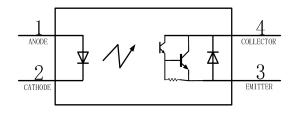


1.概述

QX452是一款由发光二极管和达林顿晶体管组成的高耐压(V_{CEO}≥350V)光电耦合器。四引脚封装(SOP4)。


2. 特性

- 电流转换比(CTR)范围:CTR≥1000%
- 输入-输出隔离电压 (Viso=3750 V rms)
- 集电极-发射极击穿电压 BV_{CEO}≥350V
- 爬电距离≥5mm
- 外部电气间隙≥5mm
- DTI≥0.3mm

3. 应用

- 通讯设备
- 可编程控制器
- 信号传输
- 工业控制,测量仪器

4. 结构原理图和封装

5. 产品型号命名规则

例如:

产品型号	描述
QX452-CuH-S	铜框架, SOP, 无卤

SOP4

6. 印字

- ●印字中"尿"为群芯品牌 LOGO
- ●印字中"Y"代表年份; A(2018),B(2019),C(2020)......
- ●印字中"WW"代表周号
- ●印字中"N"代表星期几
- ●印字中的"H"代表无卤: 而当产品有卤/无铅时,此处空白

7. 极限参数(Ta=25°C)

	参数	符号	额定值	单位
	正向电流	I_{F}	60	mA
 发射端	正向峰值电流(lus, pulse)	I_{FP}	1	A
	反向电压	V_R	6	V
	功耗	P _D	100	mW
接收端	集电极功耗	P _C	150	mW
	集电极电流	I_{C}	150	mA
	集电极-发射极电压	V_{CEO}	350	V
	发射极-集电极电压	V _{ECO}	0.1	V
总功耗		Ptot	170	mW
输入输出瞬时耐受电压		Viso	3750	Vrms
工作温度		Topr	-55~+110	°C
存储温度		Tstg	-55~+125	°C
焊接温度		Tsol	260	°C

8. 产品特性参数 (Ta=25°C)

	参数	符号	条件	最小	典型	最大	单位
发射端	正向电压	$V_{\rm F}$	I _F =10mA	-	1.2	1.4	V
	反向电流	I_R	V _R =4V	-	-	10	μΑ
	终端电容	Ct	V=0,f=1kHz	-	50	-	pF
接收端	集电极暗电流	I_{CEO}	V _{CE} =200V	-	-	100	nA
	集电极-发射极击穿电压	BV _{CEO}	I _C =0.1mA, I _F =0	350	-	-	V
	发射极-集电极击穿电压	$\mathrm{BV}_{\mathrm{ECO}}$	I _E =0.01mA, I _F =0	0.1	-	-	V
传输特性	电流转换比	CTR*	I _F =1mA ,V _{CE} =2V	1000	-	-	%
	集电极-发射极饱和压降	V _{CE(sat)}	I _F =20mA,I _C =100mA	-	1.2	1.5	V
	隔离电阻	R _{ISO}	DC500V,40~60%R.H.	5x10 ¹⁰	1x10 ¹¹	-	Ω
	截止频率	fc	V_{CE} =2V, I_{C} =2mA, R_{L} =100 Ω -3dB		7		KHz
	隔离电容	Cf	V=0, f=1MHz	-	0.6	-	pF
	上升时间	Tr	V _{CE} =2V	-	80	250	μs
	下降时间	Tf	$I_{C}=20$ mA, $R_{L}=100$ Ω	-	10	100	μs

^{*} CTR=I_C/I_Fx 100%

9. 典型光电特性曲线

测试线路图

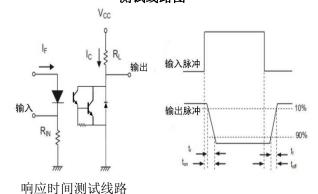


Fig.1 集电极-发射极饱和压降 vs 环境温度曲线图

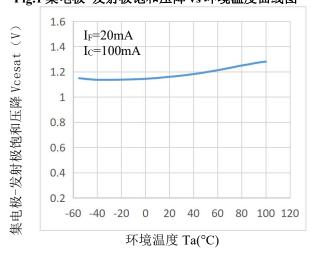
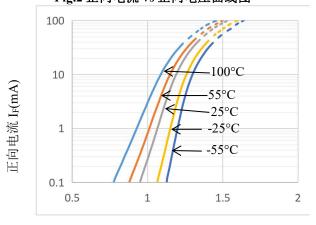



Fig.2 正向电流 vs 正向电压曲线图

正向电压 $V_F(V)$

Fig.3 电流传输比 vs 正向电流曲线图

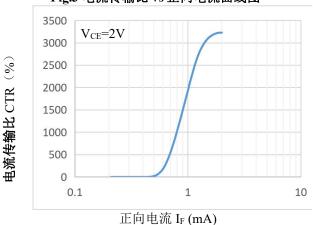


Fig.4 相对电流转换比 vs 环境温度曲线图

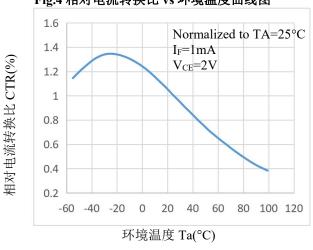
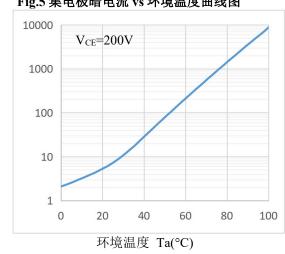
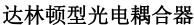




Fig.5 集电极暗电流 vs 环境温度曲线图

集电极暗电流 Iceo(nA)

NGUNXIN° 群芯微电子

Fig.6 集电极电流 vs 集电极-发射电压曲线图

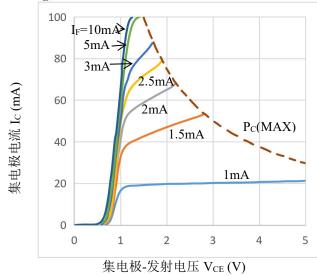


Fig.8 正向电流 vs 集电极-发射极饱和压降曲线图

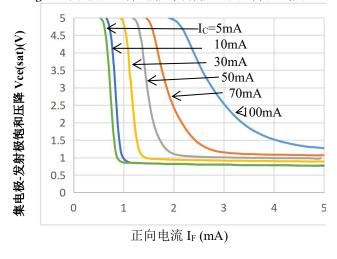


Fig.7 响应时间 vs 负载电阻曲线图

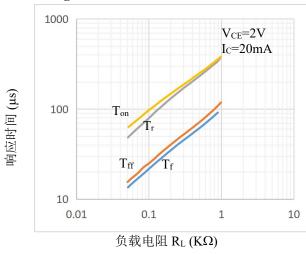
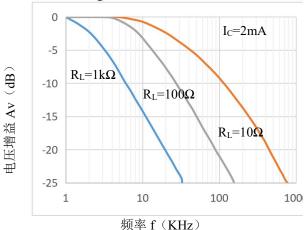
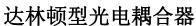
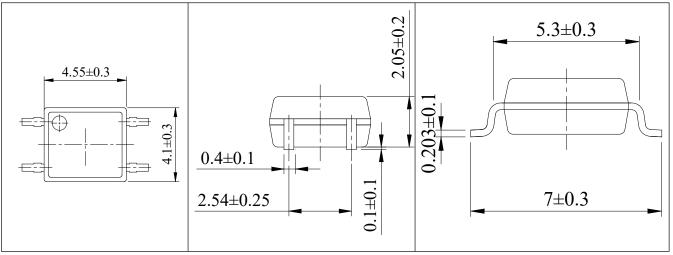
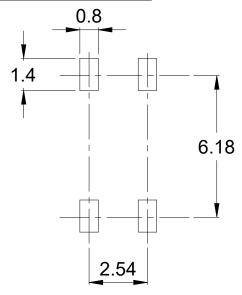





Fig.9 频率响应曲线图

10. 回流焊温度曲线图


	なた 口.	見小店	見上店	
	符号	最小值	最大值	单位
预热温度	Ts	150	200	°C
预热时间	ts	60	S	
升温速率		3		°C/s
液相线温度	$T_{\rm L}$	2	°C	
时间高于 T _L	$t_{\rm L}$	60	150	S
峰值温度	TP		260	°C
Tc 在(T _P -5)和 T _P 之间的时间	$t_{ m p}$		30	S
降温速率			6	°C/s

- 注: 1. 建议在所示的温度和时间条件下进行回流焊,最多不能超过三次;
 - 2. 手工烙铁焊接
 - A. 手工烙铁焊仅用于产品返修或样品测试;
 - B. 手工烙铁焊要求: 温度 360℃ ± 5℃, 时间≤3s

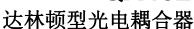

11. 外形尺寸

单位: 毫米

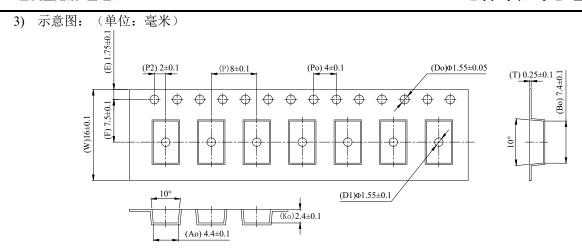
SOP4

12. 焊盘尺寸(仅供参考)

注:单位(毫米),上图为产品正视图


13. 包装

■汇总表


封装形 式	包装方式	盘数量	盒数 量	箱数量	静电袋	盒规格	箱(双瓦楞)规格	备注
SOP-4	卷盘 (\$330mm 蓝盘)	3千只/ 盘	2盘/	10 盒/ 箱	380*380mm	340*60*340mm	620*360*365mm	首尾端空至少 200mm

■ SOP-4 编带包装

- 1) 每卷数量: 3000 只。每箱数量: 60000 只。
- 2) 内包装: 每卷盘 3000 只。

14.注意

- QX 持续不断改进质量、可靠性、功能或设计,保留此文件更改的权利恕不另行通知。
- 请遵守产品规格书使用, QX 不对使用时不符合产品规格书条件而导致的质量问题负责。
- 产品用于办公自动化设备、通信设备、音频/视频设备、电气应用和仪器仪表等电子应用。
- 对于需要高可靠性或安全性的设备/装置,如空间应用、核电控制设备、医疗设备等,请联系我们的销售人员。
 - 当需要用于任何"特定"应用的设备时,请咨询我们的销售人员
 - 如对文件中表述的内容有疑问,欢迎联系我们。

单击下面可查看定价,库存,交付和生命周期等信息

>>QUNXIN MICRO