Notification about the transfer of the semiconductor business

The semiconductor business of Panasonic Corporation was transferred on September 1, 2020 to Nuvoton Technology Corporation (hereinafter referred to as "Nuvoton"). Accordingly, Panasonic Semiconductor Solutions Co., Ltd. became under the umbrella of the Nuvoton Group, with the new name of Nuvoton Technology Corporation Japan (hereinafter referred to as "NTCJ").

In accordance with this transfer, semiconductor products will be handled as NTCJ-made products after September 1, 2020. However, such products will be continuously sold through Panasonic Corporation.

Publisher of this Document is NTCJ.

If you would find description "Panasonic" or "Panasonic semiconductor solutions", please replace it with NTCJ.

* Except below description page

"Request for your special attention and precautions in using the technical information and semiconductors described in this book"

Nuvoton Technology Corporation Japan

Panasonic _____

MIP2M20MTSCF

Туре	Silicon MOSFET type Integrated Circuit				
Application	For Switching Power Supply Control				
Structure	CMOS type				
Circuit Block Diagram	Figure 8				
Out Line	DIP7-A1-B	IP7-A1-B Marking MIP2M2			

A. ABSOLUTE MAXIMUM RATINGS (Ta=25°C±3°C)

NO.	Item	Symbol	Ratings	Unit	Note
1	DRAIN Voltage	VD	-0.3 ~ 700	V	
2	VCC Voltage	VCC	$-0.3 \sim 45$	V	VFB is guaranteed
3	VDD Voltage	VDD	$-0.3 \sim 9$	v	at VDD=6 V. VSO is guaranteed at VSO=VDD.
4	FB Voltage	VFB	$-0.3 \sim 6.4$	v	※ 1:
5	FB Current	IFB	-500	μA	IDP is guaranteed at the pulse width
6	LS Voltage	VLS	−0.3 ~ 9	V	narrower than ton(BLK) + td(OCL)
7	SO Voltage	VSO	−0.3 ~ 9	V	
8	Output Peak Current	IDP	0.76(※1)	А	
9	Recommended Operating Temperature	Tj	−30 ~ +125	°C	
10	Channel Temperature	Tch	150	°C	
11	Storage Temperature	Tstg	$-55 \sim +150$	°C	

Panasonic _____

MIP2M20MTSCF

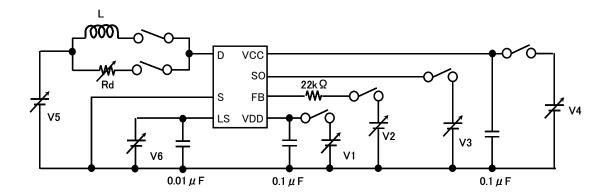
No.	Item	Symbol	Measure Condition (Figure 1)	Тур	Min	Max	Unit
CON	TROL FUNCTIONS】 *Design guarantee	d item					
1	Output Frequency	fosc	※Figure 7 V4=15 V, V3=2 V, I2=−20 μ A, V5=5 V	67.0	60.3	73.7	kHz
2	Jitter Frequency Deviation	d_fosc	※Figure 7 V4=15 V, V3=2 V, I2=−20 μ A, V5=5 V	5.0	2.4	7.6	kHz
*3	Jitter Frequency Modulation Rate	fM	※Figure 7 V4=15 V, V3=2 V, I2=−20 μ A, V5=5 V	360	_	_	Hz
4	Maximum Duty Cycle	MAXDC	V4=15 V, V3=2 V, I2=-20 µ A, V5=5 V	54	50	58	%
5	VDD Voltage	VDD	V4=15 V, V3=6 V, I2=−20 μ A, V5=5 V, V6=1 V	5.9	5.4	6.4	V
6	VCC Start Voltage	VCC(ON)	V3=6 V, I2=-20 µ A, V5=5 V, V6=1 V	12	11	13	v
7	VCC Stop Voltage	VCC(OFF)	V3=6 V, 12=-20 µ A, V5=5 V, V6=1 V	8.20	7.45	8.95	v
8	VCC start/stop Hysteresis	VCC(HYS)	VCC(ON) - VCC(OFF)	3.8	3.1	4.5	v
9	Feedback Threshold Current	IFB1	ON→OFF V4=15 V, V3=6 V, V5=5 V, V6=1 V	-57	-81	-34	μA
10	Feedback Current Hysteresis	IFB(HYS)	OFF→ON V4=15 V, V3=6 V, V5=5 V, V6=1 V	1.5	_	_	μA
11	FB Pin Voltage	VFB1	V4=15 V, V3=6 V, I2= IFB1, V5=5 V, V6=1 V	1.9	1.6	2.2	v
12	Circuit Current before start	ICC(SB)	V4=6.5 V, V3=6 V, I2=-20 μ A, V5=5 V, V6=1 V	0.25	0.20	0.30	mA
13	Circuit Current	ICC	V4=15 V, V3=6 V, I2=-20 μ A, V5=5 V, V6=1 V	0.36	0.23	0.49	mA
14	VDD Charging Current	Ich1 Ich2	V1=0 V, V5=40 V V1=4 V, V5=40 V	-2.2 -1.3	-3.3 -2.1	-1.1 -0.6	mA mA
15	LS start voltage	VLSH	V4=VCC(OFF)→VCC(ON), V3=6 V, I2=−20 μ A, V5=5 V	540	486	594	mV
16	LS stop voltage	VLSL	V4=15 V, V3=6 V, I2=−20 μ A, V5=5 V	395	355	435	mV
17	LS detect Hysteresis	VLS(HYS)	VLSH - VLSL	145	_	_	mV
18	LS start/stop mode filter time	TLSstop	V4=15 V, V3=6 V, I2=−20 µ A, V5=5 V V6=VLSH→VLSL	5.85	4.20	7.50	ms
19	LS detect SO signal mode filter time	TLSSO	V4=15 V, V3=6 V, I2=-20 μ A, V5=5 V	3.15	1.85	4.45	ms
20	SO output voltage	VSO	V4=15 V, I2=−20 µ A, V5=5 V V6=VLSH→VLSL	4.2	3.2	5.2	v
21	SO output current	ISO	V4=15 V, V3=1 V, I2=−20 μ A, V5=5 V V6=0 V	-0.8	-1.2	-0.4	mA

Panasonic _____

MIP2M20MTSCF

No.	Item	Symbol	Measure Condition (Figure 1)	Тур	Min	Max	Unit	
22	SO Disable Threshold	VSOTH	V4=15 V, I2=-20	5.2	4.6	5.8	v	
23	SO Disable Threshold margin	D_VSO	VSOTH-VSO	1.0	0.7	1.3	v	
24	SO pull down current	ISO_down	V4=15 V, V3=1 V, I2=−20 μ A, V5=5 V V6=0 V	0.7	0.3	1.1	μA	
25	Soft start time	Tsoft	V4=VCC(OFF)→VCC(ON) I2=−20 μ A, V5=5 V, V6=1 V	8.5	5.0	12.0	ms	
[CIRCI	[CIRCUIT PROTECTIONS]							
26	Self Protection Current Limit	ILIMIT	%Figure 5 Duty=30 % V4=15 V, V3=2 V, V2=2.6 V, V5=adjusted	0.350	0.315	0.385	А	
27	ILIMIT Compensation slope	R_slope	%Figure 5 Duty=10 % V4=15 V,V3=2 V, V2=2.6 V, V5=adjusted	10	-	-	mA∕ µs	
*28	Drain Current at Light Load	ID(OFF)	Ton=4.5 μ sec, V4=15 V, V3=2 V, I2=IFB1+2 μ A, V5=adjusted	100	40	160	mA	
29	FB current at heavy load	IFBOLP	V5=ILIMIT condition V4=15 V, V3=2 V, V2=3 V, V6=1 V	-10	-13	-7	μA	
30	FB Over Load Protection detect voltage	VFBOLP	V5=ILIMIT condition V4=15 V, V3=2 V, V6=1 V	3.85	3.50	4.20	v	
31	FB Over Load Protection Hysteresis	HYSVFBOLP		0.65	-	-	v	
32	FB discharge current at timer intermittent	IFBOLPP	V5=ILIMIT condition, V4=VCC(OFF) V3=2 V, V2=25 V, V6=1 V	1.0	0.6	1.4	mA	
33	FB current at MAXDC detect	IFBMAXDC	V4=15 V, V3=6 V, V2=3 V, V5=5 V, V6=1 V	-	-	0.2	μA	
34	Timer intermittent function	TIMER	%Figure 3 V4=VCC(ON)⇔VCC(OFF), V5=1LIMIT condition, V3=6 V, 12=-20 μ A, V6=1 V		4		-	
35	Timer intermittent function disabled at MAXDC	TIMER2	 ※Figure 4 V4=VCC(ON)⇔VCC(OFF), V5=5 V, V3=6 V, 12=−20 μ A, V6=1 V 		1		-	
*36	Leading Edge Blanking Delay	ton(BLK)		290	230	350	ns	
*37	Current Limit Delay	td(OCL)		150	100	200	ns	
38	VCC Over Voltage Protection	VCC(OV)	V3=6 V, I2=-20	29	26	32	V	
39	VDD Latch Voltage	VDD(OV)	V4=15 V, I1=IDD(OV), V3=0 V, I2=−20 μA, V5=5 V, V6=6 V	7.00	6.40	7.50	v	
40	VDD Latch Current	IDD(OV)	V4=15 V, V3=0 V, I2=−20 μ A, V5=5 V, V6=6 V	3.5	2.4	4.6	mA	
41	VDD Latch Voltage margin	D_VDDOV	VDD(OV)-VDD	0.9	0.4	1.5	v	
*42	Thermal Shutdown Temperature	ТОТР		140	130	150	°C	
43	Latch Reset VDD Threshold	VDDreset		2.7	1.8	3.5	v	

Panasonic

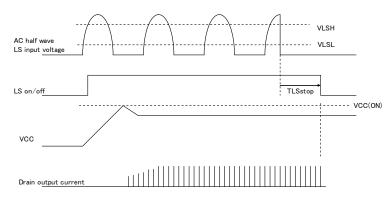

MIP2M20MTSCF

[OUTPUT]

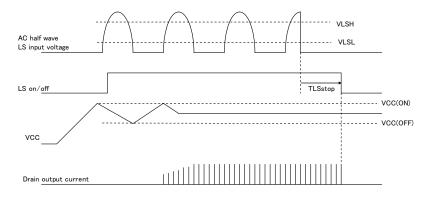
No.	Item	Symbol	Measure Condition (Figure 1)	Тур	Min	Max	Unit
44	ON-State Resistance	RDS(ON)	V4=15 V, V3=2 V I5=100 mA, I2=-20 μA, V6=1 V	16	-	21	Ω
45	OFF-State leakage Current	IDSS	V4=35 V, I2=-20 μ A, V3=6 V, V5=650 V, V6=1 V	10	_	20	μA
46	Breakdown Voltage	VDSS	V4=35 V, I2=-20 μ A, V3=6 V, I5=100 μ A, V6=1 V	-	700	-	V
*47	Rise Time	tr	%Figure 6 V4=15 V, V3=1 V, I2=−20 μ A, V5=5 V	70	-	-	ns
*48	Fall Time	tf	ЖFigure 6 V4=15 V, V3=1 V, I2=-20 μ A, V5=5 V	35	-	-	ns
[SUPF	PLY VOLTAGE】						
49	Drain Supply Voltage						

49	Drain Supply Voltage		1				
		VD(MIN)	-	50	-	V	1

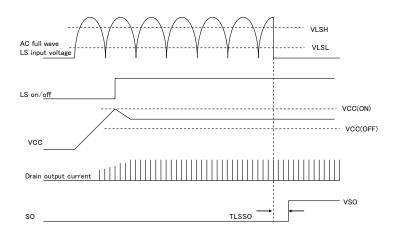
[Figure 1: Measure circuit]



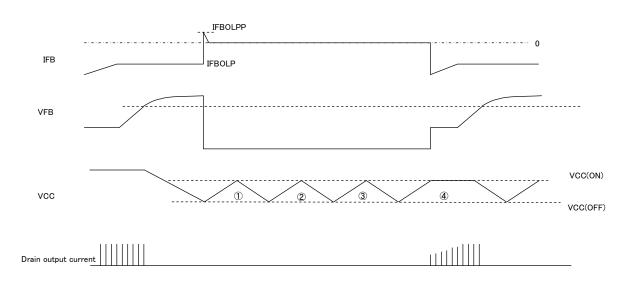
MIP2M20MTSCF


Panasonic

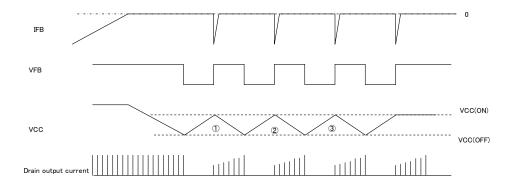
[Figure 2: Start up and Stop diagram]


(A) Normal start and stop of LS start/stop mode (SO is connected to VDD)

(B) Slow start and stop of LS start/stop mode (SO is connected to VDD)

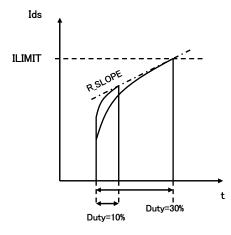

(C) Normal start and stop of LS detect SO signal mode (SO is connected to external parts)

Established : 2014-01-16 Revised : 2016-03-02


MIP2M20MTSCF

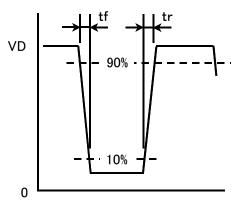
[Figure 3: Timer intermittent Over load protection diagram]

[Figure 4: OLP is disabled when MAXDC operation]

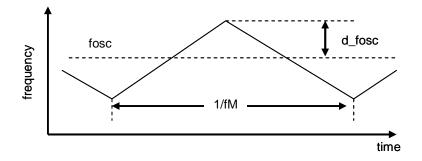


Established : 2014-01-16 Revised : 2016-03-02

MIP2M20MTSCF



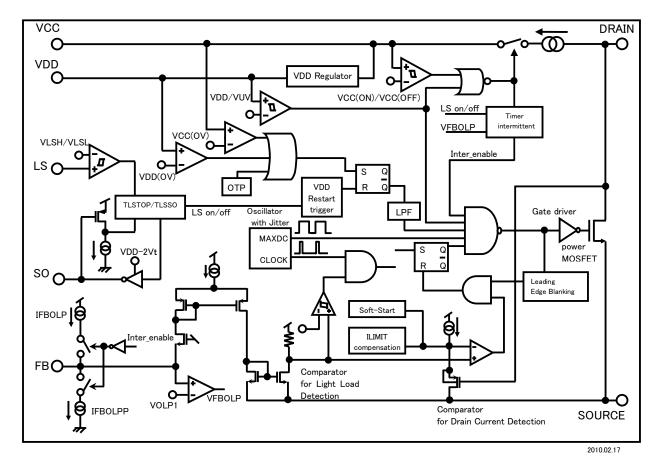
[Figure 5: ILIMIT, R_Slope measurement]



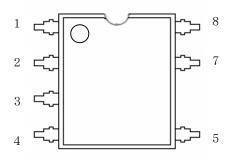
 $R_slope ; \{(ILIMIT at Duty=30\%) - (ILIMIT at Duty=10\%)\} / \{(Ton at Duty=30\%) - (Ton at Duty=30\%) - (Ton$

[Figure 6: tr, tf measurement]

[Figure 7: d_fosc, fM measurement]



Established : 2014-01-16 Revised : 2016-03-02 Page 7 of 9


MIP2M20MTSCF

[Figure 8: Circuit Block Diagram]

[Figure 9: Pin Layout]

Pin No.	Terminal Name
1	VDD
2	FB
3	SO
4	VCC
5	Drain
6	_
7	Source
8	LS

MIP2M20MTSCF

[Precautions for Use 1]

Connect a ceramic capacitor with value >0.1 μ F between VDD pin and GND.

[Precautions for Use 2]

The IPD has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use. Fuse should be added at the input side or connect zener diode between control pin and GND, etc as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.

- (1) Reverse the DRAIN pin and VDD pin connection to the power supply board.
- (2) DRAIN pin short to VDD pin.
- (3) DRAIN pin short to FB pin.
- (4) DRAIN pin short to SO pin.
- (5) DRAIN pin short to VCC pin.
- (6) DRAIN pin short to LS pin.
- (7) VCC pin short to VDD pin.
- (8) VCC pin short to FB pin.
- (9) VCC pin short to SO pin.
- (10) VCC pin short to LS pin.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation, Nuvoton Technology Corporation Japan or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

No.070920

单击下面可查看定价,库存,交付和生命周期等信息

>>Panasonic(松下)