Panasonic ideas for life

FEATURES

1. 2,000 V breakdown voltage between contact and coil

The body block construction of the coil that is sealed at formation offers a high breakdown voltage of 2,000 V between contact and coil, and 1,000 V between open contacts.

2. Outstanding surge resistance Surge breakdown voltage between open contacts:

1,500 V 10×160μ sec. (FCC part 68) Surge breakdown voltage between contact and coil:

2,500 V 2×10µ sec. (Bellcore)

Best seller with broad lineup and AC 2000 V breakdown voltage.

TX RELAYS

3. Nominal operating power: High sensitivity of 140mW

By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.

- 4. High contact capacity: 2 A 30 V DC
- 5. Compact size

 $15.0(L) \times 7.4(W) \times 8.2(H)$. 591(L) × .291(W) × .323(H)

6. The use of gold-clad twin crossbar contacts ensures high contact reliability.

*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (max. 10V DC 10 mA).

7. Outstanding vibration and shock resistance

Functional shock resistance: 750 m/s² Destructive shock resistance: 1.000 m/s²

Functional vibration resistance: 10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)

8. Sealed construction allows automatic washing.

9. A range of surface-mount types is also available

SA: Low-profile surface-mount terminal type

SS: Space saving surface-mount terminal type

TYPICAL APPLICATIONS

- 1. Communications (xDSL, Transmission)
- 2. Measurement
- 3. Security
- 4. Home appliances, and audio/visual equipment
- 5. Automotive equipment
- 6. Medical equipment

ORDERING INFORMATION

Contact arrangement 2: 2 Form C Surface-mount availability Nil: Standard PC board terminal type SA: SA type SS: SS type Operating function Nil: Single side stable L: 1 coil latching L2: 2 coil latching LT: 2 coil latching Terminal shape Nil: Standard PC board terminal or surface-mount terminal Nominal coil voltage (DC)* 1.5, 3, 4.5, 5, 6, 9, 12, 24, 48V Contact material Nil: Standard contact (Ag+Au clad) 1: AgPd contact (low level load); AgPd+Au clad (stationary), AgPd (movable) Packing style Nil: Tube packing

X: Tape and reel (picked from 1/3/4/5-pin side)

Tape and reel packing (picked from the 8/9/10/12-pin side)

Notes: 1. *48 V coil type: Single side stable only

2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

ds 61022 en tx: 060213D 1

TYPES

1. Standard PC board terminal

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TX2-1.5V	TX2-L-1.5V	TX2-L2-1.5V	TX2-LT-1.5V
	3V DC	TX2-3V	TX2-L-3V	TX2-L2-3V	TX2-LT-3V
2 Form C	4.5V DC	TX2-4.5V	TX2-L-4.5V	TX2-L2-4.5V	TX2-LT-4.5V
	5V DC	TX2-5V	TX2-L-5V	TX2-L2-5V	TX2-LT-5V
	6V DC	TX2-6V	TX2-L-6V	TX2-L2-6V	TX2-LT-6V
	9V DC	TX2-9V	TX2-L-9V	TX2-L2-9V	TX2-LT-9V
	12V DC	TX2-12V	TX2-L-12V	TX2-L2-12V	TX2-LT-12V
	24V DC	TX2-24V	TX2-L-24V	TX2-L2-24V	TX2-LT-24V
	48V DC	TX2-48V	_	_	_

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs. Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2. Surface-mount terminal

1) Tube packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TX2S□-1.5V	TX2S□-L-1.5V	TX2S□-L2-1.5V	TX2S□-LT-1.5V
	3V DC	TX2S□-3V	TX2S□-L-3V	TX2S□-L2-3V	TX2S□-LT-3V
2c	4.5V DC	TX2S□-4.5V	TX2S□-L-4.5V	TX2S□-L2-4.5V	TX2S□-LT-4.5V
	5V DC	TX2S□-5V	TX2S□-L-5V	TX2S□-L2-5V	TX2S□-LT-5V
	6V DC	TX2S□-6V	TX2S□-L-6V	TX2S□-L2-6V	TX2S□-LT-6V
	9V DC	TX2S□-9V	TX2S□-L-9V	TX2S□-L2-9V	TX2S□-LT-9V
	12V DC	TX2S□-12V	TX2S□-L-12V	TX2S□-L2-12V	TX2S□-LT-12V
	24V DC	TX2S□-24V	TX2S□-L-24V	TX2S□-L2-24V	TX2S□-LT-24V
	48V DC	TX2S□-48V	_		_

^{☐:} For each surface-mounted terminal identification, input the following letter. SA type: A, SS type: S

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2) Tape and reel packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TX2S □ -1.5V-Z	TX2S□-L-1.5V-Z	TX2S□-L2-1.5V-Z	TX2S□-LT-1.5V-Z
	3V DC	TX2S □ -3V-Z	TX2S□-L-3V-Z	TX2S□-L2-3V-Z	TX2S□-LT-3V-Z
2 Form C	4.5V DC	TX2S □ -4.5V-Z	TX2S□-L-4.5V-Z	TX2S□-L2-4.5V-Z	TX2S□-LT-4.5V-Z
	5V DC	TX2S❑-5V-Z	TX2S❑-L-5V-Z	TX2S□-L2-5V-Z	TX2S□-LT-5V-Z
	6V DC	TX2S□-6V-Z	TX2S□-L-6V-Z	TX2S□-L2-6V-Z	TX2S□-LT-6V-Z
	9V DC	TX2S □ -9V-Z	TX2S□-L-9V-Z	TX2S□-L2-9V-Z	TX2S□-LT-9V-Z
	12V DC	TX2S□-12V-Z	TX2S□-L-12V-Z	TX2S□-L2-12V-Z	TX2S□-LT-12V-Z
	24V DC	TX2S □ -24V-Z	TX2S□-L-24V-Z	TX2S□-L2-24V-Z	TX2S□-LT-24V-Z
	48V DC	TX2S □ -48V-Z	_	_	_

☐: For each surface-mounted terminal identification, input the following letter. SA type: A, SS type: S Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.

Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. "X" type tape and reel packing (picked from 1/2/3/4-pin side) is also available.

2. Please add "-1" to the end of the part number for AgPd contacts (low level load).

2 ds_61022_en_tx: 060213D

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. applied voltage (at 20°C 68°F)			
1.5V DC			93.8mA	16Ω		150%V of			
3V DC			46.7mA	64.3Ω	140mW				
4.5V DC			31mA	145Ω					
5V DC	===()/		28.1mA	178Ω					
6V DC	75%V or less of nominal voltage*		nominal voltage*	nominal voltage*	nominal voltage*	23.3mA	257Ω	14011177	nominal voltage
9V DC	(Initial)							15.5mA	579Ω
12V DC	, ,		11.7mA	1,028Ω					
24V DC			5.8mA	4,114Ω					
48V DC			5.6mA	8,533Ω	270mW	120%V of nominal voltage			

2) 1 coil latching

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. applied voltage (at 20°C 68°F)
1.5V DC			66.7mA	22.5Ω		
3V DC	75%V or less of nominal voltage* (Initial)			90Ω		
4.5V DC		nominal voltage* nominal voltage*	22.2mA	202.5Ω	100mW	150%V of nominal voltage
5V DC			20mA	250Ω		
6V DC			16.7mA	360Ω		
9V DC			11.1mA	810Ω		
12V DC			8.3mA	1,440Ω		
24V DC			4.2mA	5,760Ω		

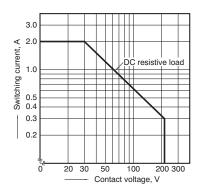
3) 2 coil latching (L2, LT)

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)		Coil resistance [±10%] (at 20°C 68°F)		Nominal operating power		Max. applied voltage (at 20°C 68°F
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5V DC		6V or less of 75%V or less of inal voltage* (Initial) (Initial)	133.9mA	133.9mA	11.2Ω	11.2Ω		200mW	150%V of nominal voltage
3V DC			66.7mA	66.7mA	45Ω	45Ω	200mW		
4.5V DC			44.5mA	44.5mA	101.2Ω	101.2Ω			
5V DC	75%V or less of		40mA	40mA	125Ω	125Ω			
6V DC			33.3mA	33.3mA	180Ω	180Ω			
9V DC	(,		22.2mA	22.2mA	405Ω	405Ω			
12V DC			16.7mA	16.7mA	720Ω	720Ω			
24V DC			8.3mA	8.3mA	2,880Ω	2,880Ω			

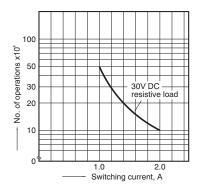
^{*}Pulse drive (JIS C 5442-1986)

ds_61022_en_tx: 060213D 3

2. Specifications

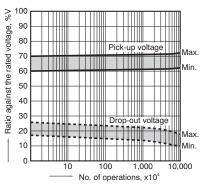

Characteristics		Item	Specifications
	Arrangement		2 Form C
Contact	Initial contact resista	nce, max.	Max. 100 m Ω (By voltage drop 6 V DC 1A)
Comac	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)
	Nominal switching ca	apacity	Standard contact: 2 A 30 V DC, AgPd contact: 1 A 30 V DC (resistive load)
	Max. switching power	r	Standard contact: 60 W (DC), AgPd contact: 30 W (DC) (resistive load)
	Max. switching voltage	ge	220V DC
Rating	Max. switching curre	nt	Standard contact: 2 A, AgPd contact: 1 A
Railig	Min. switching capac	ity (Reference value)1*	10μA 10mV DC
		Single side stable	140 mW (1.5 to 24 V DC), 270 mW (48 V DC)
	Nominal operating power	1 coil latching	100 mW (1.5 to 24 V DC)
	power	2 coil latching	200 mW (1.5 to 24 V DC)
	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1min. (Detection current: 10mA)
		Between contact and coil	2,000 Vrms for 1min. (Detection current: 10mA)
		Between contact sets	1,000 Vrms for 1min. (Detection current: 10mA)
Electrical	Surge breakdown	Between open contacts	1,500 V (10×160μs) (FCC Part 68)
characteristics	voltage (Initial)	Between contacts and coil	2,500 V (2×10μs) (Telcordia)
	Temperature rise (at 20°C 68°F)		Max. 50°C (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at 20°C 68°F)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at 20°C 68°F)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
	Shock resistance	Functional	Min. 750 m/s² (Half-wave pulse of sine wave: 6 ms; detection time: 10μs.)
Mechanical	Shock resistance	Destructive	Min. 1,000 m/s² (Half-wave pulse of sine wave: 6 ms.)
characteristics	Vibration registance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10μs.)
	Vibration resistance	Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10 ⁸ (at 180 cpm)
Expected life	Electrical		Min. 10 ⁵ (2 A 30 V DC resistive), 5×10 ⁵ (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage ^{2*}		Ambient temperature: -40°C to +85°C (up to 24 V coil) -40°F to +185°F (up to 24 V coil) [-40°C to +70°C (48 V coil) -40°F to +158°F (48 V coil)]; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating spee	d (at rated load)	20 cpm
Unit weight			Approx. 2 g .071 oz

^{1*} This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type is available for low level load switching [10V DC, 10mA max. level].)


2* Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

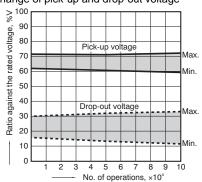
1. Maximum switching capacity



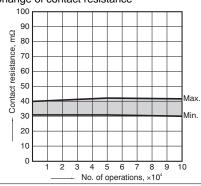
2. Life curve

3. Mechanical life Tested sample: TX2-5V, 10 pcs.

Tested sample: TX2-5V, 10 pcs Operating speed: 180 cpm

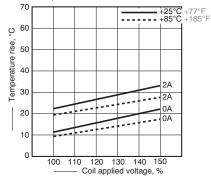


ds_61022_en_tx: 060213D

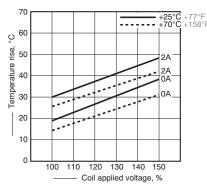

4. Electrical life (2A 30V DC resistive load)

Tested sample: TX2-5V, 6 pcs. Operating speed: 20 cpm

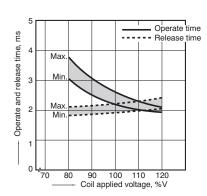
Change of pick-up and drop-out voltage



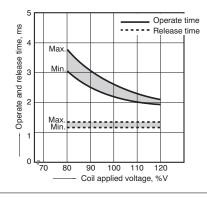
Change of contact resistance

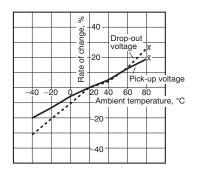

5-(1). Coil temperature rise Tested sample: TX2-5V, 6 pcs. Point measured: Inside the coil

Ambient temperature: 25°C 77°F, 85°C 185°F

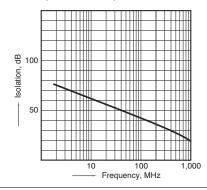


5-(2). Coil temperature rise Tested sample: TX2-48V, 6 pcs. Point measured: Inside the coil

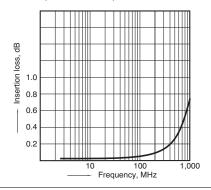

Ambient temperature: 25°C 77°F, 70°C 158°F


6-(1). Operate and release time (with diode) Tested sample: TX2-5V, 10 pcs.

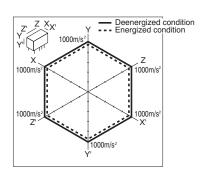
6-(2). Operate and release time (without diode) Tested sample: TX2-5V, 10 pcs.



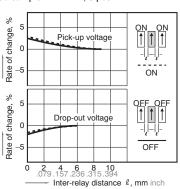
7. Ambient temperature characteristics Tested sample: TX2-5V, 5 pcs.

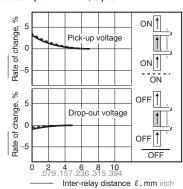

8-(1). High frequency characteristics (Isolation)

Tested sample: TX2-12V, 2 pcs.

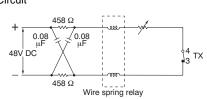


8-(2). High frequency characteristics (Insertion loss)

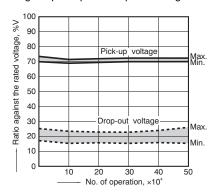

Tested sample: TX2-12V, 2 pcs.


9 Malfunctional shock (single side stable) Tested sample: TX2-5V, 6 pcs.

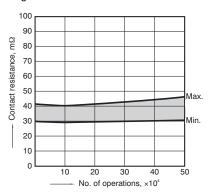
10-(1). Influence of adjacent mounting Tested sample: TX2-12V, 6 pcs.



10-(2). Influence of adjacent mounting Tested sample: TX2-12V, 6 pcs.



11. Pulse dialing test Tested sample: TX2-5V, 6 pcs. (35 mA 48 V DC wire spring relay load)


Circuit

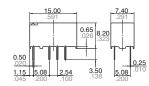
Change of pick-up and drop-out voltage

Change of contact resistance

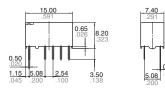
Note: Data of surface-mount type are the same as those of PC board terminal type.

DIMENSIONS (mm inch)

Download **CAD Data** from our Web site.


1. Standard PC board terminal

CAD Data

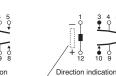

Single side stable and 1 coil latching type

External dimensions Standard PC board terminal

2 coil latching type (L2, LT)

External dimensions Standard PC board terminal

General tolerance: ±0.3 ±.012

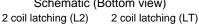

PC board pattern (Bottom view)

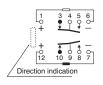
Tolerance: ±0.1 ±.004

Schematic (Bottom view) Single side stable

(Deenergized condition)

(Reset condition)


1 coil latching

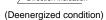

PC board pattern (Bottom view)

Tolerance: ±0.1 ±.004

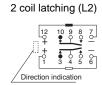
Schematic (Bottom view)

General tolerance: ±0.3 ±.012

(Reset condition) (Reset condition)

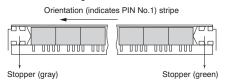

2. Surface-mount terminal

	External dimensions (Gen	eral tolerance: ±0.3 ±.012)	Suggested mounting pad (Top view) (Tolerance: ±0.1 ±.004)			
Туре	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)		
SA type	15 .591 .221 .323 .331 .025 .026 .020 .020 .020 .030 .040 .0	15 	5.08, 2.54 3.16, 039	3.16.039 1.124 1.1		
SS type	15 .591 8.2 .323 Max 10 .394 .394 .394 .394 .394 .394 .395 .394 .395 .3	15 .591 .291 .323 Max. 10 .325 .026 .026 .026 .020 .020 .026 .020	2.16 .039 2.54	2.16 1 200 100 100 100 100 100 100 100 100 1		

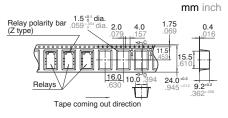

Schematic (Top view)

(Reset condition)

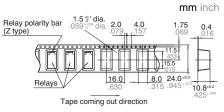
(Reset condition)

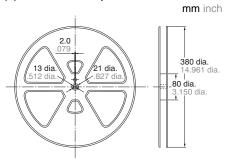


(Reset condition)


NOTES

1. Packing style


1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.


- 2) Tape and reel packing (surface-mount terminal type)
- (1) Tape dimensions
- (i) SA type

(ii) SS type

(2) Dimensions of plastic reel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

Chucking pressure in the direction A: 4.9 N {500gf} or less

Chucking pressure in the direction B: 9.8 N {1 kgf} or less

Chucking pressure in the direction C:

9.8 N {1 kgf} or less

Please chuck the ____ portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information.

单击下面可查看定价,库存,交付和生命周期等信息

>>Panasonic(松下)