Qualcom

RF360 Europe GmbH

SAW components

Micro-acoustic extractor WLAN 2G

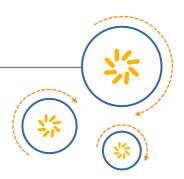
Series/type:	B1224
Ordering code:	B39242B1224L210

Date:January 30, 2018Version:2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.


Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

SAW components

Micro-acoustic extractor WLAN 2G

Series/type:	B1224
Ordering code:	B39242B1224L210

Date:January 30, 2018Version:2.0

RF360 products mentioned within this document are offered by RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2018 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

Micro-acoustic extractor

Data sheet

B1224

1427 - 2690 MHz

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm and Qualcomm RF360 are trademarks of Qualcomm Incorporated, registered in the United States and other countries. RF360 is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

1427 - 2690 MHz

B1224

SAW components

Micro-acoustic extractor

Data sheet

Table of contents

1 Application	4
2 Features	4
3 Package	5
4 Pin configuration	5
5 Matching circuit	6
6 Characteristics ANT-WLAN	7
7 Characteristics ANT-CELL	8
8 Characteristics CELL-WLAN	9
9 Maximum ratings	
10 Transmission coefficient ANT-WLAN	11
11 Reflection coefficients ANT-WLAN	
12 Transmission coefficient ANT-CELL	
13 Reflection coefficients ANT-CELL	14
14 Transmission coefficient CELL-WLAN	
15 Packing material	
16 Marking	
17 Soldering profile	21
18 Annotations	
19 Cautions and warnings	23
Important notes.	24

Micro-acoustic extractor

Data sheet

1 Application

- High-performance WLAN Extractor with single ended 50 Ω ports.
- Ultra-low-loss acoustic structure.
- Full band 7 coexistence.
- Advanced highly-integrated multiplexer structure (no external matching needed).
- Using common antenna for WLAN and Cellular bands.
- Placed between antenna and cellular front-end switches and filters.
- Usable WLAN pass band: 2402.0 2481.5 MHz.
- Usable CELL pass band: 1427 2690 MHz.
- No switches and control lines required.

2 Features

- Package size 1.7 mm × 1.3 mm
- Package height 0.6 mm
- Approximate weight 4 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals

Please read Cautions and warnings and

Important notes at the end of this document.

- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

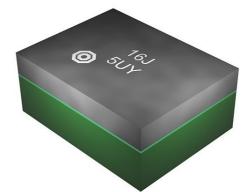
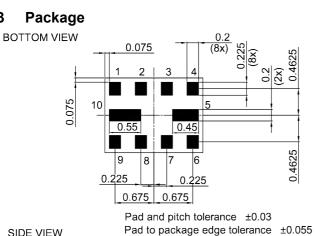


Figure 1: Picture of component with example of product marking.


1427 - 2690 MHz

B1224

Micro-acoustic extractor

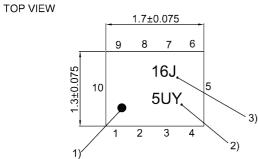
Data sheet

3

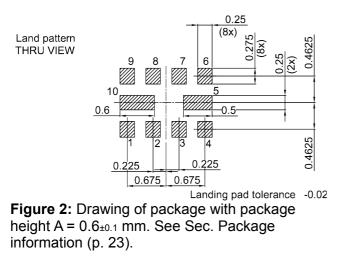
Pin configuration

- WLAN 1 CELL 4
- **7**, 8 ANT
- **■** 2, 3, 5, 6, Ground 9, 10

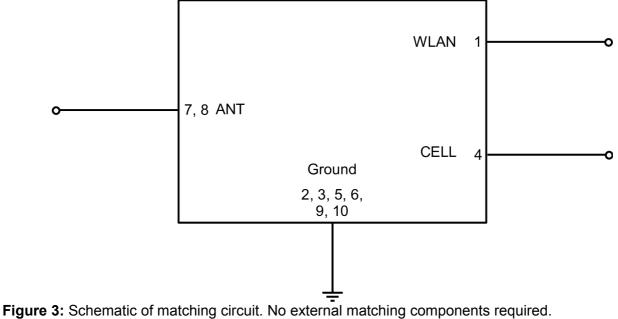
(pins 7 and 8 connected on PCB level)


UALCO

B1224


1427 - 2690 MHz

SIDE VIEW


- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Micro-acoustic extractor

Data sheet

5 Matching circuit

Antenna pins 7 and 8 have to be directly connected together on PCB level.

B1224

Micro-acoustic extractor

Data sheet

6 Characteristics ANT-WLAN

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
ANT terminating impedance	Z _{ANT}	= 50 Ω
CELL terminating impedance	Z _{CELL}	= 50 Ω
WLAN terminating impedance	Z _{WLAN}	= 50 Ω

Characteristics ANT-WLAN

				for $T_{\rm SPEC}$	@ +25 °C	for T_{SPEC}	
Insertion attenuation ¹⁾			α				
Channel 1	2403.1 2420.9	MHz		—	1.5	2.2 ²⁾	dB
Channel 2	2408.1 2425.9	MHz		—	1.3	2.0	dB
Channel 3	2413.1 2430.9	MHz		_	1.2	2.0	dB
Channel 4-10	2418.1 2465.9	MHz		—	1.1	2.0	dB
Channel 11	2453.1 2470.9	MHz		—	1.1	2.0	dB
Channel 12	2458.1 2475.9	MHz		—	1.2	2.0	dB
Channel 13	2463.1 2480.9	MHz		—	1.4	2.2 ³⁾	dB
VSWR			VSWR				
Channel 1-12 @ ANT port	2403.1 2475.9	MHz		—	1.5	2.3	
Channel 13 @ ANT port	2463.1 2480.9	MHz		—	1.6	2.4 ³⁾	
Channel 1-12 @ WLAN port	2403.1 2475.9	MHz		—	1.4	2.3	
Channel 13 @ WLAN port	2463.1 2480.9	MHz		—	1.6	2.4 ³⁾	
Attenuation			α				
	1427 1510	MHz		28	32		dB
	1559 1606	MHz		29	32	—	dB
	1710 2025	MHz		30	33	_	dB
	2110 2200	MHz		32	36	_	dB
	2300 2370	MHz	4)	34	37	_	dB
	2500 2505	MHz	4)	27 ²⁾	38	_	dB
	2505 2550	MHz	4)	32	38	_	dB
	2550 2690	MHz		35	37	—	dB
	4804 4963	MHz		15	28	_	dB
	4963 5805	MHz		10	17	—	dB

¹⁾ Average over each WLAN channel with band width of 17.8 MHz.

²⁾ +25°C to +85°C.

³⁾ -30°C to +25°C.

⁴⁾ Average over any 5 MHz.

min. typ. max.

B1224

Micro-acoustic extractor

Data sheet

7 Characteristics ANT-CELL

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
ANT terminating impedance	Z _{ANT}	= 50 Ω
CELL terminating impedance	Z _{CELL}	= 50 Ω
WLAN terminating impedance	Z _{WLAN}	= 50 Ω

Characteristics ANT-CELL				$\begin{array}{c} \text{min.} \\ \text{for } \mathcal{T}_{_{\mathrm{SPEC}}} \end{array}$	typ. @ +25 °C	max. for T _{SPEC}	
Insertion attenuation			α				
	1427 1510	MHz		_	0.6	1.0	dB
	1559 1615	MHz		_	0.5	1.0	dB
	1710 2025	MHz		—	0.5	1.0	dB
	2110 2170	MHz			0.7	1.2	dB
	2300 2365	MHz	1)	_	1.2	1.9	dB
	2365 2370	MHz	1)	_	1.4	2.1 ²⁾	dB
	2500 2550	MHz	1)	—	0.6	1.3	dB
	2550 2690	MHz		_	0.7	1.1	dB
Attenuation ³⁾			α				
Channel 1-12	2403.1 2475.9	MHz		10	16	_	dB
Channel 13	2463.1 2480.9	MHz		10 ²⁾	16	_	dB
VSWR			VSWR				
@ ANT port	1427 1510	MHz		—	1.7	2.0	
	1559 1615	MHz		—	1.6	2.0	
	1710 2200	MHz		—	1.5	2.0	
	2300 2370	MHz		—	1.2	2.0	
	2500 2550	MHz		—	1.2	2.0	
	2550 2690	MHz		_	1.3	2.0	
@ CELL port	1427 1510	MHz		_	1.7	2.0	
	1559 1615	MHz		_	1.6	2.0	
	1710 2200	MHz		—	1.5	2.0	
	2300 2370	MHz		—	1.2	2.0	
	2500 2550	MHz		—	1.2	2.0	
	2550 2690	MHz		_	1.3	2.0	

¹⁾ Average over any 5 MHz.

²⁾ -30°C to +25°C.

³⁾ Average over each WLAN channel with band width of 17.8 MHz.

B1224

Micro-acoustic extractor

Data sheet

8 Characteristics CELL-WLAN

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
ANT terminating impedance	Z _{ANT}	= 50 Ω
CELL terminating impedance	Z _{CELL}	= 50 Ω
WLAN terminating impedance	Z _{WLAN}	= 50 Ω

Characteristics CELL-WLAN		min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{_{\rm SPEC}}$	
Isolation	α				
1427 1510	MHz	28	31	—	dB
1559 1606	MHz	28	31	—	dB
1710 2025	MHz	29	32	—	dB
2110 2170	MHz	34	38	—	dB
2300 2370	MHz 1)	34	37	—	dB
2403.1 2480.9	MHz ²⁾	11	17	_	dB
2500 2505	MHz 1)	25 ³⁾	40	_	dB
2505 2550	MHz 1)	32	39	—	dB
2550 2690	MHz	37	40	—	dB

¹⁾ Average over any 5 MHz.

²⁾ Average over each WLAN channel with band width of 17.8 MHz.

³⁾ +25°C to +85°C.

B1224

Micro-acoustic extractor

B1224

1427 - 2690 MHz

UALCOMM

Data sheet

9 Maximum ratings

Storage temperature	$T_{\rm STG}^{3)} = -40 \ ^{\circ}{\rm C} \ +85 \ ^{\circ}{\rm C}^{1), 2)}$	
DC voltage	$ V_{\rm DC} = 5.0 \rm V (max.)^{4}$	
ESD voltage		
	$V_{\rm ESD}^{5}$ = 175 V (max.)	Machine model.
	$V_{\rm ESD}^{6)}$ = 250 V (max.)	Human body model.
	$V_{\rm ESD}^{(7)}$ = 700 V (max.)	Charged device model.
Input power	P _{IN}	
@ WLAN port: 2403.1 2480.9 MHz	24 dBm	17.8 MHz WLAN signal for 5000 h @ 55 °C.
@ CELL port: 1710 2370 MHz	26 dBm	Continuous wave for 5000 h @ 55 °C.
@ CELL port: 2500 2690 MHz	26 dBm	Continuous wave for 5000 h @ 55 °C.

¹⁾ Extended upper limit: 96h@125 acc. to IEC 60068-2-2-Bb;.

²⁾ Applicable only for components without tape and reel (unpacked).

³⁾ Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

⁴⁾ 168h Damp Heat Steady State acc. to IEC60068-2-67 Cy.

⁵⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

⁶⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

⁷⁾ According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses.

Micro-acoustic extractor

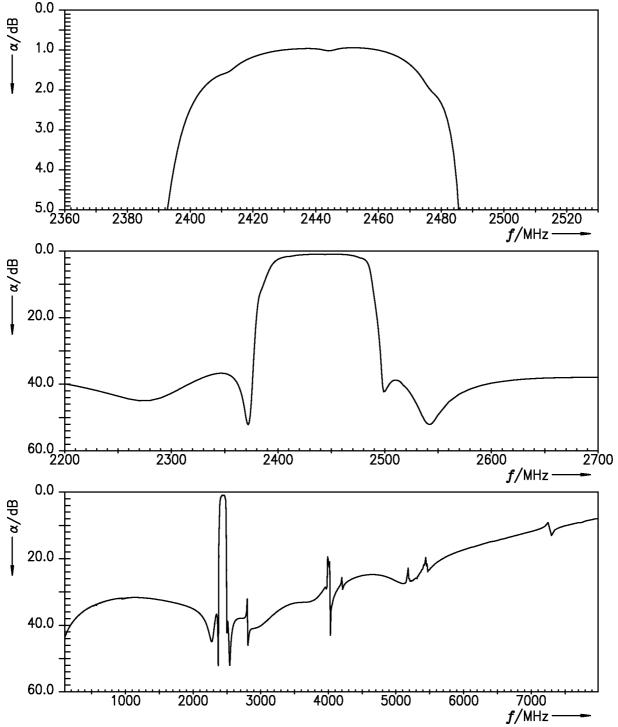
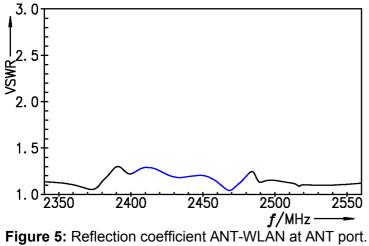
B1224

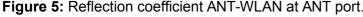
1427 - 2690 MHz

JUALCO/

Data sheet

10 Transmission coefficient ANT-WLAN


Figure 4: Attenuation ANT-WLAN.

Micro-acoustic extractor

Data sheet

11 Reflection coefficients ANT-WLAN

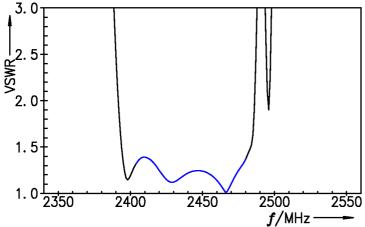
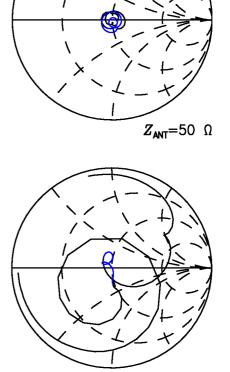
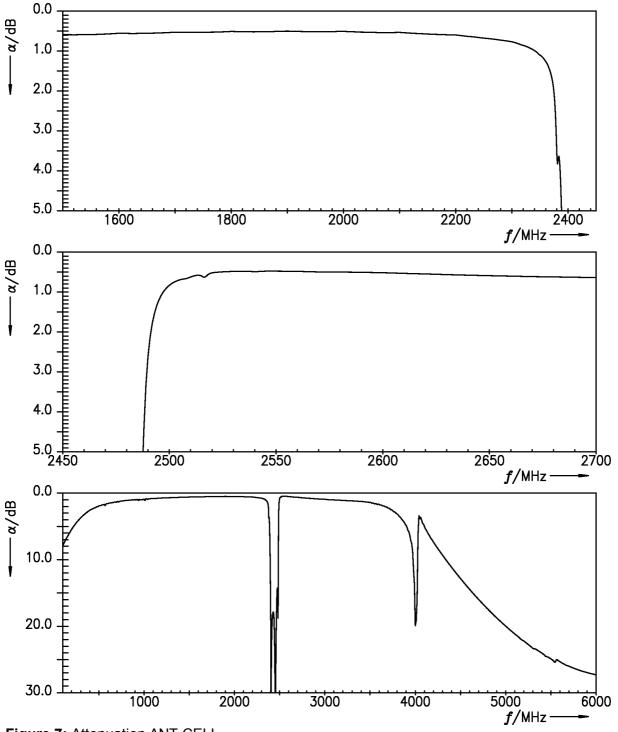
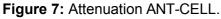



Figure 6: Reflection coefficient ANT-WLAN at TRX port.

 $Z_{\text{WLAN}}{=}50~\Omega$


JUALCO/


B1224

Micro-acoustic extractor

Data sheet

12 Transmission coefficient ANT-CELL

B1224

Micro-acoustic extractor

Data sheet

13 Reflection coefficients ANT-CELL

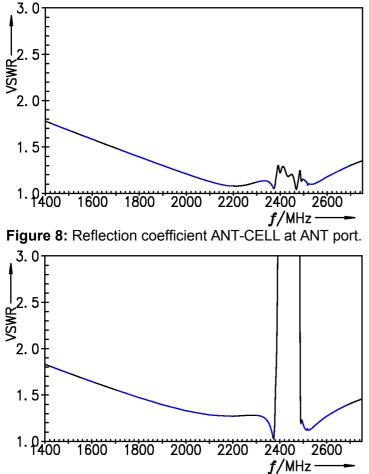
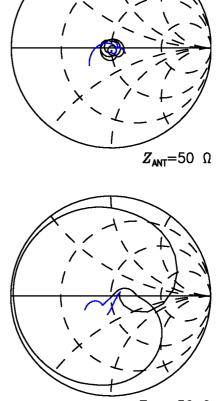



Figure 9: Reflection coefficient ANT-CELL at TRX port.

 $Z_{\text{CELL}}{=}50~\Omega$

B1224

Micro-acoustic extractor

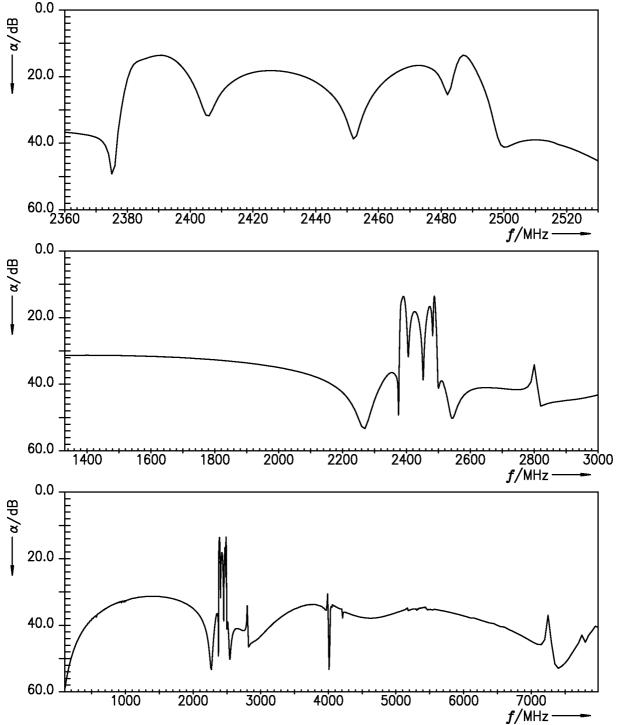
B1224

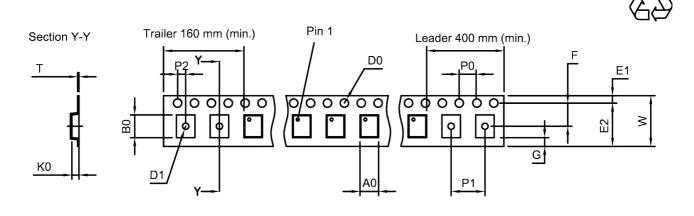
1427 - 2690 MHz

JUALCO

Data sheet

14 Transmission coefficient CELL-WLAN




Figure 10: Cross-isolation CELL-WLAN.

Micro-acoustic extractor

Data sheet

15 Packing material

15.1 Tape

User direction of unreeling

Figure 11: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	1.6±0.05 mm
B ₀	2.0±0.05 mm
D ₀	1.5+0.1/-0 mm
D ₁	0.8 mm (min.)
E ₁	1.75±0.1 mm

Table 1: Tape dimensions.

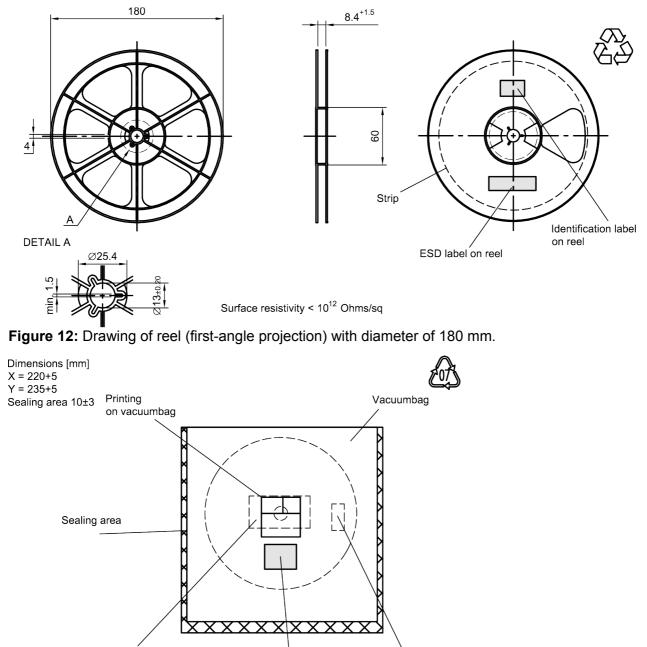
E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.8±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

B1224

1427 - 2690 MHz

Jalco


Micro-acoustic extractor

B1224

1427 - 2690 MHz

Data sheet

15.2 Reel with diameter of 180 mm

Drypack
in vacuumbagIdentification label
on vacuumbagHumidity indicator
in vaccumbagFigure 13: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

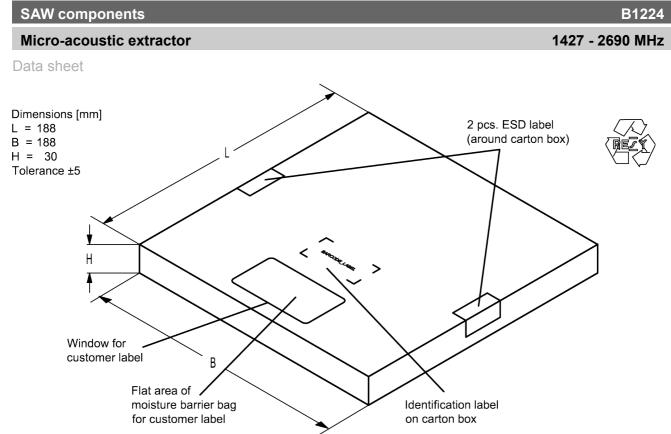
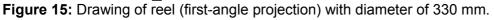



Figure 14: Drawing of folding box for reel with diameter of 180 mm.

15.3 Reel with diameter of 330 mm

Micro-acoustic extractor

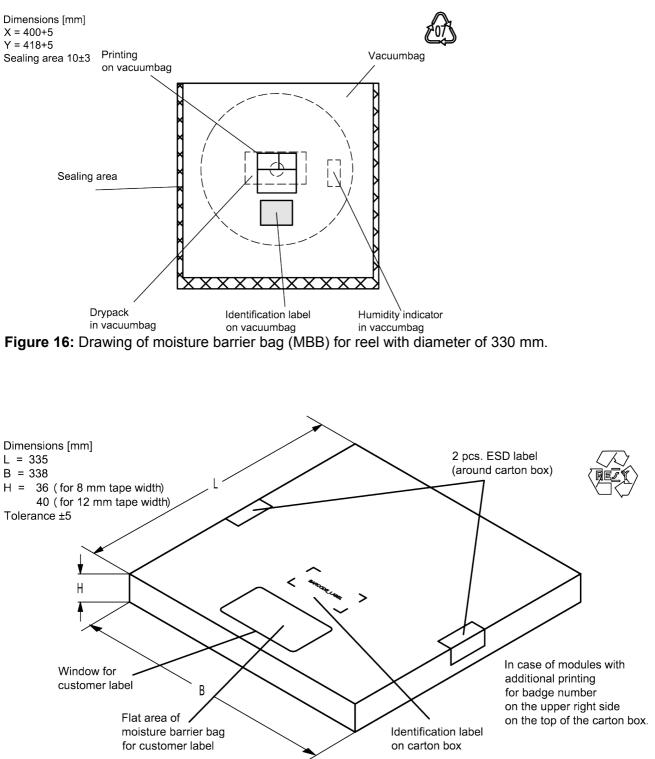


Figure 17: Drawing of folding box for reel with diameter of 330 mm.

1427 - 2690 MHz

B1224

The BAS		+ 6 x 32 ¹ + or product t	· · ·		=	
Lot numb	ber:					
	-	he lot numb on a specia		code int	o a 3 digit r	e.ę narki
Example	5UY	g lot numbe + 27 (=U) x	0		=>	
Adopte	d BASE32 co	ode for type r	number		Adopt	ed BA
Decimal value	Base32 code	Decimal value	Base32 code		Decimal value	Ba
0	0	16	G		0	
1	1	17	Н		1	

Micro-acoustic extractor

Data sheet

16 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, is encoded by a special BASE32 code into a 3	digit marking.	e.g., B3xxxxB <u>1234</u> xxxx,
Example of decoding type number marking	g on device	in decimal code.
16J	=>	1234
1 x 32 ² + 6 x 32 ¹ + 18 (=J) x 32 ⁰	=	1234
The BASE32 code for product type B1224 is 16	38.	
I ot number [.]		

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2

3

4

5

6

7

8

9

A

В

С

D

Е

F

Т g., king. а

J

Κ

Μ

Ν

Ρ

Q

R

S

Т V

W

Х

Y

Ζ

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Adopted BASE47 code for lot number			
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	X
7	7	31	Y
8	8	32	Z
9	9	33	b
10	A	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	К	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		

January 30, 2018

Table 2: Lists for encoding and decoding of marking.

Please read Cautions and warnings and	

12345,

in decimal code. 12345 12345

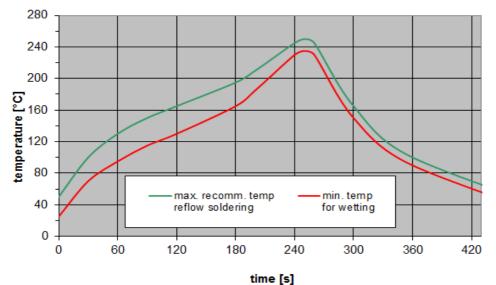
B1224

SAW components

Micro-acoustic extractor

B1224

1427 - 2690 MHz


Data sheet

17 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T _{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

 Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 18: Recommended reflow profile for convection and infrared soldering – lead-free solder.

Micro-acoustic extractor

Data sheet

18 Annotations

18.1 Matching coils

See TDK inductor pdf-catalog <u>http://www.tdk.co.jp/tefe02/coil.htm#aname1</u> and Data Library for circuit simulation <u>http://www.tdk.co.jp/etvcl/index.htm</u>.

18.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

18.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

18.4 Ordering codes and packing units

Ordering code	Packing unit
B39242B1224L210	9000 pcs
B39242B1224L210S 3	3000 pcs

Table 4: Ordering codes and packing units.

B1<u>224</u>

1427 - 2690 MHz

B1224

SAW components

Micro-acoustic extractor

Data sheet

19 Cautions and warnings

19.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under <u>www.rf360jv.com/orderingcodes</u>.

19.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

19.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

19.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.rf360jv.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>RF360 / Qualcomm