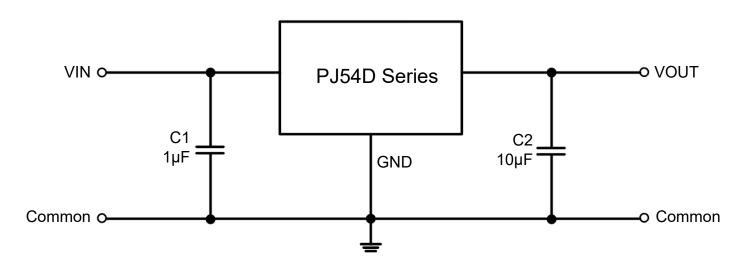


Description

The PJ54D Series is a high input voltage, low quiescent current, low-dropout linear regulator able to provide 300mA load current.

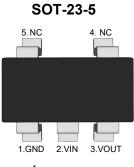
The LDO features very fast response against line voltage transient and load current transient, and ensures no overshoot voltage during the LDO start up and short circuit recovery.

The device features integrated short-circuit and thermal shutdown protection.


Features

- Low Quiescent Current: 2.1uA
- High Input Voltage Rating: Up to 55V
- Maximum Output Current: 350mA
- Low Dropout : 350mV @ 100mA
- High PSRR: 85dB at 1KHz
- Fixed Output Voltages: 1.8V,3V,3.3V,5V
- Fast Transient Response
- Current Limiting Protection
- Thermal Shutdown Protection
- Available Packages: SOT-23-5

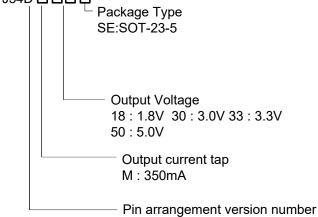
Applications


- Battery-Powered Equipment
- Smoke Detector and Sensor
- Micro Controller Applications

Typical Application Circuit

Pin Distribution

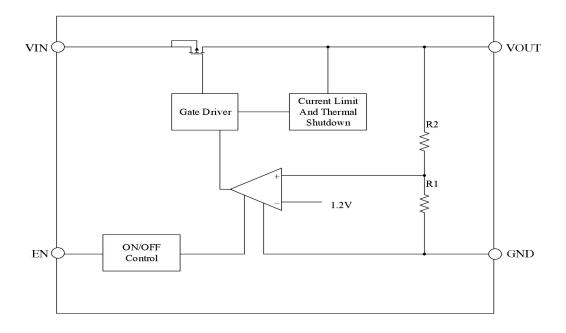
(Top View)


Functional Pin Description

Pin Name	Pin Function		
NC	NO Connected		
GND	Ground		
VOUT	Output Voltage		
VIN	Power Input Voltage		

Ordering Information

PJ54D 🗆 🗖 🗖 🗖


Orderable Device	Package	Reel (inch)	Package Qty (PCS)	Eco Plan ^{Note}	MSL Level	Marking Code	
PJ54DM18SE	SOT-23-5	7	3000	RoHS & Green	MSL3		
PJ54DM30SE						54XXED	
PJ54DM33SE							
PJ54DM50SE						XX:Output Voltage e.g. 30:3.0V	

Note:

RoHS: PJ defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Green: PJ defines "Green" to mean Halogen-Free and Antimony-Free.

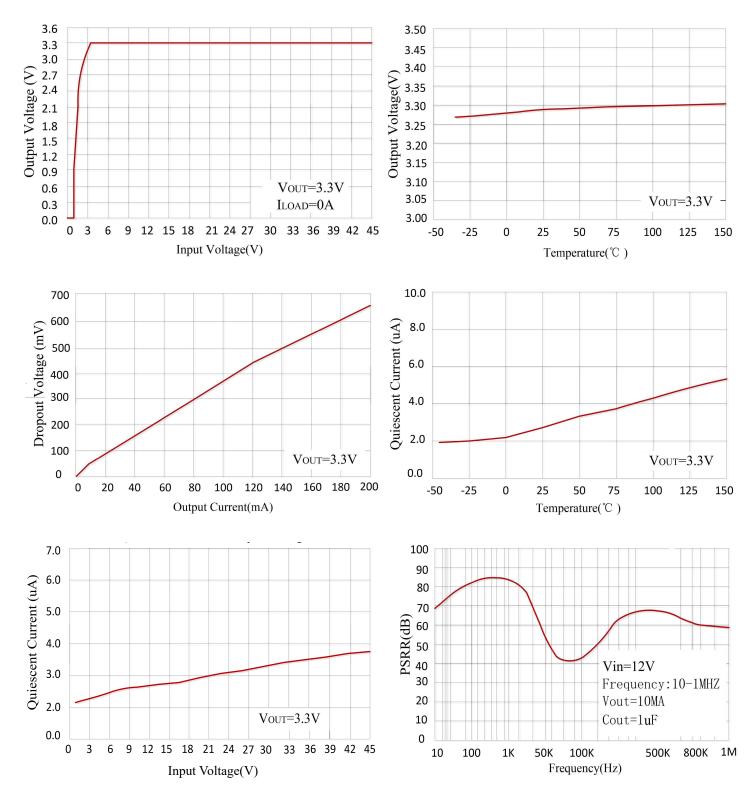
Function Block Diagram

Absolute Maximum Ratings

Ratings at 25°C ambient temperature unless otherwise specified.

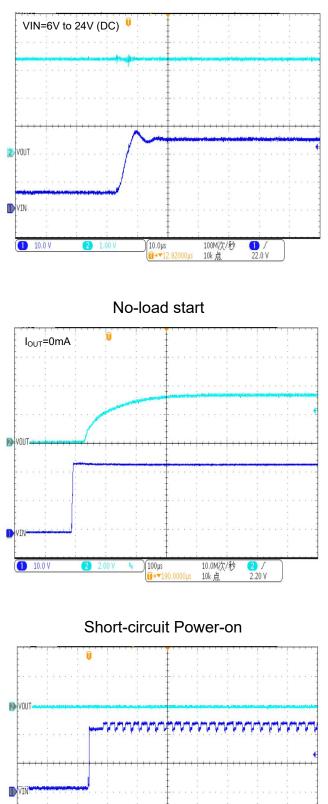
Parameter	Value	Unit
VIN to GND Voltage	-0.3 ~ +55	V
VOUT to GND Voltage	-0.3 ~ +6	V
VOUT to VIN Voltage	-55 ~ +0.3	V
EN to GND Voltage	-0.3 ~ +55	V
Output Current	Internally limited	
Power Dissipation	400	mW
Thermal Resistance, Junction-to-Ambient	300	°C/W
Operating Ambient Temperature	-40 ~ +85	°C
Junction temperature	150	°C
Storage temperature range	-40 ~ +150	°C
ESD(HBM)	4	KV

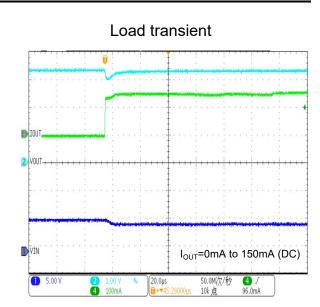
Electrical Characteristics

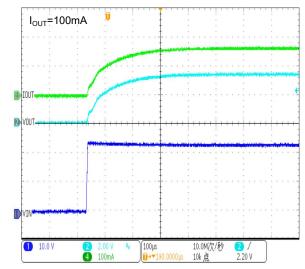

(V_IN=V_OUT+1, C_IN=1 \mu F, C_OUT=10 \mu F, T_A=25 ^{\circ}C , unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input Voltage	V _{IN}		3		45	V
Output Voltage Accuracy	ΔVουτ	V _{IN} =12V, I _{OUT} =10mA	-2		+2	%
Quiescent Current	ΙQ	V _{IN} =12V, I _{OUT} =0mA		2.1		μA
Maximum Output Current	I _{OUT_Max}		300	350		mA
Dropout Voltage	V _{DROP}	V _{IN} =V _{OUTNOM} -0.1V, I _{OUT} =10mA		35		mV
		VIN=VOUTNOM-0.1V, IOUT=100mA		350		
Line Regulation	ΔV_{LINE}	V _{OUTNOM} +0.5V≤V _{IN} ≤40V I _{OUT} =1mA		0.01		%/V
Load Regulation	ΔV_{LOAD}	V _{IN} =12V, 1mA <i<sub>OUT<100mA</i<sub>		0.02		%/mA
Current Limit	I _{LIM}			500		mA
Current Limit	Vih		1			V
Power Supply Rejection Ratio	PSRR	V _{IN} =12V,I _{OUT} =10mA f=1KHz,V _{OUT} =3.3V		85		dB
Thermal Shutdown Temperature	T _{SHDN}	Shutdown, Temp increasing		150		°C
Thermal Reset Temperature	T _{SHDN}	Reset, Temp increasing		140		°C

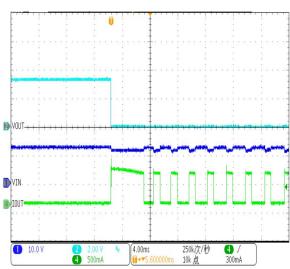
Typical Characteristic Curves


Test Condition: $T_A=25^{\circ}C$, lout=1mA, $C_{OUT}=10uF$, unless otherwise noted




PJ54D Series Low Dropout Regulators

Line transient



Start with load

Power-on short

4 500m/

10.0ms

100k次/秒 10k点

1 ∫ 6.40 V

IOUT

5.00 \

Functional Description

Input Capacitor

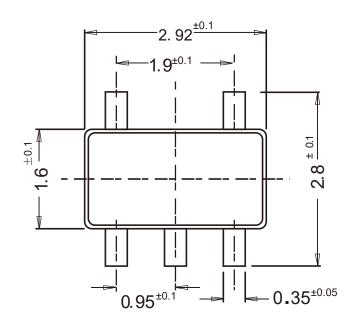
A 1µF ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

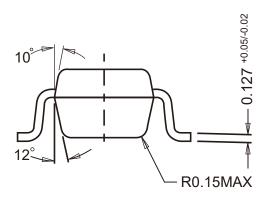
Output Capacitor

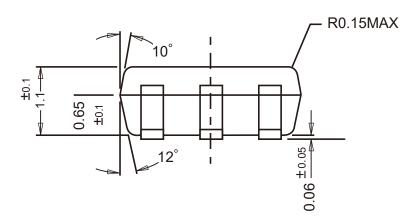
An output capacitor is required for the stability of the LDO. The recommended minimum output capacitance is 10µF, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

Current Limit and Short Circuit Protection

When output current at VOUT pin is higher than current limit threshold or the VOUT pin is direct short to GND, the current limit protection will be triggered and clamp the output current at a pre-designed level to prevent over-current and thermal damage.


Thermal Protection


The PJ54D Series has internal thermal sense and protection circuits. When excessive power dissipation happens on the device, such as short circuit at the output pin or very heavy load current with a large voltage drop across the device, the internal thermal protection circuit will be triggered, and it will shut down the power MOSFET to prevent the LDO from damage. As soon as excessive thermal condition is removed and the temperature of the device drops down, the thermal protection circuit will lease the control of the power MOSFET, and the LDO device goes to normal operation.



Package Outline

SOT-23-5 Dimensions in mm

单击下面可查看定价,库存,交付和生命周期等信息

>>PJSEMI (平晶微)