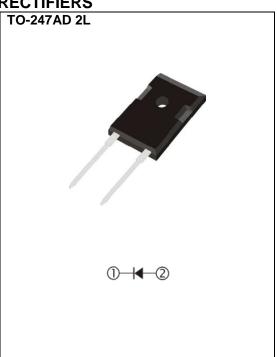


PLANAR STRUCTURED SUPERFAST RECOVERY RECTIFIERS

Voltage

600 V

Current


30 A

Features

- Planar structure with EPI wafer
- Hyperfast recovery time, reduced Qrr and soft recovery
- Low leakage current
- Plastic package has Underwriters Laboratory
 Flammability Classification 94V-O
 Flame Retardant Epoxy Molding Compound
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data

- Case: TO-247AD 2L molded plastic
- Terminals: Solderable per MIL-STD-750, Method 2026
- Approx. Weight: 0.183 ounces, 5.175 grams

Maximum Ratings and Thermal Characteristics (T_A = 25°C unless otherwise noted)

PARAMETER	SYMBOL	LIMIT	UNITS
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	600	V
Maximum RMS Voltage	V _{RMS}	420	V
Maximum DC Blocking Voltage	V_{DC}	600	V
Maximum Average Forward Rectified Current	I _{F(AV)}	30	Α
Peak Forward Surge Current: 8.3 ms Single Half Sine- Wave Superimposed On Rated Load	I _{FSM}	320	А
Non-Repetitive Avalanche Energy (L=40mH)	Eas	320	mJ
Typical Thermal Resistance	R ₀ JC ⁽¹⁾	1.5	°C/W
Operating Junction Temperature Range	TJ	-55~175	°C
Storage Temperature Range	T _{STG}	-55~175	°C

Electrical Characteristics (T_A = 25°C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Instantaneous Forward Voltage	VF	I _F = 1 A, T _J = 25 °C	-	0.82	-	- V
		I _F = 8 A, T _J = 25 °C	-	1.35	-	
		I _F = 30 A, T _J = 25 °C	-	1.92	2.4	
		I _F = 1 A, T _J = 125 °C	-	0.58	-	
		I _F = 8 A, T _J = 125 °C	-	0.98	-	
		I _F = 30 A, T _J = 125 °C	-	1.48	-	
Reverse Current		V _R = 600 V, T _J = 25 °C		-	5	uA
	I _R	V _R = 600 V, T _J = 125 °C	-	21	-	
Reverse Recovery Time		I _F = 0.5 A, I _R = 1 A,	-	-	65	ns
		I _{RR} = 0.25 A, T _J = 25 °C				
	T _{RR}	$I_F = 1 \text{ A}, V_R = 30 \text{ V},$			40	
		di/dt = 100 A/us,	-	-		
		T _J = 25 °C				
		$I_F = 30 \text{ A}, V_R = 400 \text{ V},$		0.4		
		di/dt = 200 A/us,	-	61		
		T _J = 25 °C				
Peak Recovery Current		$I_F = 30 \text{ A}, V_R = 400 \text{ V},$		0.7		
		di/dt = 200 A/us,	-	2.7	-	
Reverse Recovery Charge	Qrr	T _J = 25 °C	- 8			nC
		$I_F = 30 \text{ A}, V_R = 400 \text{ V},$		81	-	
		di/dt = 200 A/us,				
		T _J = 25 °C				
Softness Factor = t _b / t _a	S	$I_F = 30 \text{ A}, V_R = 400 \text{ V},$	- 1.58		-	-
		di/dt = 200 A/us,		1.58		
		T _J = 25 °C				
		$I_F = 30 \text{ A}, V_R = 400 \text{ V},$	- 0.36		6 -	-
		di/dt = 200 A/us,		0.36		
		T _J = 125 °C				

NOTES:

1. Device mounted on a infinite heatsink, then measured the center of the marking side.

TYPICAL CHARACTERISTIC CURVES

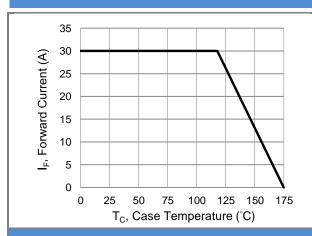


Fig.1 Forward Current Derating Curve

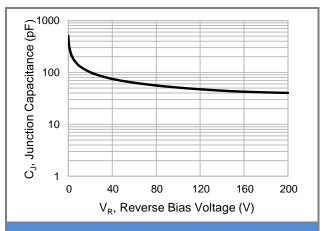


Fig.2 Typical Junction Capacitance

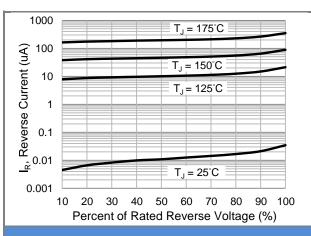


Fig.3 Typical Reverse Characteristics

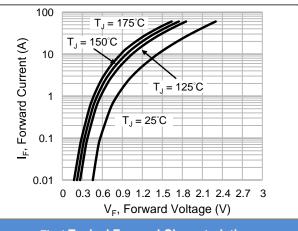


Fig.4 Typical Forward Characteristics

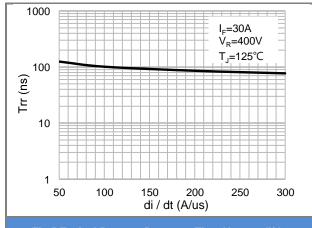


Fig.5 Typical Reverse Recovery Time Versus di/dt

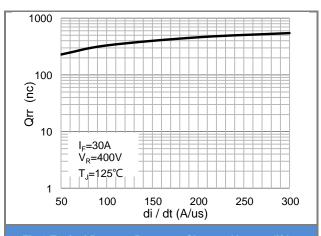
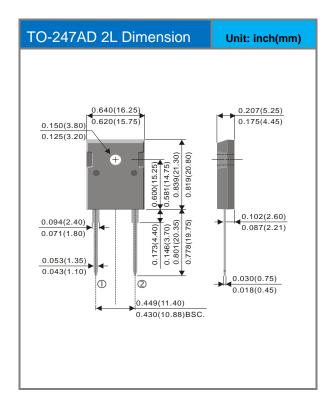


Fig.6 Typical Reverse Recovery Charges Versus di/dt



Part No Packing Code Version

Part No Packing Code	Package Type	Packing Type	Marking	Version
QRT3006P_T0_00001	TO-247AD 2L	30pcs / Tube	30A06	Halogen free

Packaging Information & Mounting Pad Layout

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.

单击下面可查看定价,库存,交付和生命周期等信息

>>Panjit(强茂)