Notification about the transfer of the semiconductor business

The semiconductor business of Panasonic Corporation was transferred on September 1, 2020 to Nuvoton Technology Corporation (hereinafter referred to as "Nuvoton"). Accordingly, Panasonic Semiconductor Solutions Co., Ltd. became under the umbrella of the Nuvoton Group, with the new name of Nuvoton Technology Corporation Japan (hereinafter referred to as "NTCJ").

In accordance with this transfer, semiconductor products will be handled as NTCJ-made products after September 1, 2020. However, such products will be continuously sold through Panasonic Corporation.

Publisher of this Document is NTCJ.

If you would find description "Panasonic" or "Panasonic semiconductor solutions", please replace it with NTCJ.

* Except below description page

"Request for your special attention and precautions in using the technical information and semiconductors described in this book"

Nuvoton Technology Corporation Japan

Panasonic ____

Туре	Silicon MOSFET type Integrated	Silicon MOSFET type Integrated Circuit			
Application	For Switching Power Supply Cont	For Switching Power Supply Control			
Structure	CMOS type	CMOS type			
Equivalent Circuit	Figure 7				
Package	SSOP016-P-0300XZ Marking MIP006				

A . ABSOLUTE MAXIMUM RATINGS (Ta= 25 ± 3)

NO.	Item	Symbol	Ratings	Unit	Note
1	VIN Voltage				
		VIN	- 0.3 ~ 550	V	
2	VCC Voltage		0.0 /F		
0		VCC	- 0.3 ~ 45	V	
3	VDD1 Voltage	VDD1	- 0.3 ~ 10	V	
4	VDD2 Voltage		- 0.5 10	v	
·		VDD2	- 0.3 ~ 10	V	
5	VGD Voltage				
		VGD	- 0.3 ~ 15	V	
6	OUT Voltage				
		VOUT	- 0.3 ~ 15	V	
7	IS Voltage	240	0.0 F		
8	FB Voltage	VIS	- 0.3 ~ 5	V	
0	FB voltage	VFB	- 0.3 ~ 8	V	
9	OFF Voltage		0.0 0		
		VOFF	- 0.3 ~ 10	V	
10	CL Voltage				
		VCL	- 0.3 ~ 10	V	
11	LS Voltage				
		VLS	- 0.3 ~ 10	V	
12	SO Voltage	VSO	- 0.3 ~ 10	V	
13	SO Current	V30	- 0.3 ~ 10	V	
15		ISO	- 1.3	mA	
14	Junction Temperature		-		
		Tj	150		
15	Storage Temperature				
		Tstg	- 55 ~ + 150		

B . RECOMMENDED OPERATING CONDITIONS

NO.	Item	Symbol	Conditions	Unit	Note
1	Junction Temperature				
		Тj	- 40 ~ + 125		

Panasonic ____

MIP0060MXL

C.ELE	CTRICAL CHARACTERISTICS Me	asure conditi	on (TC=25 ± 3)				
No.	Item	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
[CONT	ROL FUNCTIONS] *Design Guarantee	Item, **Refe	rence Item				•
1	VCC Start Voltage	VCC(ON)		20	18	22	V
2	VCC Stop Voltage	VCC(OFF)		10.3	9.3	11.3	V
3	VCC Start/Stop Hysteresis	D_VCC	VCC(ON) - VCC(OFF)	9.7	8.7	10.7	V
4	VDD1 Reference Voltage	VDD1	VCC = 22 V	6.0	5.5	6.5	V
5	VDD2 Reference Voltage	VDD2	VCC = 22 V, VDD1 : open	5.2	4.7	5.7	V
6	VDD2 Charge Start Voltage	VDD2(OFF)	VIN = 50 V	4.5	4.0	5.0	V
7	Reset Voltage of Power-OFF Mode	VDD2reset		2.1	1.4	2.8	V
8	Voltage Deference for keeping Power-OFF Mode	D_VDD2	VDD2(OFF) - VDD2reset	2.4	1.4	3.4	V
9	VCC Pin Current at Start-up	ICC(SB)	VCC = VCC(ON) - 0.5 V, CL : open, FB : open, SO : open	0.55	0.40	0.70	mA
10	VCC Pin Current at Low Load	ICC(STB)	VCC = 15 V, CL : open, IFB = IFB1 5uA, SO : open	0.73	0.63	0.83	mA
11	VCC Pin Current at Operating	ICC(OP)	VCC = 22 V, CL : open, COUT = 1 nF, IFB = -50 μ A, SO : open	1.7	1.4	2.0	mA
12	VCC Pin current in Power-OFF Mode	ICC(OFF)	Power-OFF Mode, VIN = 50 V, VCC = 22 V	40	20	60	μA
13	Output Frequency	fosc	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	66	61	71	kHz
14	Jitter Frequency Deviation	d_fosc	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	3	1.8	4.2	kHz
**15	Jitter Frequency Modulation Rate	fM	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	430	-	-	Hz
16	Maximum Duty Cycle	MAXDC	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	66	60	72	%
17	Feedback Threshold Current	IFB1	ON OFF, VCC = 22 V, CL : open	-100	-140	-60	μA
**18	Feedback Current Hysteresis	IFBHYS	OFF ON VCC = 22 V, CL : open	1	-	-	μA
19	FB Pin Voltage	VFB1	VCC = 22 V, IFB = IFB1	1.6	1.2	2.0	V
20	FB Pin Grounded Current	IFB0	VCC = 22 V, VFB = 0 V	-330	-410	-250	μA
21	FB Pin Pull-down resistance at Output Stop	RFB(OFF)	VCC = 22 V, VFB = VFB1, ICL < ICL1	370	220	520	

Panasonic ____

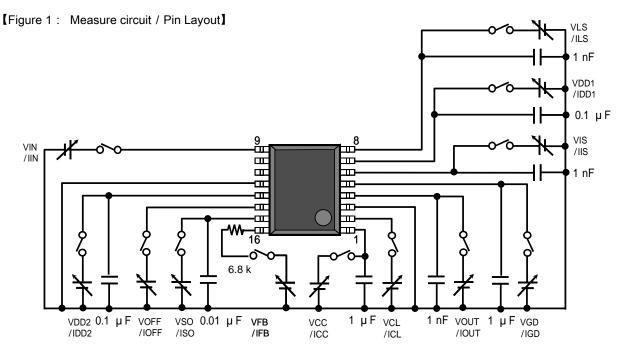
MIP0060MXL

1			1	1		r
Item	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
VCC Pin Charging Current	ICCH1	VCC = 0 V, CL : open, FB : open, , SO : open, VIN = 50 V	-11.0	-15.4	-6.6	mA
	ICCH2	$\label{eq:VCC} \begin{array}{l} VCC = VCC(ON) \ \text{-} \ 0.5 \ V, \ CL : open, \\ FB : open, \ , \ SO : open, \ VIN = 50 \ V \end{array}$	-3.6	-5.1	-2.1	mA
VDD2 Pin Charging Current	IDD2CH	Power-OFF Mode, Detection of AC input cutoff, VDD2 = VDD2(OFF) 0.5 V, VSO = 0 V, VIN = 50 V	-8.0	-	-4.0	mA
LS Pin Detect Voltage	VLSH	VCC = 22 V, VFB = 3 V	1.27	1.11	1.43	V
LS Pin Detect Voltage Hysteresis	VLSHYS	VCC = 22 V, VFB = 3 V	0.37	0.27	0.47	V
LS Pin Leakage Current	ILS(LEAK)	VCC = 22 V, VLS = 10 V	0	-	0.1	μA
LS Pin Detect Filter Time	Td(LS)1	VCC = 22 V	36	23	55	ms
	Td(LS)2	Power-OFF Mode, VIN = 50 V	32	22	48	ms
VIN Current in LS Undetected State	IIN(ACCUT)1	Detection of AC input cutoff, VCC = 22 V, SO : open, VIN = 30 V	2.4	1.4	3.4	mA
	IIN(ACCUT)2	Power-OFF Mode, Detection of AC input cutoff, VCC = 22 V, SO : open, VIN = 30 V	2.2	1.2	3.2	mA
OFF Pin Detect Voltage	VTH(OFF)	VIN = 50 V	1.27	1.04	1.50	v
Power-OFF Mode Detect Filter Time	Td(OFF)	VOFF = 0 V VTH(OFF) + 0.2 V VIN = 50 V	1.2	0.7	1.7	ms
SO Pin Output Voltage	VSO1	Detection of AC input cutoff, VCC = 22 V, ISO = 0 μ A, VIN = 50 V	3.7	2.7	4.7	v
	VSO2	Power-OFF Mode, Detection of AC input cutoff, ISO = 0 μ A, VIN = 50 V	2.9	1.9	3.9	v
SO Pin Output Current	ISO	Detection of AC input cutoff, VCC = 22 V, VSO = 1 V, VIN = 50 V	-0.75	-1.2	-0.3	mA
SO Pin Disable Threshold	VTH(SO)		VDD2-1.0	VDD2-1.5	VDD2-0.5	v
Soft Start Time	Tsoft	VCC = VCC(OFF) VCC(ON), CL : open, VFB = 3 V, SO : open	5	2.5	7.5	ms
UIT PROTECTIONS] *Design Guarante	e Item, **Ref	erence Item	•			
Current Limit Detection Maximum Voltage	VLIMIT(MAX)	VCC = 22 V, CL : open , VFB = 3 V	775	720	830	mV
Current Limit Detection Voltage at ICL = -150 µA	VLIMIT150	VCC = 22 V, ICL = -150 µ A , VFB = 3 V	390	350	430	mV
	VCC Pin Charging Current VDD2 Pin Charging Current LS Pin Detect Voltage LS Pin Detect Voltage Hysteresis LS Pin Leakage Current LS Pin Detect Filter Time VIN Current in LS Undetected State OFF Pin Detect Voltage Power-OFF Mode Detect Filter Time SO Pin Output Voltage SO Pin Output Voltage SO Pin Output Current SO Pin Disable Threshold Soft Start Time UIT PROTECTIONS] *Design Guarantee Current Limit Detection Maximum Voltage Current Limit Detection Voltage	VCC Pin Charging Current ICCH1 ICCH2 ICCH2 VDD2 Pin Charging Current IDD2CH LS Pin Detect Voltage VLSH LS Pin Detect Voltage Hysteresis VLSHYS LS Pin Leakage Current ILS(LEAK) LS Pin Detect Filter Time Td(LS)1 Td(LS)2 VIN Current in LS Undetected State IIN(ACCUT)1 IIN(ACCUT)1 OFF Pin Detect Voltage VTH(OFF) Power-OFF Mode Detect Filter Time Td(OFF) SO Pin Output Voltage VSO1 VSO2 SO Pin Output Current ISO SO Pin Disable Threshold VTH(SO) Soft Start Time Tsoft UIT PROTECTIONS] *Design Guarantee Item, **Ref Current Limit Detection Maximum VLIMIT(MAX) Current Limit Detection Voltage VLIMIT(MAX)	VCC Pin Charging CurrentVCC = 0 V, CL : open, FB : open,, SO : open, VIN = 50 VVDD2 Pin Charging CurrentVCC = VCC(ON) - 0.5 V, CL : open, ICCH2VDD2 Pin Charging CurrentVDD2 VDD2 VDD2(OF) VDD2 VDD2(OF)LS Pin Detect VoltageVLSHVLSHVCC = 22 V, VFB = 3 VLS Pin Detect Voltage HysteresisVLSHVLS Pin Detect Filter TimeVCC = 22 V, VLS = 10 VLS Pin Detect Filter TimeVCC = 22 V, VLS = 10 VLS Pin Detect Voltage CurrentILS(LEAK)VIN Current in LS Undetected StateVCC = 22 V, SO : open, VIN = 30 VVIN Current in LS Undetected StateVTH(OFF)VTH(OFF)VIN = 50 VVIN Current in LS Undetected StateDetection of AC input cutoff, VCC = 22 V, SO : open, VIN = 30 VOFF Pin Detect VoltageVTH(OFF)VUN Current in LS Undetect Filter TimeVCF = 22 V, SO : open, VIN = 30 VVOFF Pin Detect VoltageVTH(OFF)VIN current in LS Undetected StateDetection of AC input cutoff, VCC = 22 V, SO : open, VIN = 50 VOFF Pin Detect VoltageVTH(OFF)VIN current in LS Undetecter Filter TimeVCC = 22 V, SO : open, VIN = 50 VSO Pin Output VoltageDetection of AC input cutoff, VSO1SO Pin Output VoltageDetection of AC input cutoff, VSO2SO Pin Output CurrentISOSO Pin Output CurrentSOSO Pin Disable ThresholdVTH(SO)Soft Start TimeVCC = 22 V, CC = 22 V, CC = 20 V, CC(ON), CL : open, VFB = 3 V, SO : openUIT PROTECTIONS] *Design Guarantee Item, **Reference Item		VCC Pin Charging CurrentICCH1VCC = 0 V, CL : open, FB : open, SO : open, VIN = 50 V VCC = 0 V, CL : open, FB : open, SO : open, VIN = 50 V VCC = 0 V, CL : open, FB : open, SO : open, VIN = 50 V VDD2 Pin Charging CurrentICCH1VCC = VCC(ON) - 0.5 V, CL : open, FB : open, SO : open, VIN = 50 V VD2 = VD20(PF) 0.5 V, VSO = 0 V, VIN = 50 V VSO = 0 V, VIN = 50 V VSO = 0 V, VIN = 50 V-11.0 -15.4 -5.1VDD2 Pin Charging CurrentIDD2CHPower-OFF Mode, Detection of AC input cutoff, VSO = 0 V, VIN = 50 V VSO = 0 V, VIN = 50 V-8.0 -LS Pin Detect VoltageVLSHVCC = 22 V, VFB = 3 V VLSHYS0.370.27LS Pin Leakage CurrentILS(LEAK)VCC = 22 V, VLS = 10 V VCC = 22 V, VLS = 10 V 0 - CG = 22 V, VLS = 10 V0 - - - - - - - - - - - - 	VCC Pin Charging Current VCC = 0 V, CL : open, FB : open, SO : open, VIN = 50 V -11.0 -15.4 -6.6 VCD 2 Pin Charging Current VCC = VCC(ON) - 0.5 V, CL : open, FB : open, SO : open, VIN = 50 V -3.6 -5.1 -2.1 VDD2 Pin Charging Current IDD2CH VCC = VCC(ON) - 0.5 V, CL : open, FB : open, SO : open, VIN = 50 V -8.0 -

Panasonic ____

		1		1		1	
No.	Item	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
**38	Remote ON/OFF Threshold Current Hysteresis	ICLHYS	OFF ON, VCC = 22 V, VFB = 3 V	10	-	-	μA
39	CL Pin Voltage at ICL = 0 µ A	VCL	VCC = 22 V, ICL = 0 μ A , VFB = 3 V	1.30	0.90	1.70	V
40	CL Pin Voltage at ICL = 150 µA	VCL150	VCC = 22 V, ICL = -150 $\ \mu$ A , VFB = 3 V	1.15	0.80	1.50	V
41	CL Pin Voltage at ICL = ICL1	VCL1	VCC = 22 V, ICL = ICL1, VFB = 3 V	1.00	0.65	1.35	V
42	CL Pin Grounded Current	ICL0	VCC = 22 V, VCL = 0 V, VFB = 3 V	-380	-560	-200	μA
43	CL Pin Current Difference	D_ICL	ICL1 - ICL0	80	30	130	μA
*44	Current Detection Minimum Voltage at IFB = IFB1	VIS(OFF)min	VCC = 22 V, ICL : open, IFB = IFB1	200	150	250	mV
**45	Jitter Deviation of Current Detection Voltage at IFB = IFB1	D_VIS(OFF)	VCC = 22 V, ICL : open, IFB = IFB1	40	-	-	mV
46	Sense Offset Current at Heavy Load	IIS1	VCC = 22 V , VFB = 3 V, VIS = 0 V	0	-2	2	μA
**47	Sense Offset Minimum Current at IFB = IFB1	IIS2	VCC = 22 V , IFB = IFB1, VIS = 0 V	-90	-	-	μA
48	Minimum On Time	Ton(MIN)	VCC = 20 V, COUT = 1 nF	800	500	1100	ns
**49	Leading Edge Blanking Delay	Ton(BLK)	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	650	-	-	ns
**50	Current Limit Delay	Td(OCL)	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	150	-	-	ns
51	FB Pin Over Load Protection Voltage	VFB(OL)	VCC = 22 V	4.4	3.9	4.9	v
52	FB Pin Charging Current at Over Load	IFB(OL)	VCC = 22 V, VFB = 3 V	-10	-13	-7	μA
53	VDD1 Latch Stop Threshold Voltage	VDD1(OV)	VCC = 22 V, VFB = 3 V	7.7	7.0	8.4	V
54	VDD1 Latch Stop Threshold Current	IDD1(OV)	VCC = 22 V, VFB = 3 V	1.4	0.8	2.0	mA
55	VDD1clamp Current	IDD1(CLP)	VCC = 22 V, VDD1 = 10 V	9.3	7.5	11.1	mA
**56	VDD1 Latch Reset Threshold Voltage	Td(LAT)	VCC = 22 V	125	-	-	μs
57	VDD1 Latch reset Voltage	VDD1reset		2.7	1.7	3.7	V
*58	Thermal Shutdown Temperature	TOTP		140	130	150	
**59	Thermal Shutdown Temperature Hysteresis	TOTPHYS		70	-	-	

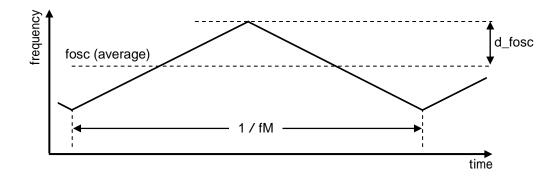
Panasonic ____


MIP0060MXL

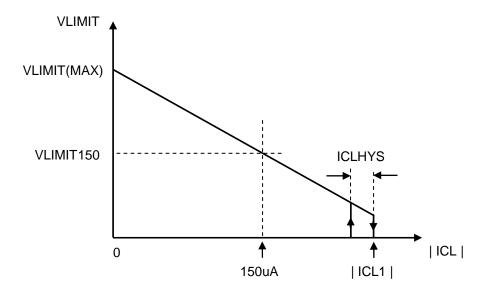
No.	Item	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
[OUTF	PUT] **Reference Item	1				1	<u>.</u>
60	VGD Reference Voltage	VGDref	VCC = 22 V	12	11	13	V
61	VGD Minimum Voltage	VGD(MIN)	VCC = VCC(OFF)	9.4	8.4	10.4	V
**62	Output Sink Current	IOUTL	VCC = 22 V, VGD = VGDref + 0.2 V, VOUT = 12 V	1.2	-	-	А
**63	Output Source Current	IOUTH	VCC = 22 V, VGD = VGDref + 0.2 V, VOUT = 0 V	-0.6	-	-	А
64	Low Level Output Voltage	VOUTL	VCC = 22 V, VGD = VGDref + 0.2 V, IOUT = 10 mA	0.05	-	0.2	V
65	High Level Output Voltage	VOUTH	VCC = 22 V, VGD = VGDref + 0.2 V, IOUT = -10 mA	VGD-0.1	VGD-0.3	-	V
**66	Rise Time	tr	VCC = 22 V, COUT = 1 nF VGD = VGDref + 0.2 V	40	-	-	ns
**67	Fall Time	tf	VCC = 22 V, COUT = 1 nF VGD = VGDref + 0.2 V	20	-	-	ns
(HIGH	VOLTAGE INPUT]						-
68	VIN Pin Leakage Current	IIN(LEAK)	VIN = 500 V, VCC > VCC(ON),	2.5	-	10	μA
69	VIN Pin Current in Power-OFF Mode	IIN(OFF)	Power-OFF Mode, VIN = 500 V, VCC : open	12.5	-	30	μA
70	VIN Pin Breakdown Voltage	BVVIN	IIN = 100 µ A, VCC > VCC(ON)	-	550	-	V
71	Minimum VIN Supply Voltage	VIN(MIN)		26	21	31	v

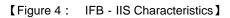
Doc No. TD4-EA-01854 Revision. 3

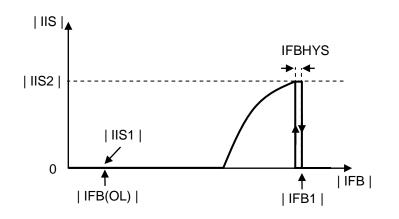
MIP0060MXL

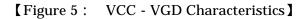


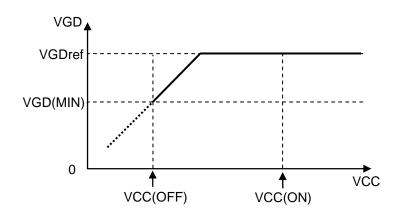
Pin No.	Pin Name	Function
1	VCC	Power supply from bias winding
2	CL	VLIMIT adjustment (Input correction)
3	GND1	Ground ()
4	OUT	Output for gate drive
5	VGD	Power supply for gate drive
6	IS	Current detection
7	VDD1	Power Supply Voltage for circuits, External latch
8	LS	AC input cutoff detection
9	VIN	Power supply for start-up
10	NC	-
11	NC	-
12	GND2	Ground ()
13	VDD2	Power Supply Voltage for power off mode
14	OFF	Power-off mode control
15	SO	AC input signal detection signal output
16	FB	Feedback control


GND1 and GND2 should be shorted on this power supply board.

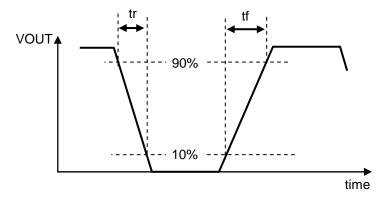



[Figure 2 : fosc, d_fosc, fM measurement]

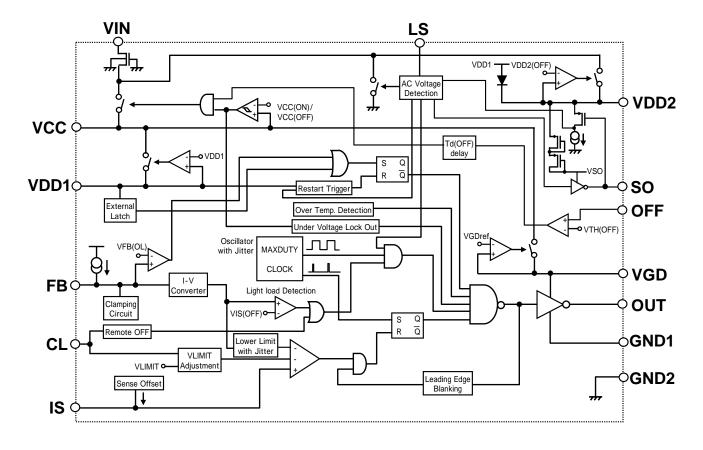




Established : 2013-08-01 Revised : 2015-10-07 Doc No. TD4-EA-01854 Revision. 3



MIP0060MXL



[Figure 6 : tr, tf measurement]

[Figure 7 : Block Diagram]

[Precautions for Use 1]

Connect GND1 and GND2 on the power supply board.

[Precautions for Use 2]

Connect a ceramic capacitor with value 0.1 µ F between VDD1 pin and GND, and between VDD2 pin and GND.

[Precautions for Use 3]

The product has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use. Fuse should be added at the input side or connect zener diode between control pin and GND, etc as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.

- (1) Reverse the VIN pin and VCC pin connection to the power supply board.
- (2) Connect to pins in which different Maximum ratings.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation, Nuvoton Technology Corporation Japan or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

No.070920

单击下面可查看定价,库存,交付和生命周期等信息

>>Panasonic(松下)