 V
9	Oscillation frequency	16	V (pin 16) = 0 V	7	Frequency (pin 7)	4	open	High	open	3.7 V	open	1 V	0 V
10	Operation start voltage	8	$V (pin 8) = 0 \rightarrow 3.7 V$	8	V (pin 8) at V (pin 13) = $0 \rightarrow 1$ V	5	open	High	open	2.61 V ↓ 2.99 V	-100 μΑ	1 V	2 V
11	Operation stop voltage	8	$V \text{ (pin 8)} = 3.7 \rightarrow 0 \text{ V}$	8	V (pin 8) at V (pin 13) = 1 → 0 V	5	ореп	High	open	2.79 V ↓ 2.41 V	-100 μΑ	1 V	2 V
12	ENB input bias current	6	V (pin 6) = 6.1 V	6	I (pin 6)	6	open	6.1 V	open	6.1 V	open	open	open
13	REF Input Bias Current	15	V (pin 15) = 6.1 V	15	I (pin 15)	4	open	open	open	6.1 V	open	6.1 V	0.5 V
14	NMOSG Hi-Side On-Resistance	7	I (pin 7) = -100 mA	7	V (pin 7)	5	open	High	-10 mA	3.7 V	10 kΩ +GND	1 V	2 V
15	NMOSG Lo-Side On- Resistance	7	I (pin 7) = -100 mA	7	V (pin 7)	5	open	High	10 mA	3.7 V	10 kΩ +GND	1 V	2 V
16	Timer time of Short Circuit Detection	6, 16	V (pin 16) = 0 V, V (pin 6) = Low \rightarrow High	13	pin 6	5	open	Low ↓ High	open	3.7V	-100 μΑ	1 V	0 V
17	Mode Output Voltage	13	I (pin 13) = -100 μA	13	V (pin 13)	5	open	High	open	3.7 V	-100 μΑ	ιV	2 V
18	Max Duty 1 Flash mode	15, 16	V (pin 15) = 1 V, V (pin 16) = 0 V	7	On Duty (pin 7)	4	open	High	open	3.7 V	open	1 V	0 V
19	Max Duty2 Torch mode	15, 16	V (pin 15) = 3.7 V, V (pin 16) = 0 V	7	On Duty (pin 7)	4	open	High	open	3.7 V	open	3.7 V	0 V

2005-09-26	2005-10-31
Established	Revised

213025101305101

AN30	251A
Total Pages	Page
21	14

■ Technical Data

1. I / O block circuit diagrams and pin function descriptions

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
5 VOUT	VCC ~ 20 V	VCC VOUT VREF (1.25 V)	Hi–Z	Booster Voltage Detection
6 ENB	0V/VCC	VCCO I I I I I I I I I I I I I I I I I I	486 kΩ	On/Off Control
7 NMOSG	I MHz	NMOSG 202k	202 kΩ	External Nch-MOS driving Pulse
8 VCC	VCC	VCC O	_	Power Supply

213025101405101

AN30	251A
Total Pages	Page
21	15

■ Technical Data(Continued)

1. I/O block circuit diagrams and pin function descriptions(Continued)

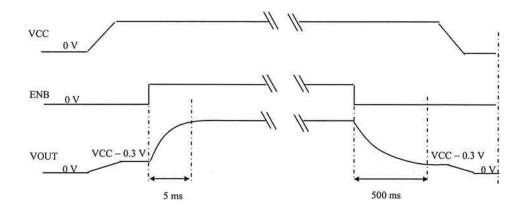
Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
13 MODE	I V OUTPUT	VCC VREF (1.0 V)	Hi–Z	1 V Output
14 GND	0 V	VCC O		GND
15 REF		REF VREF (1.25 V)	Hi–Z	Flash Mode / Torch Mode Control and Reference Voltage Input at Flash Mode
16 SENSE	0.2 V /1.0 V	VCCO TO	Hi–Z	LED Current Feedback

2005-09-26	2005-10-31
Established	Revised

213025101505101

AN30	251A
Total Pages	Page
21	16


■ Technical Data (Continued)

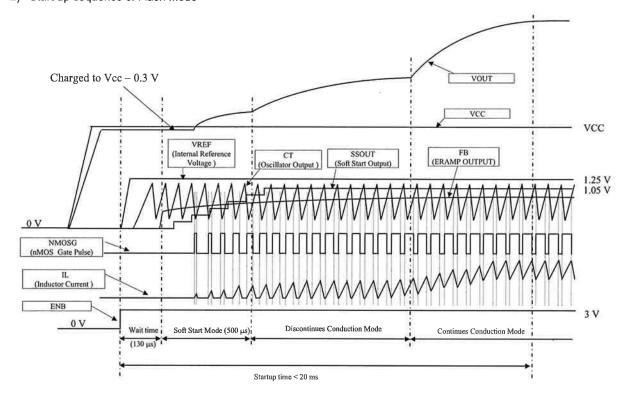
2. Timing Chart

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

1) Start and stop characteristics outline

A recommended sequence of start and stop operations is below. For start-up, ENB must be changed "Low" to "High" after VCC voltage supplied. The time of about 5 ms is necessary to stabilize VOUT.

2005-09-26	2005-10-31
Established	Revised


AN30	251A
Total Pages	Page
21	17

■ Technical Data (Continued)

2. Timing Chart (Continued)

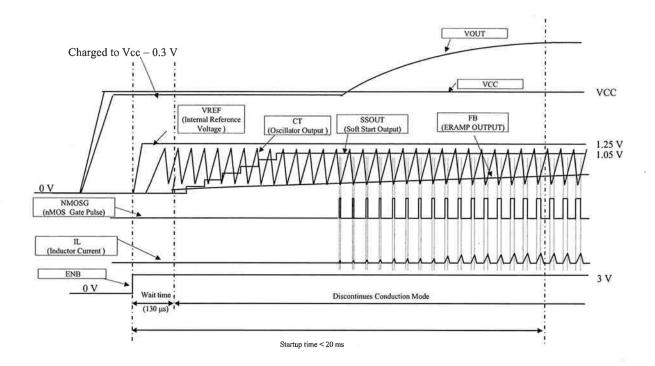
Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

2) Start up sequence of Flash Mode

After ENB is pulled-up to "High" , the IC waits for 130 μs to stabilize internal circuits.

After that, to avoid high inrush current during start-up , SSOUT restrict the duty of NMOSG pulse for 500 μs . SSOUT is changed discrete.

On Flash mode, The lowest value of IL is not equal to zero (Continues Conduction Mode).


AN30	251A
Total Pages	Page
21	18

■ Technical Data (Continued)

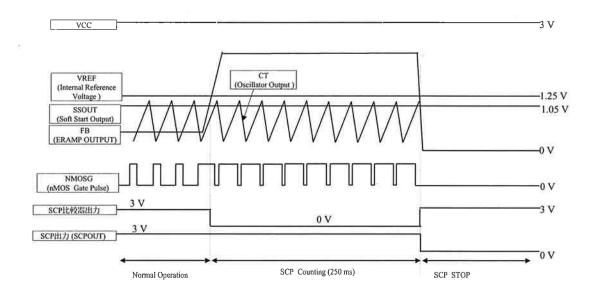
2. Timing Chart (Continued)

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

3) Start up sequence of Torch Mode

On Torch mode, SSOUT doesn't restrict the duty of NMOSG pulse. The lowest value of IL is equal to zero (Discontinues Conduction Mode) .

2005-09-26	2005-10-31
Established	Revised


AN30251A		
Total Pages	Page	
21	19	

■ Technical Data (Continued)

2. Timing Chart (Continued)

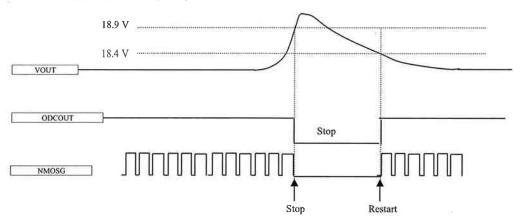
Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

4) Short Circuit Protection (SCP)

This IC has a Short-Circuit Protection (SCP) in case the output pin is shorted to ground. SCP compares FB (ERAMP OUT) and VREF (1.25 $\rm V$). SCP shuts down if the SENSE input is in the output load shorted state (ground shorted state) for a total of 250 ms (typical) or over. In this case, SCP stops almost all the circuits including OSC.

The ENB input signal must be reapplied to restart the IC operation.

2005-09-26	2005-10-31
Established	Revised


AN30251A		
Total Pages	Page	
21	20	

■ Technical Data (Continued)

2. Timing Chart (Continued)

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

5) Over Detection Comparator (ODC)

When the output gets high impedance or disconnected, VOUT voltage rises. To prevent VOUT voltage exceeding the maximum switch voltage rating (20 V) of the external n-MOSFET,

an Over Detection Comparator (ODC) is integrated. As soon as the output exceeds the ODC threshold (18.9 V), the converter stop switching and VOUT voltage falls down. When VOUT voltage falls below the ODC threshold (18.4 V), the converter restarts operation.

AN30	251A
Total Pages	Page
21	21

■ Usage Note

1. The following pin has an ESD withstand voltage of 2000 V to 3000 V (HBM actual value). Pay utmost attention to handle this pin.

VOUT (Pin No.5)

The other pins except VOUT have an ESD withstand voltage of 8000 V (HBM actual value)

- 2. Give sufficient consideration to the change of operating conditions including the constants of peripheral components.

 Especially pay attentions to change the constants of Cin, Cout, L,R1,and R2, because they have a influence on the phase characteristic.
- 3. Pin Short-circuiting

The IC will be destructed in the following cases.

• The short-circuiting of the NMOSG (Pin No.7) pin with the power supply (VCC) pin.

Panasonic confirmed that there was no generation of smoke or fire with the pins short-circuited for 10 seconds after the destruction of IC.

- 4. A Fuse must be inserted to VCC line for safe. (Recommended Current Limit = 2 A)
- 5. Don't put any capacitances to MODE pin directory. Otherwise the current on Flash Mode is not stable.

213025102105101

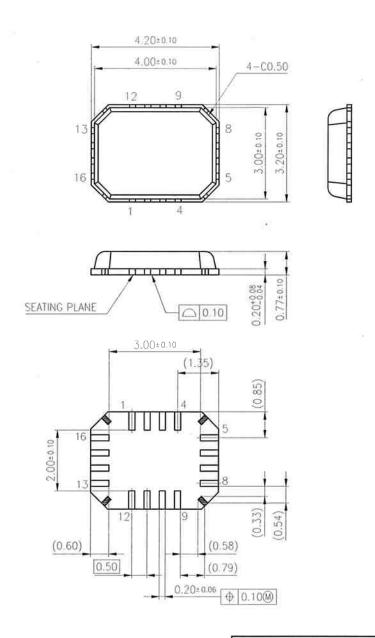
Regulations No.: SC3S1594

Total Pages	Page	
6	1	

PACKAGE STANDARDS

Package Code	*QFN016-P-0304B
-	

Semiconductor Company Matsushita Electric Industrial Co., Ltd.


Established by	Applied by	Checked by	Prepared by
K.Komichi	H.Yoshida	M.Okajima	M.Itoh

PACKAGE STANDARDS *QFN016-P-0304B

Total Pages	Page
6	2

1. Outline Drawing

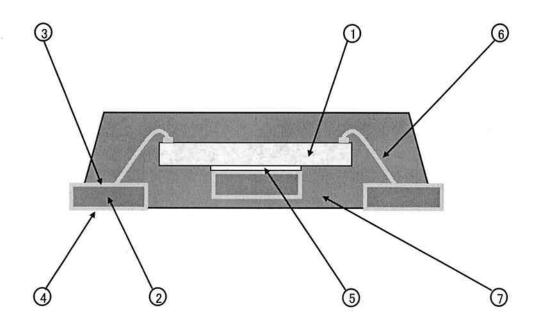
Unit:mm

Weight : 23.7 mg

Body Material : Epoxy Resin

Lead Material : Cu Alloy

Lead Finish Method: Pd Plating


Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

PACKAGE STANDARDS *QFN016-P-0304B

Total Pages	Page
6	3

2. Package Structure (Technical Report)

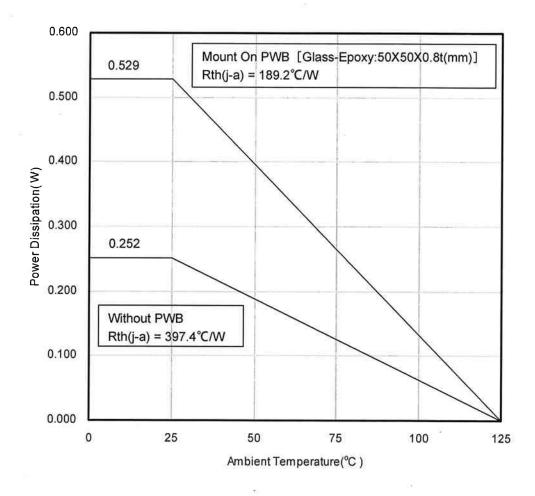
Chip Material		Si	1
Leadframe material		Cu alloy	2
Inner lead surface		Pd plating	3
Outer lead surface		Pd plating	4
Die attach	Method	Resin adhesive method	(5)
	Material	Adhesive material	
Wirebond	Method	Thermo-compression bonding	6
	Material	Au	
Molding	Method	Transfer molding	(3)
	Material	Epoxy resin	

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

PACKAGE STANDARDS
*QFN016-P-0304B

Total Pages	Page
6	4

3. Mark Drawing


Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

PACKAGE STANDARDS

*QFN016-P-0304B

Total Pages	Page
6	5

4. Power Dissipation (Technical Report)

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

PACKAGE STANDARDS

*QFN016-P-0304B

Total Pages	Page
6	6

5. Power Dissipation (Supplementary Explanation)

[Experiment environment]

Power Dissipation (Technical Report) is a result in the experiment environment of SEMI standard conformity. (Ambient air temperature (Ta) is 25 degrees C)

[Supplementary information of PWB to be used for measurement]

The supplement of PWB information for Power Dissipation data (Technical Report) are shown below.

Indication	Total Layer	Resin Material
Glass-Epoxy	1-layer	FR-4
4-layer	4-layer	FR-4

[Notes about Power Dissipation (Thermal Resistance)]

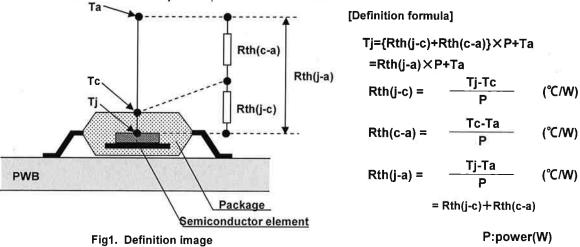
Power Dissipation values (Thermal Resistance) depend on the conditions of the surroundings, such as specification of PWB and a mounting condition, and a ambient temperature. (Power Dissipation (Thermal Resistance) is not a fixed value.)

The Power Dissipation value (Technical Report) is the experiment result in specific conditions (evaluation environment of SEMI standard conformity), and keep in mind that Power Dissipation values (Thermal resistance) depend on circumference conditions and also change.

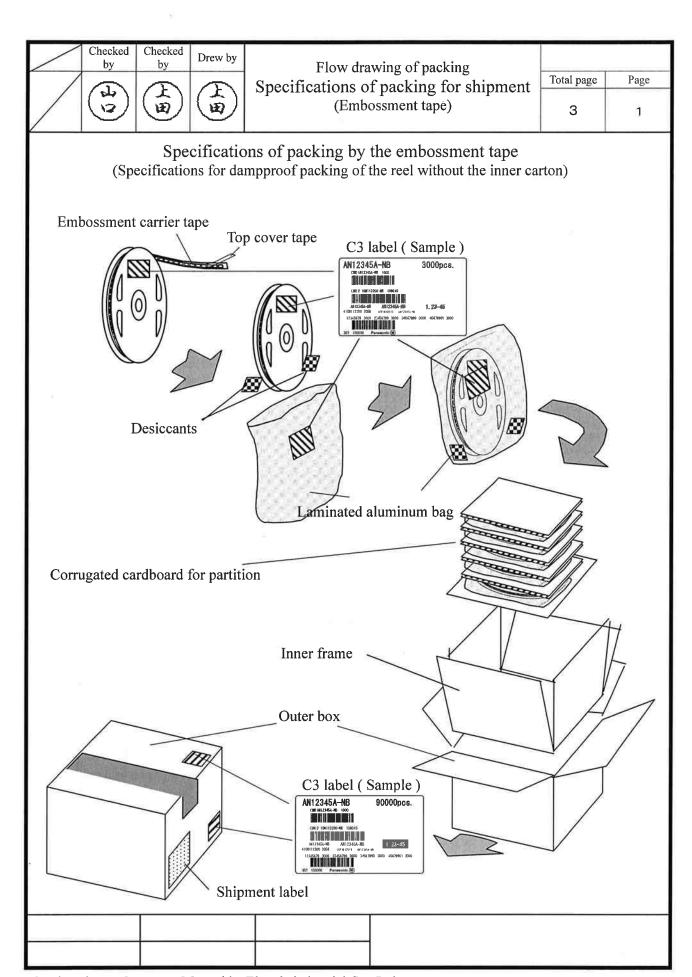
[Definition of each temperature and thermal resistance]

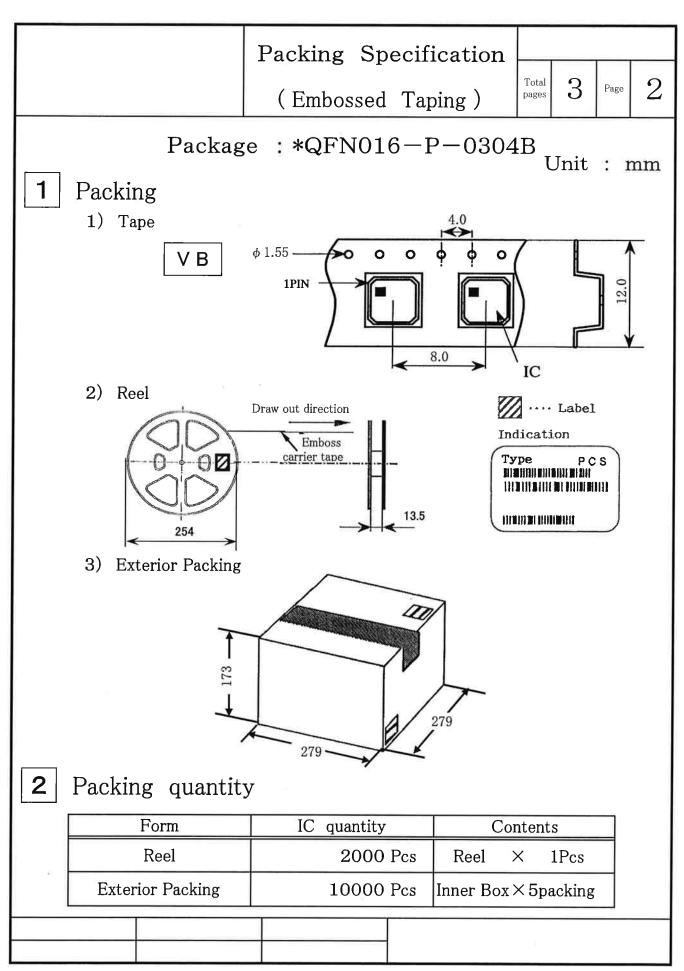
Ta : Ambient air temperature

※The temperature of the air is defined at the position where the convection, radiation, etc. don't affect the temperature value, and it's separated from the heating elements.


Tc: It's the temperature near the center of a package surface. The package surface is defined at the opposite side if the PWB.

Tj : Semiconductor element surface temperature (Junction temperature.)


Rth(j-c): The thermal resistance (difference of temperature of per 1 Watts) between a semiconductor element junction part and the package surface


Rth(c-a): The thermal resistance (difference of temperature of per 1 Watts) between the package surface and the ambient air

Rth(j-a): The thermal resistance (difference of temperature of per 1 Watts) between a semiconductor element junction part and the ambient air

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

Packing Specification Total pages 3 3 (Embossed Taping) Package : *QFN016-P-0304B Unit : mm φDo Top-covered-tape Range LL. ϕD_1 Unit: mm Dimensions & Tolerance В W Α E F Pı 12.0 ± 0.2 3.5 ± 0.1 4.5 ± 0.1 1.75 ± 0.1 5.5 ± 0.1 8.0 ± 0.1 ϕD_1 P₂ Po φDo t1 t2 $1.55 \pm$ $1.55 \pm$ 4.0 ± 0.1 0.3 ± 0.05 1.4max 2.0 ± 0.05 0.05 0.05 tз (0.1)

SEMICONDUCTOR COMPANY, MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

单击下面可查看定价,库存,交付和生命周期等信息

>>Panasonic(松下)