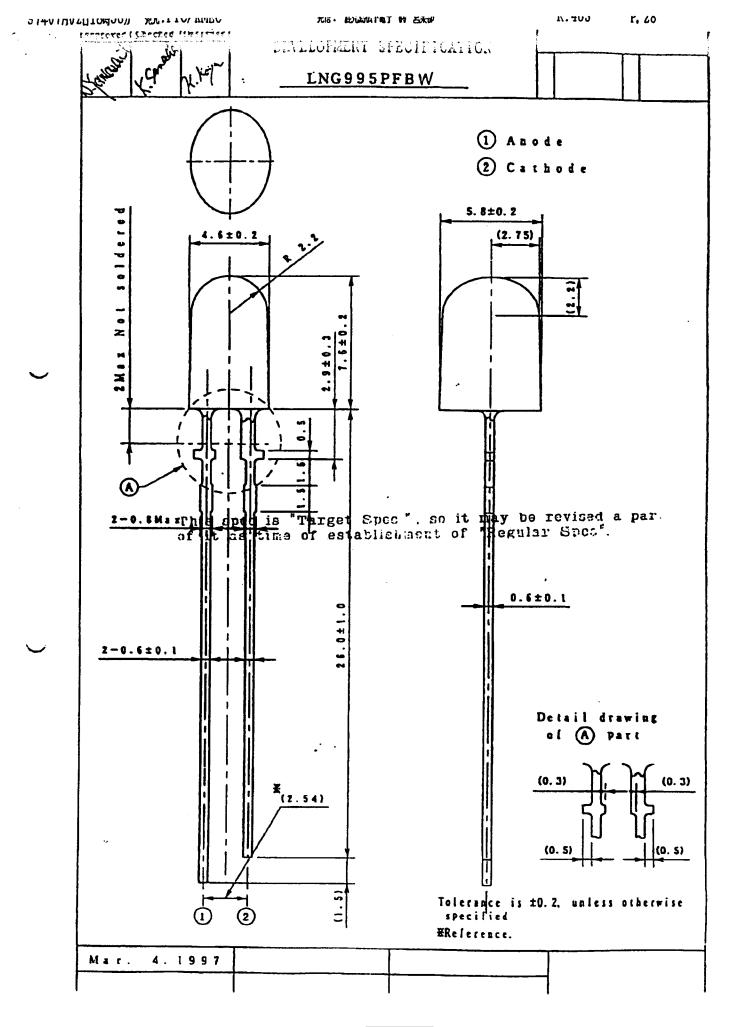
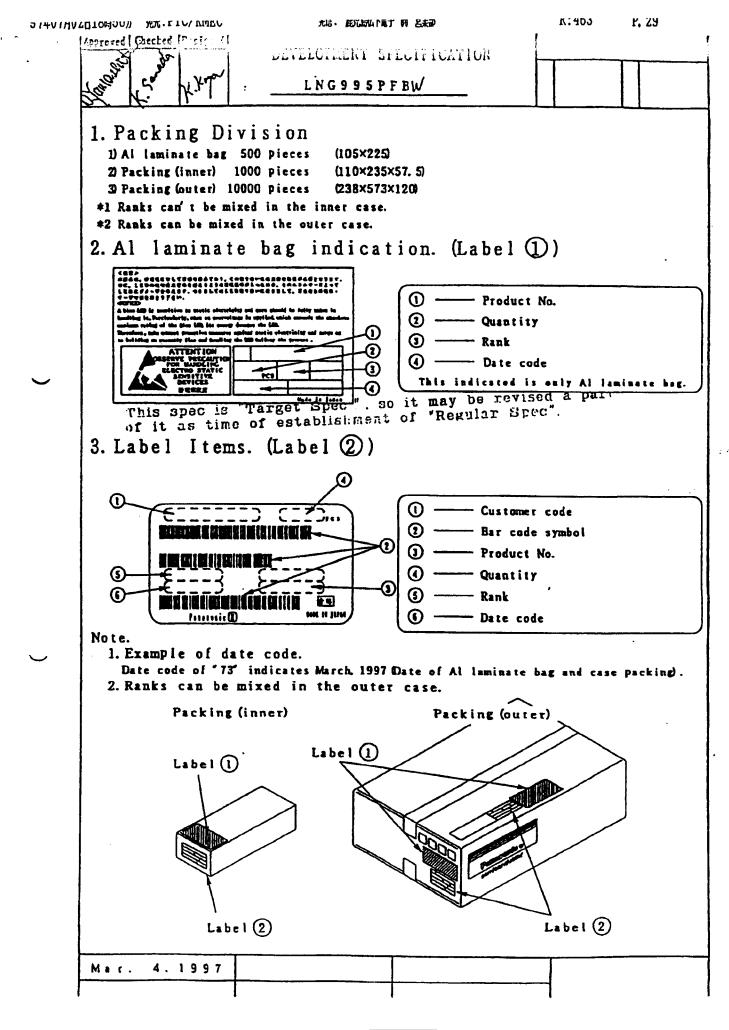
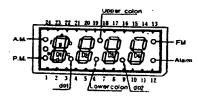

	EC		He: Energy of State	11st#	P468-X	10	P. 2			
TYPE BI	VEVE	DEV	ELOPMENT S	PECIFI	•	1				
28 14.7	K.L1			······						
	ue Light E	Emitting	g Diode							
MATERIAL Gai APPLICATION In	• ·		······································				_			
Phis superior in the second se										
OUTLINE of it as time of establishment of "Regular Spec".										
ABSOLUTE	P	lee"	Iroc Va	r	T.,,	True				
N A X I N U N R A T I N G S	120 nV	00 I A m	30 5 mA V		5~+80 °C	-30~+ C	100			
CONDITION T	a=25±3	3°C								
	T T	Tes	st Specif	catio						
Item	Symbol		Condition	Тур	Min	Max	- 0			
Forward Vollage	Vr		$I_r = 20 \text{ mA}$	3. 5		4.0				
Reverseleakage Current	I I a		$V_A = 5 V$			10	1			
Luminous Intensity	10		$I_F = 20 \text{ mA}$	370	145	+	m			
Peak Emission Wavelength	λρ		$I_F = 20 \text{ mA}$	468		1				
Spectral Line Half Width	۵۸		$l_{\ell} = 20 \text{ mA}$	30	1		r r			
					1					
Dominant Wavelength * The condition of p *1 Neasurement iolera	λь oulse curre	+1 ent Irr Z nm	$I_F = 20 \text{ mA}$ is 10ms pulse width,	- 470 10% duty o	465 cycle.	475	r			
 * The condition of p *1 Measurement loiera (Note) 1. If you have any que (Example) -Low cur -Pulse c 2. Lead material is in 3. Do not apply mechan 4. A blue LED is sensit Particularly, when a blue LED, its energy electricity and surg (1) Check the entir etc., generated Also, insert an (2) Beware of destri- against static 	Lise current acce is ± estions or rent (belo surrent (Pro- on, and i) ical stress ive to stannovervolt damages (e as to but e drive ci at power- appropriation by electricity	ent l_{FF} take sp take sp ov 1 mA v ≤ 10 ms ts surfa ss durin atic etc tage is the LED. uilding ircuit i -on/off ate prot static y, it is	is 10ms pulse width, pecial operation, plo DC) s. Duty≤10 %) ace is dip-soldered. ng soldering. ectricity and care sh applied, which excee Therefore, take uta an assembly line and including the power s should not exceed th tective circuit into electricity in handlis effective to earth	aould be ful ease contact ease contact ease contact ds the abso lost proact i handling t source. For the absolute the LED dri ing the LED your body (v	ly taken i ly taken i lute maxim ve measure he LED hal example, a maximum ra ve circuit As proac ia ΙΜΩ),	in handling bum rating is against fway the p is surge cur iting of th tive measu spread	r it. of sta roci reni e Li			
 * The condition of p *1 Measurement loiera (Note) 1. If you have any que (Example) -Low cur -Pulse c 2. Lead material is in 3. Do not apply mechan 4. A blue LED is sensit Particularly, when a blue LED, its energy electricity and surg (1) Check the entimeter etc., generated Also, insert an (2) Beware of destruagainst static conductive mate 	bulse current ince is ± stions or rent (belo current (Pr on, and i lical stres ive to sta n overvolt damages (damages (damages (as to be e as to be e as to be e as to be e at power- appropria uction by electricity on the flo containers ed to use	ent lrr 2 nm take sy ow 1 mA w≤10 m: ts surfi ss durin atic etc tage is the LED. uilding ircuit i on/off ate prot static y, it is oor, wea an ioni	is 10ms pulse width, pecial operation, plo DC) s. Duty≤10 %) ace is dip-soldered. ng soldering. ectricity and care sh applied, which exceed Therefore, take uta an assembly line and including the power s should not exceed th tective circuit into electricity in handl is effective to earth th semiconductive wor be-sure to earth th zer, etc., in the fa	aould be ful ease contact ease contact ease contact ds the abso lost proact i handling t source. For the absolute the LED dri ing the LED your body (v k uniform a	ly taken i ly taken i lute maxim ve measure he LED hal example, a maximum ra ve circuit As proac ia IMΩ), nd shoes, soldering	in handling bum rating is against fway the p surge cur ting of th tive measu spread and use	r it. of sta proc ren e Li res			



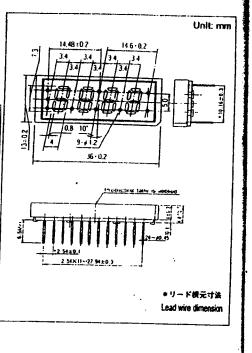

Downloaded From Oneyac.com

97年07月0	2日18時56分	兓:PIC/	/KMEC	1		F H Sta		K:463	Р.
Appr	roved Ches	cked D	esigned	• • • • • • • • •			anderen al der in der Malta in eine anderen genrech softwaren.	1	
		10	D	EVELC	PMENT	SPECIF	ICATIO	N	
	NY CO	A							
	3 ³ . 4	r hi	Y:7		LNG 9	95PFBW			
20	N.	<u> r</u>	<u></u>		anna Tallia Kada	· · · · · · · · · · · · · · · · · · ·	•		
								<u> </u>	
Requ	ests and (anHipus ∋rit	as time	"Target of est	; Spec", tablichmo	so it may ent of "Rea	be revis gular Spa	ed a p c".	AT
1.	An export					mpetent autho			e
	Government	if any	of the pro	ducts or i	echnologie:	s described in	this document	nt and	
				a Exchange	and Forei	gn Trade Contr	ol Law" is to	o be expo	rted
	or takea o	out of Ja	apan.						
2	The techni	cal info	ormation de	scribed in	this docu	ent is limited	d in chamimm		
	characteri	stics an	nd applied	circuit ex	camples of	be products. I	t does not co	TCPFCSeq	(BIIV
	warranting	s of indu	ustrial pro	perty, the	granting of	relative rig	t dues hot co hts.or the pr	JUSIILUIE PROLINE A	f env
	license.				- •		•••••••	CALLAD Y	
Ч						••	,		
3.	The produc	ts desci	ribed in th	is documen	t are inter	ided to be used	d for standar	d applic	ation
	or general	electro	onic equipm	ent (such a	s office ed	uipment, comuu	nications equ	ipzent,	
			ents and ho						
1	CORSUIT OU	T Sales	staff in a	ivance for	informatio	a on the follo	oving applica	tions: -	
	· Special	appilca:	LIONS (SUCA)	IS LOF AIF	planes, aer	ospace, automo	biles. traff	ic contre	01
	exceptio	nal cual	ity and rei	DECAL, III Ifability	e support s	ystems and sal	(ety devices)	in which	
	troducts	may dir	rectly add ic	rdiye lif	arc require a or have d	d.or if the fa he human body.	liture or mai	function	of li
						ations intende			
							. 2.		
4.	When desi:	gning yo	ur equipuer	it, comply	with the gu	aranteed value	s. in particu	lar those	t of
	BaxiBUB T	ating, th	e range of	operating	power supp	ly voltage and	heat radiat	ion	
	character	istics.	Otherwise, w	re will no	t lo be lia	ble for any de	fect which m	ay arise	later
1	in the equ	•							
Y	Even when	the pro	ducis are u	sed within	n the guara	nteed values, r	edundant des	lgn is	
	recommende	ed, so th	al such equ	ipuent may	y not viola	le relevant la	ws or regula	tions bec	ause
	the function	ισαοιο	ur products	•					
S .	When using	z produc	ts for whic	h vacuum e	packing is	required, obser	Ve the condit	lions (in	المساح
	shelf life	e and af	ter-unpacki	ng stand-l	by time) ag	reed upon when	specificatio	on sheets	21e
	individual	lly excha	anged.						
	DTHERS	• •	_						
						cification, m	utual		
0	120022100	WILL DE	made for t	ne solutio	n.				
	···	.							
	vot using	the O. I	D. C and Pi	BBOs'ia (h	c LED's.	7			
	vot using	the O. I	D.C and P	BBOsíin th	c LED's.]			
			:	BBOs'in th	c LED's.]			
	Not using lar. 5.1997			880s'in (h	c LED's.]			
			:	BBOsíin (h	e LED's.]			
	lar. 5. 1997		: 5 1			ronics CoLtd	 I.	<u>KB-H-</u>	-022-(


新永-ジャオ 30 ページです。

4 Digit 0.3inch Series

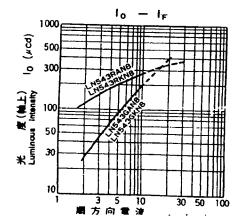
Type No.	Lighting Color
LN543RAN8	······ Red
LN543RKN8	······· Red
LN533GAN8	······ Green
LN543GKN8	······ Green

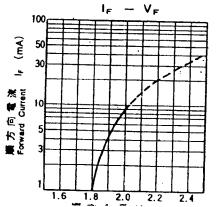

数字表示

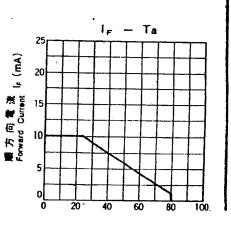
端子接続 Terminal Connection

					-		
	Pi zł			ł	5.00		
		1 Cathode	PM	1	Anode	PM	٩
		2 Anode	Dig 1	1	Cathode	Dig 1	
		3 Cathode	đ	1	Anode	d	
		Cathode	dp 1	T	Anode	dp 1	1
'	-	Anode	Dig 2	T	Cathode	Dig 2	1
ļ	. (Cathode	Lower colon		Anode	Lower colon	1
	2	Cethode	Upper colon		Anade	Upper colon	1
		Anode	Dig 3	Ι	Cathode	Dig 3	1
	9	Calhode	dp 2	Π	Anode	dip 2	1
ł	10		Dig 4	I	Calhode	Dig 4	1
	11	Cathoda	0	I	Anode	•	1
	12	Cathode	Alarm	Π	Anode	Alarm	1
L	13	Anode	FM, Alerm	Ī	Cathode	FM, Alarm	11
L	14	Cathode	FM	I	Anode	FM	1]
L	15	Cathode		ľ	Anode		1
L	16	Anode	dp 2 -	ŀ	Cathode	dp 2	μ
L	17	Anode	Lower colon	•	Calhoda	Lower Upper colon	
L	18	Cathode	1	1	hode	1	
L	19	Cathoda	b	1	hode	6	
L	20	Cathode	c	P	node	c	
L	21	Anode	dp 1	6	athode	dpt	
L	22	Calhode	0		node	9	
L	23	Cathode	AM		node	AM	
L	24	Anode	AM, PM	c	athode	AM, PM	

Numeric Display


絶対最大定格 Absolute Maximum Ratings (Ta=25 °C)


							1
Red	30	10	60	5	-25~+80	-30~+85	
Green	30	10	60	5	-25~+80	-30~+85	
						-30-4-03	


★ ipp の条件は、duty 10%、Pulse width 1 msec. The condition of ipp is duty 10%, Pulse width 1 msec

電気的光学的特性 Electro-Optical Characteristics (Ta=25 °C)

LN543RAN	8	Red	Anode	200	100	100	5	2.03	2.8	700	100	10		
LN543RKN	8	Red	Cathode	200	100	100	5	2.03				10	10	.5
LN543GAN	18	Green	Anode .	200	80	80	10		2.8	700	100	10	10	5
LN543GKN	IA I	Green					· 10	2.03	2.8	565	30	10	10	5
		Clean	Cathode	200	80	80	. 10	2.03	2.8	565	30	10	10	5
Unit.				μcd	μcd	µcd	mA	V	v	nm	0m	mA	иA	V

絶していた

L

LI LI

嚣

電

度(軸上) In (#cd)

*!

单击下面可查看定价,库存,交付和生命周期等信息

>>Panasonic(松下)