Notification about the transfer of the semiconductor business

The semiconductor business of Panasonic Corporation was transferred on September 1, 2020 to Nuvoton Technology Corporation (hereinafter referred to as "Nuvoton"). Accordingly, Panasonic Semiconductor Solutions Co., Ltd. became under the umbrella of the Nuvoton Group, with the new name of Nuvoton Technology Corporation Japan (hereinafter referred to as "NTCJ").

In accordance with this transfer, semiconductor products will be handled as NTCJ-made products after September 1, 2020. However, such products will be continuously sold through Panasonic Corporation.

Publisher of this Document is NTCJ.

If you would find description "Panasonic" or "Panasonic semiconductor solutions", please replace it with NTCJ.

Except below description page
 "Request for your special attention and precautions in using the technical information and semiconductors described in this book"

Nuvoton Technology Corporation Japan

Doc No. TD4-ZZ-01698 Revision. 0

Panasonic _____

MIP2P4LMTSCF

Туре	Silicon MOSFET type Integrated Circuit			
Application	For Switching Power Supply Control			
Structure	Bi-CMOS type			
Equivalent Circuit	Figure 7			
Package	DIP7-A1-B	Marking	MIP2P4L	

A. ABSOLUTE MAXIMUM RATINGS (Ta=25±3°C)

No.	Item	Symbol	Ratings	Unit	Note
1	Drain Voltage				
		VD	−0.3 ~ 700	V	
2	VCC Voltage				
		VCC	$-0.3 \sim 45$	V	
3	VDD Voltage				
		VDD	−0.3 ~ 8	V	
4	Feedback Voltage				
		VFB	−0.3 ~ 8	V	
5	LS Voltage				
		VLS	−0.3 ~ 8	V	
6	Output Peak Current				※ 1:
		IDP	2.4 (※1)	Α	It is guaranteed within
7	Junction Temperature				the Minimum-On Pulse
		Tj	150	လ	Width[MIN(PW)]
8	Storage Temperature				
		Tstg	$-55 \sim +150$	င္	

B. RECOMMENDED OPERATING CONDITIONS

No.	Item	Symbol	Ratings	Unit	Note
1	Junction Temperature				
		Tj	$-40 \sim +125$	°C	

MIP2P4LMTSCF

C. ELECTRICAL CHARACTERISTICS Measurement Condition (Ta=25°C±3°C)

C. ELE	ECTRICAL CHARACTERISTICS Me	asurement C	ondition(Ta=25°C±3°C)					
No.	Item	Symbol	Measurement Condition (Figure 1)	Тур.	Min.	Max.	Unit	
[CONT	CONTROL FUNCTIONS】*Design Guaranteed Items, **Reference Items							
1	Output Frequency at heavy load pwm	f_pwm(H)	VCC=15 V, VDD=open, IFB=-20 μ A, VLS =2 V, VD=5 V *Figure 5	100	93	107	kHz	
2	Output Frequency at light load pwm	f_pwm(L)	VCC=15 V, VDD=open, IFB=IFB1+5 μ A, VLS =2 V, VD=5 V *Figure 5	28	22	34	kHz	
**3	Jitter Frequency Deviation at heavy load pwm	⊿f(H)	VCC=15 V, VDD=open, IFB=-20 μ A, VLS =2 V, VD=5 V *Figure 2	5.5	ı	ı	kHz	
**4	Jitter Frequency Deviation at light load pwm	⊿f(L)	VCC=15 V, VDD=open, IFB=IFB1+5 μ A, VLS =2 V, VD=5 V *Figure 2	1.5	ı	1	kHz	
**5	Jitter Frequency Modulation Rate	fM	VCC=15 V, VDD=open, IFB=-20 μ A, VLS =2 V, VD=5 V *Figure 2	450	_	_	Hz	
6	Maximum Duty Cycle	MAXDC	VCC=15 V, VDD=open, IFB=-20 μ A, VLS =2 V, VD=5 V	56	52	60	%	
7	DRAIN-VDD Charging Stop VCC Voltage	VCC1	VDD=VDD(ON)-0.1 V, VLS=2 V, VD=30 V	8.2	7.45	8.95	٧	
**8	DRAIN-VDD Charging Stop/Start VCC Voltage Hysteresis	D_VCC1	VDD=VDD(ON)-0.1 V, VLS=2 V, VD=30 V	0.65	-	-	V	
9	VDD Start Voltage	VDD(ON)	IFB=-20 μ A, VLS=2 V, VD=5 V	5.9	5.4	6.4	V	
10	VDD Stop Voltage	VUV	IFB=-20 μ A, VLS=2 V, VD=5 V	4.4	3.9	4.9	٧	
11	VDD Start/Stop Hysteresis	D_VDD	VDD(ON) - VUV	1.5	1	2	V	
12	VDD Current before start	IDD(SB)	VDD=VDD(ON)-0.1 V, VLS=2 V	350	260	440	μΑ	
13	VDD Current at standby mode	IDD(STB)	VDD=VDD(ON)+0.1 V, IFB=IFB1-2 μ A, VLS =2 V, VD=5 V	550	400	700	μΑ	
14	VDD Current at heavy load pwm	IDD(OP)H	VDD=VDD(ON)+0.1 V, IFB=-20 μ A, VLS =2 V, VD=5 V	550	400	700	μΑ	
15	VDD Current at light load pwm	IDD(OP)L	VDD=VDD(ON)+0.1 V, IFB=IFB1+5 μ A, VLS =2 V, VD=5 V	590	470	700	μΑ	
16	VDD Current at Over Load Protection	IDD(OLP)	VDD=VDD(ON)+0.1 V, VFB=VFB(OLP)+0.1 V, VLS=2 V, VD=5 V	360	270	450	μΑ	
17	VCC Internal Circuit Current	ICC	VCC=15 V, VDD=VDD(ON)+0.6 V	27	14	40	μΑ	
**18	Minimum VCC Voltage for VDD Supply	VCC(MIN)	VLS=2 V, VD=5 V	6.8	_	_	V	

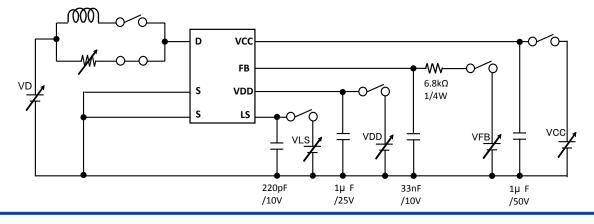
Panasonic _____

MIP2P4LMTSCF

No.	Item	Symbol	Measurement Condition (Figure 1)	Тур.	Min.	Max.	Unit
19	DRAIN-VDD Charging Current	Ich1	VCC=open, VDD=0 V, VLS =2 V, VD=50 V	-3.8	-5.7	-1.9	mA
		Ich2	VCC=open, VDD=VDDreset-0.1 V, VLS =2 V, VD=50 V	-2.8	-4.5	-1.4	mA
		Ich3	VCC=open, VDD=VDDreset+0.1 V, VLS =2 V, VD=50 V	-8.6	-13.5	-4.3	mA
		Ich4	VCC=open, VDD=VDD(ON)-0.5 V, VLS =2 V, VD=50 V	-6.5	-11	-3.25	mA
20	Feedback Threshold Current	IFB1	ON→OFF, VCC=15 V, VDD=open, VLS =2 V, VD=5 V	-140	-200	-80	μΑ
**21	Feedback Current Hysteresis	IFBHYS	OFF→ON, VCC=15 V, VDD=open, VLS =2 V, VD=5 V	5	-	_	μΑ
**22	Feedback Current at light load pwm	IFB2	VCC=15 V, VDD=open, VLS =2 V, VD=5 V	-90	_	-	μΑ
**23	Feedback Current at heavy load pwm	IFB3	VCC=15 V, VDD=open, VLS =2 V, VD=5 V	-45	_	_	μΑ
**24	Feedback Current at ILIMIT(H)	IFB4	VCC=15 V, VDD=open, VLS =2 V, VD=5 V	-30	_	_	μΑ
25	FB Voltage	VFB	VCC=15 V, VDD=open, IFB=-20 μ A, VLS =2 V, VD=5 V	1.9	1.6	2.2	٧
26	FB Voltage at light load	VFB1	VCC=15 V, VDD=open, IFB=IFB1+5 μ A, VLS =2 V, VD=5 V	1.75	1.45	2.05	V
27	FB Discharge Pull-Down Resistance	RFB(OFF)	VCC=15 V, VDD=open, VFB=VFB(OLP)	480	380	580	Ω
28	FB Grounded Current	IFB(GND)	VCC=15 V, VDD=open, VFB=0 V(FB pin direct)	-460	-644	-276	μΑ
*29	Frequency Soft Start Time	Tsoft	VCC=15 V, VDD=open, IFB=-20 μ A, VLS =2 V	5	1.5	10	ms

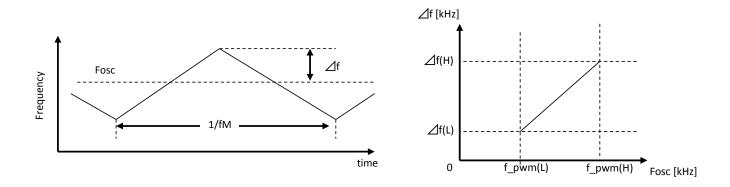
Panasonic _____

MIP2P4LMTSCF

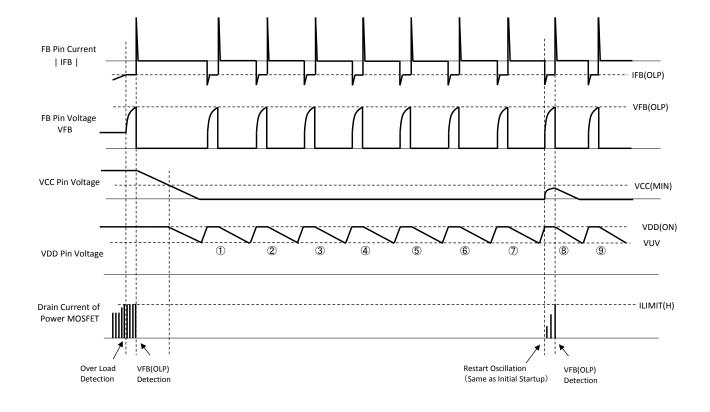

No.	Item	Symbol	Measurement Condition (Figure 1)	Тур.	Min.	Max.	Unit
[CIRC	UIT PROTECTIONS】*Design Guarantee	ed Items, **F	Reference Items			•	
30	Self Protection Current Limit	ILIMIT(H)	VCC=15 V, VDD=open, IFB=-20 μA, VLS=2 V, Ton=3 μs *Figure 4	0.5	0.465	0.535	А
**31	ILIMIT(H) Compensation Slope	R_slope	VCC=15 V, VDD=open, IFB=-20 μ A, VLS=2 V, Ton=3 μ s/2 μ s *Figure 4	8	_	_	mA/μs
**32	Drain Current at PFM	ILIMIT(L)	VCC=15 V, VDD=open, IFB=IFB2+20 μ A, VLS=2 V, Ton=3 μ s *Figure 5	0.375	_	_	Α
**33	Drain Current at light load	ID(OFF)	VDD=VDD(ON)+0.1 V, IFB=IFB1+5 μ A, VLS=2 V, Ton=3 μ s *Figure 5	115	_	_	mA
**34	Jitter Drain Current Deviation at light load	D_ID(OFF)	VDD=VDD(ON)+0.1 V, IFB=IFB1+5 μ A, VLS=2 V, Ton=3 μ s *Figure 5	20	_	_	mA
35	Minimum On-Pulse Width	MIN(PW)		620	-	730	ns
*36	Leading Edge Blanking Delay	ton(BLK)		420	350	510	ns
**37	Over Current Protection Delay	td(OCL)		200	-	_	ns
38	VCC Over Voltage Latch Stop Voltage	VCC(OV)	VDD=open, IFB=-20 μ A, VLS =2 V, VD=5 V	29	26	32	V
39	VDD Over Voltage Latch Stop Voltage	VDD(OV)	IFB=-20 μ A, VLS =2 V, VD=5 V	6.5	5.8	7.2	V
40	VDD Over Voltage Latch Stop Voltage Hysteresis	D_VDD(OV)	VDD(OV)-VDD(ON)	0.6	0.1	1.1	V
41	VDD Over Voltage Latch Stop Current	IDD(OV)	IFB=-20 μ A, VLS =2 V, VD=5 V	3.4	2.3	4.6	mA
**42	Latch Stop Filter Time	Td(LAT)		150	-	_	μs
**43	OLP Internal Filter Time	Td(OLP)		10	-	_	μs
44	VDD Clamp Current	IDD(CLP)	VDD=8 V, VLS =2 V, VD=5 V	32	25	47	mA
45	FB Over Load Protection detect Current	IFB(OLP)	VCC=15 V, VDD=open, VFB=3 V, VLS =2 V, VD=5 V	-8	-10	-6	μΑ
46	FB Over Load Protection detect Voltage	VFB(OLP)	VCC=15 V, VDD=open, VLS =2 V, VD=5 V	4.4	3.9	4.9	V
47	OLP VDD Oscillation Count	OLP CNT	VDD=VUV \Leftrightarrow VDD(ON), IFB=-20 μ A, VLS =2 V, VD=5 V * Figure 3		8	1	_

MIP2P4LMTSCF

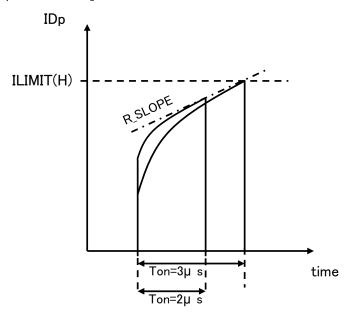
Panasonic


No.	Item	Symbol	Measurement Condition (Figure 1)	Тур.	Min.	Max.	Unit	
48	LS Start Voltage	VLS(UV)H	VCC=15 V, VDD=open, IFB=-20 μ A, VD=5 V	1.25	1.14	1.36	٧	
49	LS Stop Voltage	VLS(UV)L	VCC=15 V, VDD=open, IFB=-20 μ A, VD=5 V	0.9	0.82	0.98	٧	
**50	LS Start/Stop Voltage Hysteresis	D_VLS(UV)	VLS(UV)H - VLS(UV)L	0.35	-	-	٧	
51	LS Stop Filter Time	Td(LS)	VCC=15 V, VDD=open, VFB=3 V, VLS < VLS(UV)L, VD=5 V	32	22	50	ms	
*52	Thermal Shutdown Temperature	ТОТР		140	130	150	°C	
**53	Thermal Shutdown Temperature Hysterisis	D_TOTP		45	_	_	°C	
54	Reset VDD Threshold Voltage	VDDreset		2.7	1.8	3.5	٧	
[OUTF	[OUTPUT] **Reference Items							
55	ON-State Resistance	RDS(ON)	VCC=15 V, VDD=open, IFB=-20 μ A, VLS=2 V, ID=300 mA	5.8	_	7.0	Ω	
56	Drain OFF-State Leakage Current	IDSS	VCC=VCC(OV)→15 V, VDD=open, VLS=2 V, VD=650 V	5	_	20	μΑ	
57	Drain Breakdown Voltage	VDSS	VCC=VCC(OV)→15 V, VDD=open, VLS=2 V, ID=100 μA	_	700	_	V	
**58	Rise Time	tr	VCC=15 V, VDD=open, IFB=-20 μ A, VLS=2 V, VD=5 V *Figure 6	110	_	_	ns	
**59	Fall Time	tf	VCC=15 V, VDD=open, IFB=-20 μ A, VLS=2 V, VD=5 V *Figure 6	25	_	_	ns	
[SUPP	LY VOLTAGE	L	ı	1	ı	1		
60	Minimum Drain Supply Voltage	VD(MIN)	VCC=open, VDD=open, IFB=-20 μ A, VLS=2 V $$ $$ $$ $$ $$ $$ $$ $$ VD for starting operation	10	-	18	V	

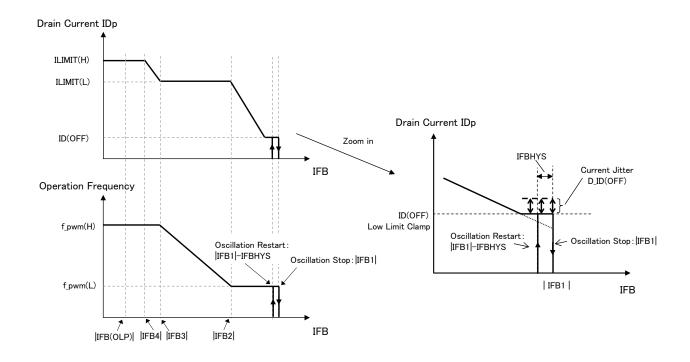
[Figure 1: Measurement Circuit]



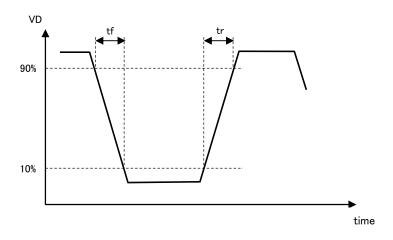
Page 5 of 9


[Figure 2: Δf , fM Measurement]

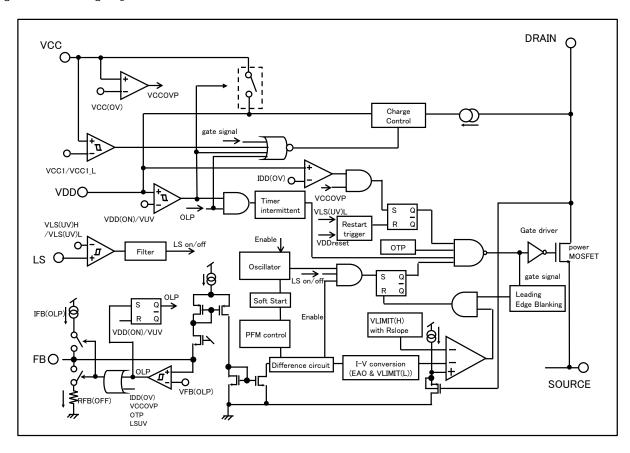
[Figure 3: Terminal Waveforms during Over-Load Protection]

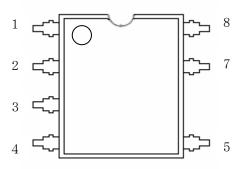


[Figure 4: ILIMIT, R_slope Measurement]



R_slope ; {(ILIMIT(H) at Ton=3 μ s) – (ILIMIT(H) at Ton=2 μ s)} / {(Ton=3 μ s) – (Ton=2 μ s)}


[Figure 5: IFB-ILIMIT, IFB-FOSC Characteristics]


[Figure 6: tr, tf Measurement]

[Figure 7: Block Diagram]

[Figure 8: Pin Layout]

No.	Pin Name
1	LS
2	VDD
3	FB
4	VCC
5	DRAIN
6	_
7	SOURCE
8	SOURCE

[Precautions for Use 1]

Connect a ceramic capacitor (over 0.1 μ F) between VDD pin and SOURCE pin.

[Precautions for Use 2]

Do pay attention to below as IPD has risks of smoking or igniting when subjected to below abnormal conditions especially during regulatory Safety Standard testing.

An example of safety measure to avoid smoking or ignition is adding fuse at the input side or connect zener diode between control pin and GND as a precaution.

Do approach our sales staff if you need further support. Our company shall not be held responsible for any damage incurred as a result of or in connection with your using the IC describe in this book for any special application. Customers are responsible for their products and applications using our company components.

- (1) DRAIN Pin and LS Pin invert insertion in power supply board.
- (2) DRAIN pin short to LS pin.
- (3) DRAIN pin short to VDD pin.
- (4) DRAIN pin short to FB pin.
- (5) DRAIN pin short to VCC pin.
- (6) VCC pin short to LS pin.
- (7) VCC pin short to VDD pin.
- (8) VCC pin short to FB pin.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation, Nuvoton Technology Corporation Japan or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
 - Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

No.070920

单击下面可查看定价,库存,交付和生命周期等信息

>>Panasonic(松下)