Qualcom

RF360 Europe GmbH

Data sheet

SAW duplexer Small cell & femtocell LTE band 66

Series/type:B8206Ordering code:B39222B8206P810

Date:September 03, 2019Version:2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Data sheet

SAW duplexer Small cell & femtocell LTE band 66

Series/type:	B8206
Ordering code:	B39222B8206P810
Date:	September 03, 2019

Version:

September 03, 2019 2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2019 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

SAW duplexer B8206 Data sheet

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

1 Application	
2 Features	
3 Package	5
4 Pin configuration	5
5 Matching circuit	
6 Characteristics	
7 Maximum ratings	
8 Transmission coefficients	
9 Reflection coefficients	
10 EVMs	
11 Group delay	
12 Packing material	
13 <u>Marking</u>	
14 Soldering profile.	
15 Annotations	
16 Cautions and warnings	
17 Important notes	

1 Application

- Low-loss SAW duplexer for 3G/LTE small cell & femtocell systems
- Usable pass band 70/90 MHz
- High power durability
- High isolation
- RX = Uplink = 1710 MHz 1780 MHz
- TX = Downlink = 2110 MHz 2200 MHz

2 Features

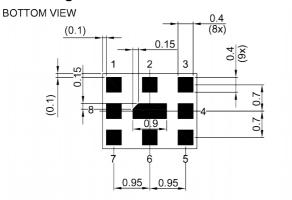
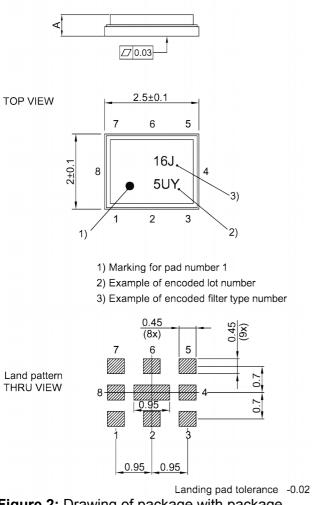
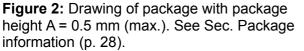

- Industrial grade qualified family
- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.5 mm (max.)
- Approximate weight 0.01 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 2a (MSL2a)

Figure 1: Picture of component with example of product marking.

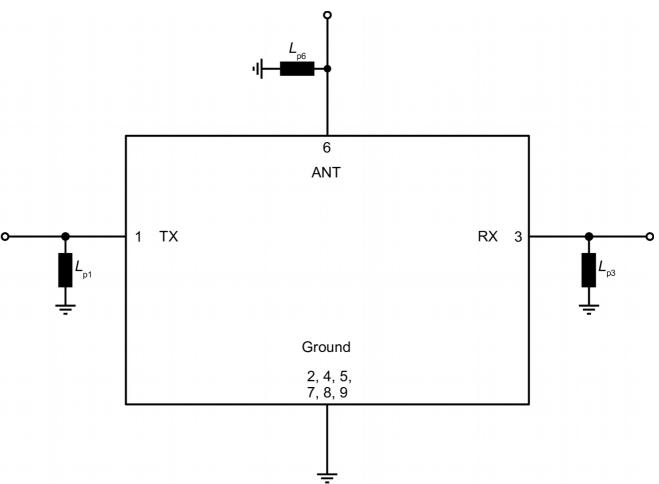
Qualcom

3 Package


Pad and pitch tolerance ±0.05


4 Pin configuration

■ 2, 4, 5, 7, Ground 8, 9


SIDE VIEW

5 Matching circuit

- *L*_{p1} = 5.5 nH
- *L*_{p3} = 9.7 nH

■ *L*_{p6} = 2.7 nH

Figure 3: Schematic of matching circuit.

6 Characteristics

Qualcom

6.1 TX – ANT

Temperature range for specification	$T_{_{\rm SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 5.5 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 2.7 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 9.7 nH ¹⁾

Characteristics TX – ANT				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for T _{SPEC}	
Center frequency			f _c		2155		MHz
Insertion attenuation			$\alpha_{_{INT}}^{^{2)}}$				
	2110 2115	MHz			2.4	2.8	dB
	2115 2195	MHz		—	2.2	2.6	dB
	2195 2200	MHz		—	2.1	2.8	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	2110 2200	MHz		_	2.5	3.0	dB
Amplitude ripple (p-p)			Δα				
	2110 2200	MHz		_	1.0	1.8	dB
Maximum group delay			$ au_{max}$				
	2112.5 2197.5	MHz		_	16	30	ns
Group delay ripple			$\Delta au_{ m var}$				
	2112.5 2197.5	MHz		_	7.0	20	ns
Maximum VSWR			VSWR _{max}				
@ TX port	2110 2200	MHz		_	1.6	2.0	
@ ANT port	2110 2200	MHz		_	1.5	2.0	
Maximum error vector magnitude			EVM _{max} ³⁾				
	2112.5 2197.5	MHz		_	0.7	2.4	%
Minimum attenuation			$\alpha_{_{min}}$				
	50 824	MHz		40	61	—	dB
	824 849	MHz		40	60	_	dB
	849 1710	MHz		40	50	_	dB
	1710 1780	MHz		48	51	_	dB
	1780 1850	MHz		30	47	—	dB
	1850 1910	MHz		38	41	—	dB
	1910 1990	MHz		35	37	—	dB
	1990 2065	MHz		30	37	—	dB
	2240 2400	MHz		20	46	_	dB
	2400 2483	MHz		40	43	—	dB
	2483 4600	MHz		28	32	_	dB
	4600 5150	MHz		20	29	—	dB
	5150 5850	MHz		20	28	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

³⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

Please read **Cautions and warnings** and **Important notes** at the end of this document.

Qualcomm

RF360 Europe GmbH A Qualcomm - TDK Joint Venture

Temperature range for specification	$T_{_{\rm SPEC}}$	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 5.5 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 2.7 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 9.7 nH ¹⁾

Characteristics TX – ANT				min. for T_{SPEC}	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Insertion attenuation			$\alpha_{\text{INT}}^{2)}$				
	2110 2115	MHz			2.4	3.0	dB
	2115 2195	MHz		_	2.2	2.8	dB
	2195 2200	MHz		_	2.1	3.0	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	2110 2200	MHz		_	2.5	3.3	dB
Amplitude ripple (p-p)			Δα				
	2110 2200	MHz		_	1.0	2.0	dB
Maximum group delay			$ au_{max}$				
	2112.5 2197.5	MHz		_	16	30	ns
Group delay ripple			$\Delta au_{ m var}$				
	2112.5 2197.5	MHz	vai	_	7.0	20	ns
Maximum VSWR			VSWR				
@ TX port	2110 2200	MHz	max	_	1.6	2.0	
@ ANT port	2110 2200	MHz		_	1.5	2.0	
Maximum error vector magnitude			EVM _{max} ³⁾				
	2112.5 2197.5	MHz	max	_	0.7	2.4	%
Minimum attenuation	2112.0		$\alpha_{_{min}}$		0.1		
	50 824	MHz	min	40	61	_	dB
	824 849	MHz		40	60		dB
	849 1710	MHz		40	50		dB
	1710 1780	MHz		48	51	_	dB
	1780 1850	MHz		30	47	_	dB
	1850 1910	MHz		38	41	_	dB
	1910 1990	MHz		35	37	_	dB
	1990 2065	MHz		28	37	_	dB
	2240 2400	MHz		14	46		dB
	2400 2483	MHz		40	43	_	dB
	2483 4600	MHz		28	32	_	dB
	4600 5150	MHz		20	29	_	dB
	5150 5850	MHz		20	28	_	dB

1)

See Sec. Matching circuit (p. 6). Integrated attenuation $\alpha_{_{INT}}$: Averaged power $|S_{_{ij}}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels. 2)

3) Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

6.2 ANT – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 5.5 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω // 2.7 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 9.7 nH ¹⁾

Characteristics ANT – RX				min. for $T_{_{\rm SPEC}}$	typ. @ +25 °C	max. for T _{SPEC}	
Center frequency			f _c		1745		MHz
Insertion attenuation			$\alpha_{_{INT}}^{^{2)}}$				
	1710 1715	MHz		_	1.6	2.8	dB
	1715 1775	MHz		_	1.8	2.6	dB
	1775 1780	MHz		—	1.9	2.8	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	1710 1780	MHz		—	2.0	3.0	dB
Amplitude ripple (p-p)			Δα				
	1710 1780	MHz		—	0.8	1.8	dB
Maximum group delay			$ au_{max}$				
	1712.5 1777.5	MHz			20	35	ns
Group delay ripple			$\Delta au_{ m var}$				
	1712.5 1777.5	MHz	Vai	_	9.0	25	ns
Maximum VSWR			VSWR _{max}				
@ ANT port	1710 1780	MHz	max		1.5	2.0	
@ RX port	1710 1780	MHz		_	1.6	2.0	
Maximum error vector magnitude			EVM _{max} ³⁾				
-	1712.5 1777.5	MHz	max		0.8	2.0	%
Minimum attenuation			α_{min}				
	50 869	MHz	min	40	60	_	dB
	869 894	MHz		40	59		dB
	894 1660	MHz		30	45	_	dB
	1660 1665	MHz		35	46	_	dB
	1665 1690	MHz		10	16	_	dB
	1800 1807	MHz		4	20		dB
	1807 1815	MHz		15	34	_	dB
	1815 1930	MHz		30	41		dB
	1930 1990	MHz		40	47	_	dB
	1990 2110	MHz		40	48	—	dB
	2110 2200	MHz		46	48	—	dB
	2200 2400	MHz		30	45	_	dB
	2400 2483	MHz		30	45	—	dB
	2483 5150	MHz		35	47	—	dB
	5150 5850	MHz		25	39	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Integrated attenuation α_{iNT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

Please read **Cautions and warnings** and **Important notes** at the end of this document.

Page 9 of 29

³⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

Qualconn

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Temperature range for specification	T _{SPEC}	= -40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 5.5 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 2.7 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 9.7 nH ¹⁾

Characteristics ANT – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for T _{SPEC}	
Insertion attenuation			$\alpha_{\text{INT}}^{2)}$				
	1710 1715	MHz		_	1.6	2.9	dB
	1715 1775	MHz		_	1.8	2.7	dB
	1775 1780	MHz		_	1.9	2.9	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	1710 1780	MHz		—	2.1	3.2	dB
Amplitude ripple (p-p)			Δα				
	1710 1780	MHz		_	0.7	2.3	dB
Maximum group delay			$ au_{max}$				
	1712.5 1777.5	MHz			20	40	ns
Group delay ripple			$\Delta au_{ m var}$				
	1712.5 1777.5	MHz		_	9.0	30	ns
Maximum VSWR			VSWR _{max}				
@ ANT port	1710 1780	MHz	max	_	1.5	2.1	
@ RX port	1710 1780	MHz			1.6	2.0	
Maximum error vector magnitude			EVM _{max} ³⁾				
	1712.5 1777.5	MHz	max	_	0.8	2.8	%
Minimum attenuation			$\alpha_{_{min}}$				
	50 869	MHz		40	60	_	dB
	869 894	MHz		40	59	_	dB
	894 1660	MHz		30	45	_	dB
	1660 1665	MHz		35	46	_	dB
	1665 1690	MHz		10	16	_	dB
	1803 1807	MHz		4	20	_	dB
	1807 1815	MHz		11	34	_	dB
	1815 1930	MHz		28	41	_	dB
	1930 1990	MHz		40	47	_	dB
	1990 2110	MHz		40	48	—	dB
	2110 2200	MHz		46	48	—	dB
	2200 2400	MHz		30	45	—	dB
	2400 2483	MHz		30	45	—	dB
	2483 5150	MHz		35	47	—	dB
	5150 5850	MHz		25	39	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

³⁾ Error Vector Magnitude (EVM) based on definition in 3GPP TS 25.141.

6.3 TX – RX

Temperature range for specification	$T_{_{ m SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 5.5 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 2.7 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 9.7 nH ¹⁾

Characteristics TX – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Isolation			$\alpha_{\rm INT}^{2)}$				
	1710 1780	MHz		50	54	_	dB
	1780 2110	MHz		48	50	_	dB
	2110 2200	MHz		50	53	_	dB
Minimum isolation			$\alpha_{_{min}}$				
	1710 1780	MHz		50	54	_	dB
	1780 2110	MHz		48	50	_	dB
	2110 2200	MHz		50	53	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

Temperature range for specification	$T_{_{ m SPEC}}$	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 5.5 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 2.7 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 9.7 nH ¹⁾

Characteristics TX – RX				$\begin{array}{c} {\rm min.} \\ {\rm for} \ {\rm T_{\rm SPEC}} \end{array}$	typ. @ +25 °C	max. for T _{SPEC}	
Isolation			$\alpha_{_{INT}}^{2)}$				
	1710 1780	MHz		50	54	—	dB
	1780 2110	MHz		48	50	—	dB
	2110 2200	MHz		50	53	—	dB
Minimum isolation			$\alpha_{_{min}}$				
	1710 1780	MHz		50	54	—	dB
	1780 2110	MHz		48	50	—	dB
	2110 2200	MHz		50	53	—	dB

1)

See Sec. Matching circuit (p. 6). Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels. 2)

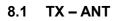
7 Maximum ratings

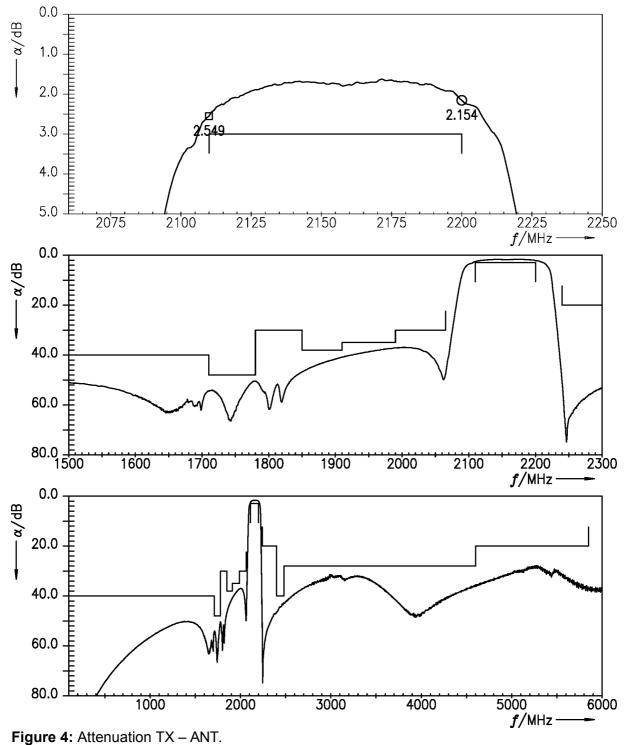
Operable temperature	T _{oP} = −40 °C +95 °C	
Storage temperature	$T_{\rm STG}^{1)} = -40 ^{\circ}{\rm C} \dots +95 ^{\circ}{\rm C}$	
DC voltage	$ V_{\rm DC} ^{2)} = 0 V$	
ESD voltage		
	V _{ESD} ³⁾ = 250 V	Human body model.
	V _{ESD} ⁴⁾ = 125 V	Machine model.
Input power @ TX port: 2110 2200 MHz	$P_{\rm IN} = 28 \rm dBm^{5), 6)}$	5 MHz LTE downlink signal (25 RB) for 100000 h @ 55 °C. P_{IN} average – 39 dBm
		peak. Source and load impedance 50Ω .

¹⁾ Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

²⁾ In case of applied DC voltage blocking capacitors are mandatory.

³⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.


⁴⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.


⁵⁾ Expected lifetime according to accelerated power durability test and wear out models.

⁶⁾ T_{SPEC} is the ambient temperature of the PCB at component position. Specified min./max values from section 6 "characteristics" for maximum input power 28 dBm are valid for temperature up to 55 °C.

8 Transmission coefficients

Qualcom

Qualcomm

8.2 ANT – RX

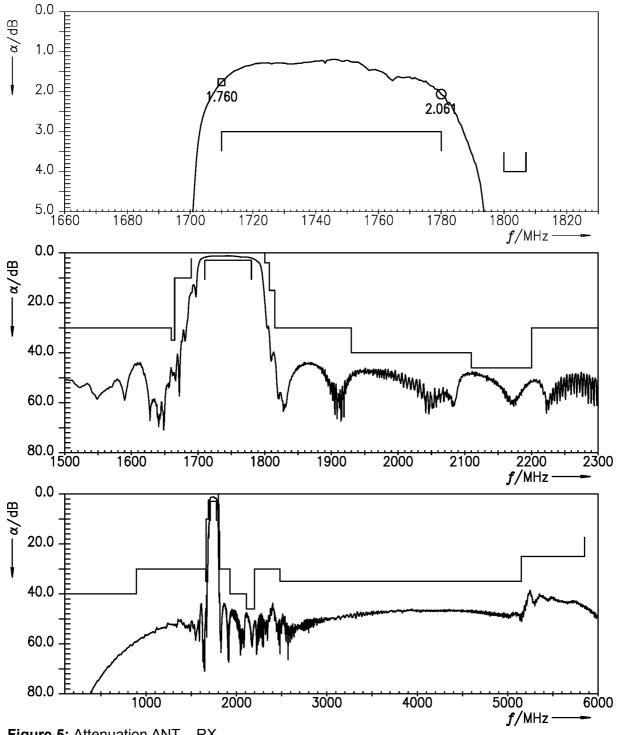
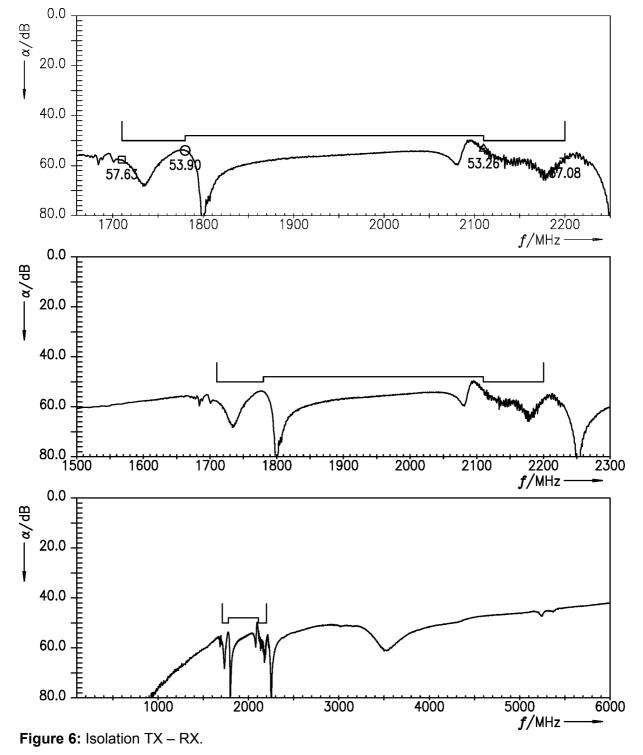
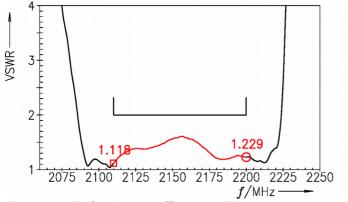
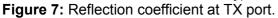



Figure 5: Attenuation ANT – RX.

Please read **Cautions and warnings** and **Important notes** at the end of this document.

Qualcom


8.3 TX – RX



□ = 2110.0 O = 2200.0

9 **Reflection coefficients**

Qualcom

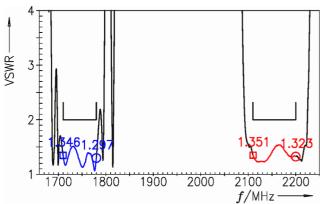


Figure 8: Reflection coefficient at ANT port.

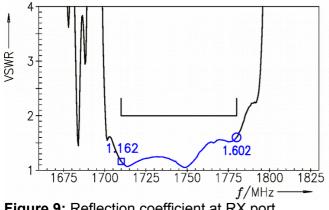
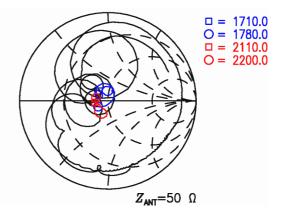
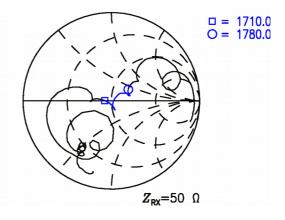




Figure 9: Reflection coefficient at RX port.

Z_{TX}=50 Ω

10 EVMs



Figure 10: Error vector magnitude TX – ANT.

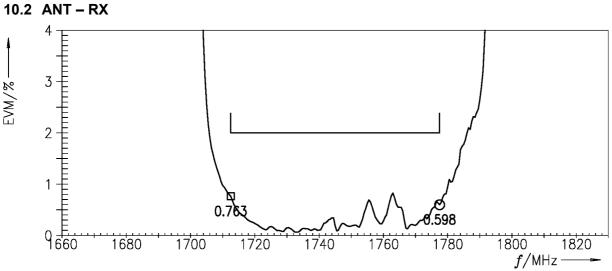
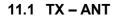



Figure 11: Error vector magnitude ANT – RX.

11 Group delay

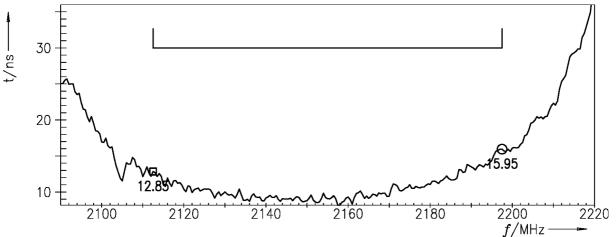


Figure 12: Group delay TX – ANT.

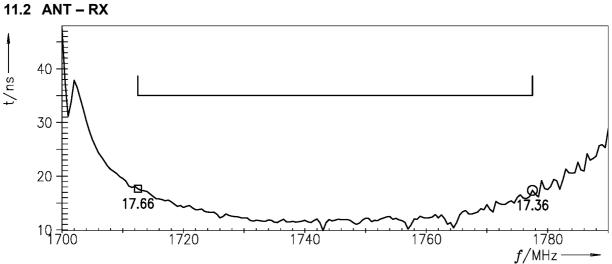
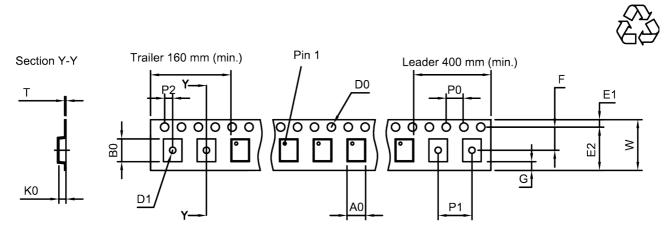



Figure 13: Group delay ANT – RX.

12 Packing material

12.1 Tape

User direction of unreeling

Figure 14: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

 A₀
 2.25±0.05 mm

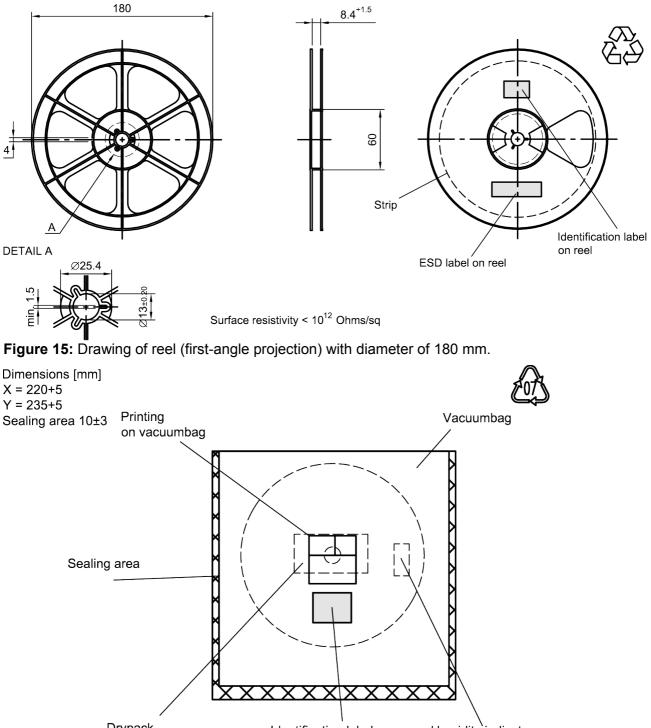
 B₀
 2.75±0.05 mm

 D₀
 1.5±0.05 mm

 D₀
 1.5±0.1/-0 mm

 D₁
 1.0 mm (min.)

 E₁
 1.75±0.1 mm


Table 1: Tape dimensions.

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.6±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

12.2 Reel with diameter of 180 mm

Drypack
in vacuumbagIdentification label
on vacuumbagHumidity indicator
in vacuumbagFigure 16: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

Please read **Cautions and warnings** and **Important notes** at the end of this document.

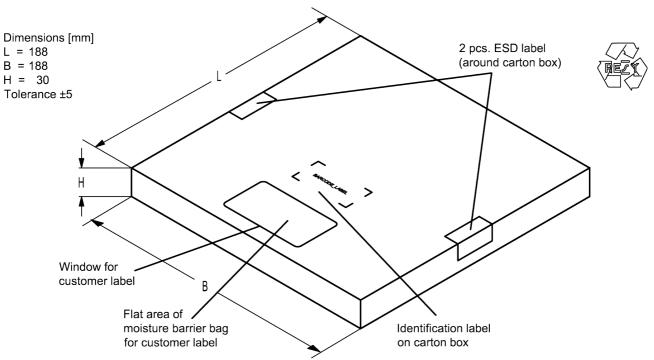


Figure 17: Drawing of folding box for reel with diameter of 180 mm.

12.3 Reel with diameter of 330 mm

Figure 18: Drawing of reel (first-angle projection) with diameter of 330 mm.

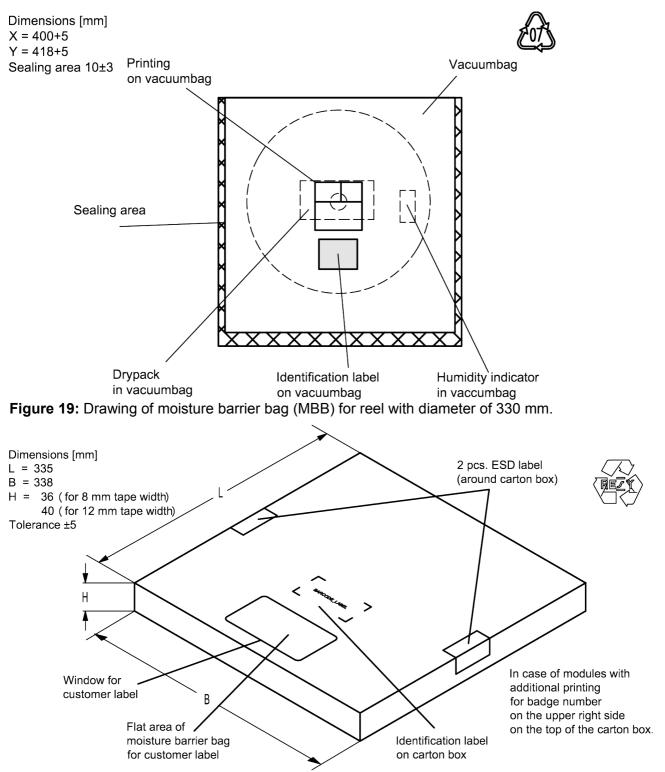


Figure 20: Drawing of folding box for reel with diameter of 330 mm.

13 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number is encoded by a special	of the ordering code, BASE32 code into a 3 digit marking.	e.g., B3xxxxB <u>1234</u> xxxx,
Example of decoding 16J	type number marking on device =>	in decimal code. 1234
	32 ¹ + 18 (=J) x 32 ⁰ = oduct type B8206 is 80E.	1234

■ Lot number:

The last 5 digits of the lot number, e.g., **12345**, are encoded based on a special BASE47 code into a 3 digit marking.

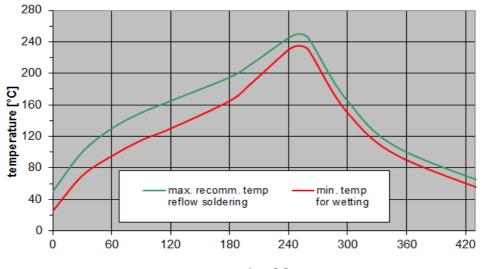
Example of decoding lot number marking on device **5UY**

5UY	=>	12345
5 x 47 ² + 27 (=U) x 47 ¹ + 31 (=Y) x 47 ⁰	=	12345

Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	K
4	4	20	М
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	А	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

Adopted BASE47 code for lot number			
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	X
7	7	31	Y
8	8	32	Z
9	9	33	b
10	Α	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	К	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		

in decimal code.


Table 2: Lists for encoding and decoding of marking.

14 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

 Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

time [s]

Figure 21: Recommended reflow profile for convection and infrared soldering – lead-free solder.

15 Annotations

15.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

15.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

16 Cautions and warnings

16.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under <u>www.rf360jv.com/orderingcodes</u>.

16.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

16.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

16.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Dimensions do not include burrs.

Projection method

Unless otherwise specified first-angle projection is applied.

17 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.rf360jv.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>RF360 / Qualcomm

>>点击查看相关商品