Notification about the transfer of the semiconductor business

The semiconductor business of Panasonic Corporation was transferred on September 1, 2020 to Nuvoton Technology Corporation (hereinafter referred to as "Nuvoton"). Accordingly, Panasonic Semiconductor Solutions Co., Ltd. became under the umbrella of the Nuvoton Group, with the new name of Nuvoton Technology Corporation Japan (hereinafter referred to as "NTCJ").

In accordance with this transfer, semiconductor products will be handled as NTCJ-made products after September 1, 2020. However, such products will be continuously sold through Panasonic Corporation.

Publisher of this Document is NTCJ.

If you would find description "Panasonic" or "Panasonic semiconductor solutions", please replace it with NTCJ.

Except below description page
 "Request for your special attention and precautions in using the technical information and semiconductors described in this book"

Nuvoton Technology Corporation Japan

Doc No. TD4-EA-01829 Revision. 2

Panasonic

MIP5610MSSCF

Type	Silicon MOSFET type Integrated Circuit					
Application	For Green Lighting driving	For Green Lighting driving				
Structure	CMOS type					
Block diagram	Figure 5					
Out Line	DIP7-A1	Marking	MIP561			

A. ABSOLUTE MAXIMUM RATINGS (Ta=25°C±3°C)

A . AL	SOLUTE MAXIMUM RATINGS (1	a=25 C士、	3 C)	•	
NO.	Item	Symbol	Ratings	Unit	Note
1	DRAIN Voltage	VD-S	−0.3 ~ 700	٧	
2	VIN Voltage	VIN-S	−0.3 ~ 550	٧	
3	VDD Voltage	VDD-S	−0.3 ~ 9.5	٧	
4	FB Voltage	VFB-S	−0.3 ~ 7.0	٧	
5	FB Current	IFB	-200	μΑ	
6	Output Peak Current	IDP	2.0 (※1)	Α	※1: IDP is guaranteed at
7	Junction Temperature	Тj	150	°C	the pulse width narrower than MIN(PW).
8	Storage Temperature	Tstg	−55 ~ +150	°C	11 (1 11 / .

B. RECOMMENDED OPERATING CONDITIONS

NO.	Item	Symbol	Ratings	Unit	Note
1	Junction Temperature	Тj	−40 ~ +125	°C	

Established: 2012-12-04 Revised: 2014-01-09 Doc No. TD4-EA-01829 Revision. 2

Panasonic

MIP5610MSSCF

C. ELECTRICAL CHARACTERISTICS

[CONTROL FUNCTIONS]

Measure condition(Ta=25°C±3°C, Figure1)

*Design Guarantee Item, **Reference Item

[CON I	IRUL FUNCTIONS]	*Design G	uarantee Item, **Reference Item				
No.	Item	Symbol	Measure Condition (Figure 1)	Тур.	Min	Max	Unit
	VDD Start Voltage		VD=5 V, VFB=0 V				
1		VDD (ON)	,	6.0	5. 5	6. 5	٧
	VDD Stop Voltage		VD=5 V, VFB=0 V				
2	, -	VDD (UV)		5.0	4. 5	5. 5	٧
	Circuit Current before start		VDD=VDD (ON) -0. 1 V, VD=5 V				
3		IS1	VFB=VFB-Io-5 mV	0.57	0.37	0. 77	mΑ
	Circuit Current under switching		VDD=VDD (ON) +O. 1 V, VD=5 V				
4		IS2	VFB=VFB-Io-5 mV	0.72	0.47	0. 97	mA
	Maximum output frequency		VFB=VFB_hi+5 mV ※Figure3				
5		fPFM-hi	VD=5 V, VDD=VDD(ON)+0.1 V,	128. 5	120.8	_	kHz
	Minimum output frequency		VFB=VFB_lo-5 mV ※Figure3				
6		fPFM-lo	VD=5 V, VDD=VDD (ON) +0. 1 V,	19. 3	_	27	kHz
	Output frequency at skip mode		VD=5 V, VDD=VDD (ON) +0. 1 V,				
7		fskip	Ton <skip(pw),< td=""><td>13</td><td>9. 1</td><td>16. 9</td><td>kHz</td></skip(pw),<>	13	9. 1	16. 9	kHz
	Maximum on duty		VFB=VFB_hi+5 mV				
8	·	MAXDC	VD=5 V, VDD=VDD(ON)+0.1 V	70	63	77	%
**	Feedback pin reference voltage						
9		VFB-c	VFB-c=(VFB-hi + VFB-lo)/2	15	_	_	mV
**	FB voltage at fPFM-hi						
10	_	VFB-hi		25	_	_	mV
**	FB voltage at fPFM-lo						
11	_	VFB-1o		5	_	_	mV
**	Gain of fosc-VFB		GainFB=(fPFM-hi - fPFM-lo)/(VFB-hi - VFB-lo)				
12		GainFB		5. 46	_	_	kHz/m\
**	The feedback dummy maximum current						
13		IFBdm(max)		-100	_	_	μA
	Output current accuracy		-(VFB-c + 3.15 × IFBdm(max))/300 × 100 -100				
14		Ιο		_	-3. 5	3. 5	%

Established: 2012-12-04 Revised: 2014-01-09 Doc No. TD4-EA-01829 Revision. 2

Panasonic

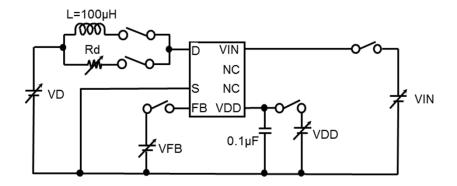
MIP5610MSSCF

[PRO	TECT FUNCTION]	*Design G	uarantee Item, **Reference Item				
No.	Item	Symbol	Measure Condition (Figure 1)	Тур.	Min	Max	Unit
	Maximum Peak Current Limit		VDD=VDD(ON)+0.1 V, VFB=VFB-Io-30 mV				
15		ILIMITmax	Duty=30 % ※Figure2	0.4	0.364	0.436	Α
	Power-up Reset Threshold Voltage						
16		VDDrst		2. 6	1.6	3.6	٧
	VDD latch stop voltage		ON→0FF				
17		VDD (OV)	VD=5 V, VFB=0 V	7. 4	6.4	8. 4	٧
	VDD latch stop current		ON→0FF				
18		IDD (OV)	VD=5 V, VFB=0 V	3. 7	2. 2	5. 2	mA
	VFB latch stop voltage		ON→0FF				
19		VFB (0V)	VD=5 V, VDD=VDD (ON) +0. 1 V	3. 5	3. 0	4. 0	٧
**	Leading Edge Blanking Delay						
20		ton (BLK)		200	_	_	ns
**	Peak Current Limit Delay						
21		td (OCL)		200	_	_	ns
	Minimum on-pulse width		VIN=50 V, VD=35 V				
22		MIN(PW)		320	_	440	ns
	Skip detect on-pulse width		VIN=50 V, VD=35 V				
23		Skip(PW)		450	_	570	ns
*	Thermal Shutdown Junction						
24	Temperature	TOTPJ		140	130	150	ွပ
*	Thermal Shutdown Hysteresis						
25		TOTP. Ihvs		70	_	_	°C

Established: 2012-12-04 Revised: 2014-01-09

Panasonic

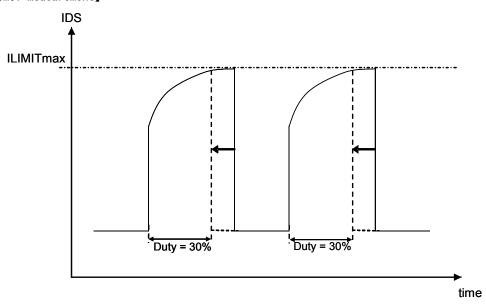
MIP5610MSSCF

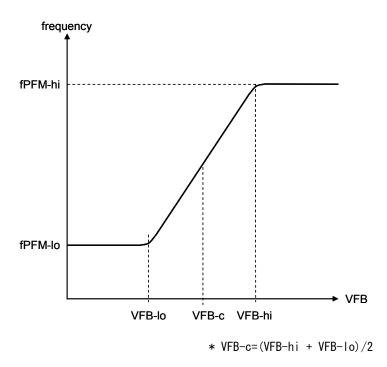

【OUTI	PUT】	*Design G	uarantee Item, **Reference Item				
No.	Item	Symbol	Measure Condition (Figure 1)	Тур.	Min	Max	Unit
	ON-State Resistance		VDD=VDD (ON) +0. 1 V				
26		RDS (ON)	IDS=300 mA	6. 9	_	8. 6	Ω
	OFF-State leakage Current of DRAIN Pin		VDD=VDD (ON) +0. 1 V, VFB= 4 V				
27		IDSS	VD=630 V	1.0	_	10	μ A
	Breakdown Voltage of DRAIN Pin		VDD=VDD (ON) +0. 1 V, VFB= 4 V				
28		VDSS	IDS=20 μ A	_	700	_	٧
**	Rise Time		VDD=VDD (ON) +0. 1 VIN=50 V				
29		tr	VD=5 V ※Figure4	80	_	_	ns
**	Fall Time		VDD=VDD (ON) +0. 1 VIN=50 V				
30		tf	VD=5 V ※Figure4	25	_	_	ns

[HIGH VOLTAGE INPUT]

TIII MII	I VOLIMAL INI OIZ						
	OFF-State leakage Current of VIN Pin		VDD=VDD (ON) +0. 1 V, VFB= 4 V				
31		IIN (LEAK)	VIN=500 V	48	_	80	μA
	Breakdown Voltage of VIN Pin		VDD=VDD (0N) +0. 1 V, VFB= 4 V				
32		BVVIN	IIN=100 μA	_	550	1	٧
	VDD Charging Current 1		VIN=40 V, VDD=0 V, FB: open				
33		CHRG10		-10.6	-15. 9	-5.3	mA
	VDD Charging Current 2		VIN=40 V, VDD=5 V, FB: open				
34		CHRG15		-7. 2	-10.8	-3.6	mA
	VIN start Voltage		VDD: open, VD=5 V				
35		VIN(MIN)		10	_	20	٧

[Figure1 : Measure circuit]

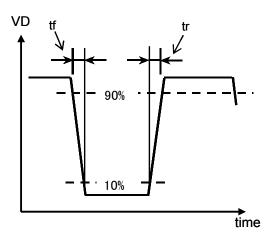

 $\ensuremath{\mbox{\ensuremath{\mbox{\sc MThe}}}\xspace}$ the characteristic is measured by a SORCE pin as a reference pin.


Panasonic

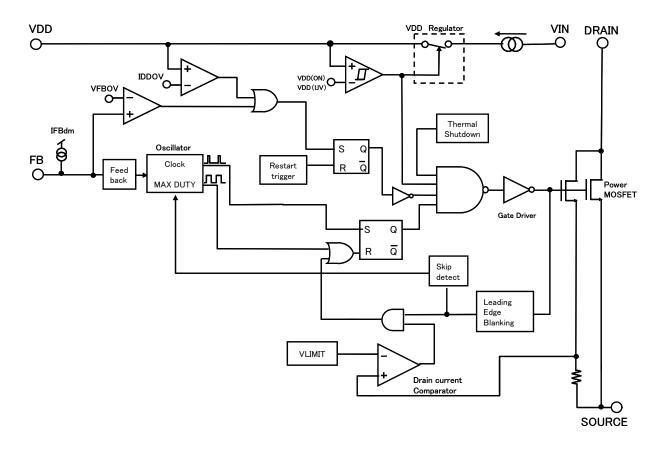
MIP5610MSSCF

[Figure2 : ILIMIT measurement]

[Figure3: frequency vs VFB characteristic]



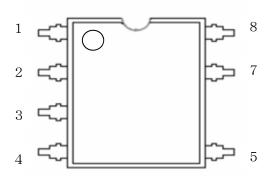
Doc No. TD4-EA-01829 Revision. 2


Panasonic

MIP5610MSSCF

[Figure4:tr, tf characteristic]

[Figure5:Block Diagram]


Doc No. TD4-EA-01829

Revision. 2

Panasonic

MIP5610MSSCF

[Figure6: Pin Layout]

Pin No.	Terminal Name
1	VDD
2	NC
3	NC
4	VIN
5	Drain
6	_
7	Source
8	FB

[Precautions for Use 1]

Connect a ceramic capacitor with value $>0.1 \mu$ F between VDD pin and SOURCE.

[Precautions for Use 2]

The IPD has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use. Fuse should be added at the input side or connect zener diode between control pin and GND, etc as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.

- (1) DRAIN pin short to low voltage pin (VDD, FB).
- (2) VIN pin short to low voltage pin (VDD, FB).
- (3) VIN pin short to DRAIN pin under switching.
- (4) DRAIN pin short to SOURCE pin.
- (5) DRAIN Pin and VDD Pin reversely connect into power board.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation, Nuvoton Technology Corporation Japan or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
 - Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

No.070920

单击下面可查看定价,库存,交付和生命周期等信息

>>Panasonic(松下)