

RTQ6360GQW, 60V_{IN}, 0.5A, Asynchronous Step-Down

Converter Evaluation Board

General Description

The Evaluation Board demonstrates the RTQ6360GQW to be designed for a 5V/0.5A output from a 8V to 60V input at 500kHz switching frequency. The wide input range makes it suitable for communications and industrial 12V, 24V and 48V power systems. The RTQ6360GQW provides complete protection functions such as input under-voltage lockout, output under-voltage protection, over-current protection and thermal shut down. Cycle-by-cycle current limit provides protection against shorted outputs and soft-start eliminates input current surge during start-up.

Table of Contents

General Description	1
Performance Sepcification Summary	2
Power-up Procedure	2
Detailed Description of Hardware	3
Bill of Materials	5
Typical Applications	6
Evaluation Board Layout	9
More Information	11
Important Notice for Richtek Evaluation Board	11

Performance Sepcification Summary

Summary of the RTQ6360GQW Evaluation Board performance specificiaiton is provided in Table 1. The ambient temperature is 25°C.

Specification	Test Conditions		Тур	Max	Unit
Input Voltage Range		8		60	V
Output Current		0		0.5	А
Default Output Voltage			5		V
Operation Frequency			500		kHz
Output Ripple Voltage	I _{OUT} = 0.5A		10		mVp-p
Line Regulation	$I_{OUT} = 0.5A, V_{IN} = 8V \text{ to } 60V$		±1		%
Load Regulation	V_{IN} = 12V, I_{OUT} = 0.001A to 0.5A		±1		%
Load Transient Response	IOUT = 0.25A to 0.5A		±5		%
Maximum Efficiency	VIN = 12V, VOUT = 5V, IOUT = 0.5A		90.9		%

Table 1. RTQ6360GQW Evaluation Board Performance Specification Summary

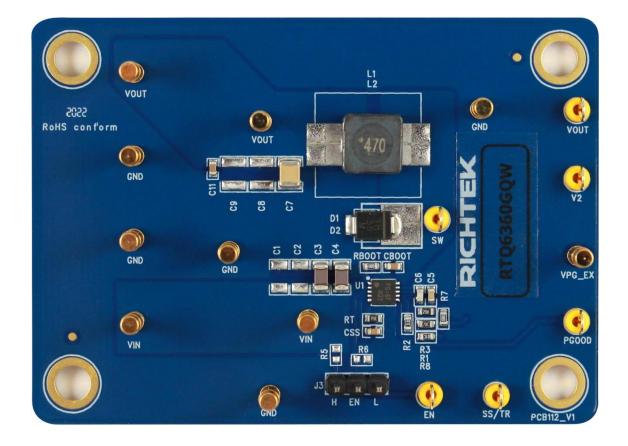
Power-up Procedure

Suggestion Required Equipments

- RTQ6360GQW Evaluation Board
- DC power supply capable of at least 60V and 1A
- Electronic load capable of 6A
- Function Generator
- Oscilloscope

Quick Start Procedures

The Evaluation Board is fully assembled and tested. Follow the steps below to verify board operation. Do not turn on supplies until all connections are made. When measuring the output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip and ground ring directly across the last output capacitor.


Proper measurement equipment setup and follow the procedure below.

- 1) With power off, connect the input power supply to VIN and GND pins.
- 2) With power off, connect the electronic load between the VOUT and nearest GND pins.
- 3) Turn on the power supply at the input. Make sure that the input voltage does not exceeds 60V on the Evaluation Board.
- 4) Check for the proper output voltage using a voltmeter.
- 5) Once the proper output voltage is established, adjust the load within the operating ranges and observe the output voltage regulation, ripple voltage, efficiency and other performance.

Detailed Description of Hardware

Headers Description and Placement

Carefully inspect all the components used in the EVB according to the following Bill of Materials table, and then make sure all the components are undamaged and correctly installed. If there is any missing or damaged component, which may occur during transportation, please contact our distributors or e-mail us at <u>evb_service@richtek.com</u>.

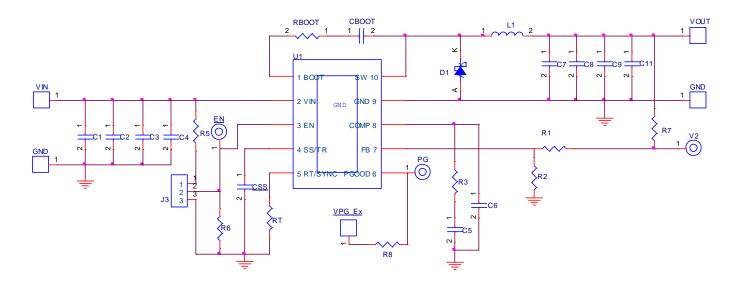
Test Points

The EVB is provided with the test points and pin names listed in the table below.

Test Point/ Pin Name	Function				
VIN	Input voltage.				
VOUT	Output voltage.				
GND	Ground.				
EN	Enable test point.				
J3	EN jumper. Connect EN to ground to disable, open to enable.				
SW	Switch node test point.				

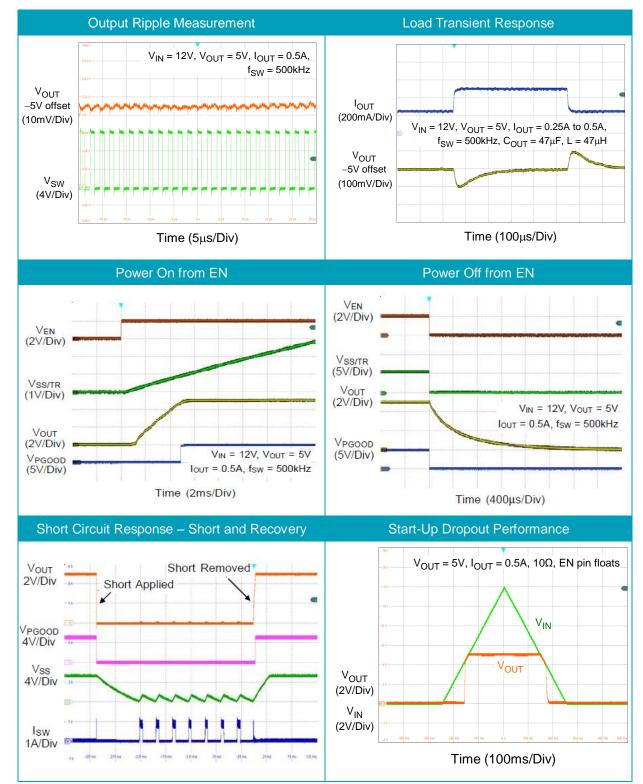
RTQ6360GQW Evaluation Board

Test Point/ Pin Name	Function
V2	Test pin V2 is used for bode plot measurement. Connect VOUT pin and this pin to the injection transformer.
SS/TR	Soft-start and tracking test point.
VPG_Ext	Test point for pull up voltage of the Open-drain power-good indication output.
PGOOD	Power-good indication test point.

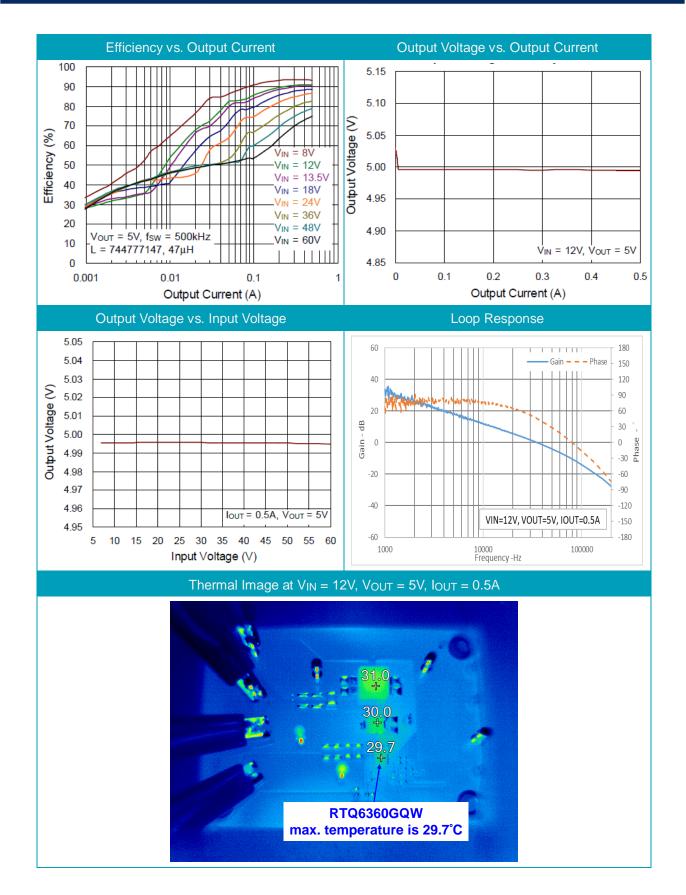

Bill of Materials

VIN = 12V, VOUT = 5.0V, IOUT = 0.5A, fsw = 500kHz									
Reference	Count	Part Number	Value	Description	Package	Manufacturer			
U1	1	RTQ6360GQW	RTQ6360GQW	Step-Down Converter	WDFN-10SL 3x3	RICHTEK			
C3, C4	2	HMK316AC7225KLHTE	2.2µF	Capacitor, Ceramic, 100V, X7R	1206	Taiyo Yuden			
C5	1	0603B182K500CT	1.8nF	Capacitor, Ceramic, 50V, X7R	0603	WALSIN			
C7	1	GRM32ER61C476KE15L	47µF	Capacitor, Ceramic, 16V, X5R	1210	MURATA			
C11	1	C1608X7R1H104KT	0.1µF	Capacitor, Ceramic, 50V, X7R	0603	TDK			
СВООТ	1	C1608X7R1H104KT	0.1µF	Capacitor, Ceramic, 50V, X7R	0603	TDK			
CSS	1	C1608X7R1H103KT000N	10nF	Capacitor, Ceramic, 50V, X7R	0603	TDK			
D1	1	VS-10BQ060-M3	Schottky Diode, 60V/1A	Schottky Diode, 60V/1A	SMB	VISHAY			
L1	1	744777147	47µH	Inductor, Isat = 1.1A, 170mΩ		WURTH ELEKTRONIK			
R1	1	WR06X5232FTL	52.3k	Resistor, Chip, 1/10W, 1%	0603	WALSIN			
R2, R8	2	WR06X1002FTL	10k	Resistor, Chip, 1/10W, 1%	0603	WALSIN			
R3	1	RTT031693FTP	169k	Resistor, Chip, 1/10W, 1%	0603	RALEC			
R7, RBOOT	2	WR06X000 PTL	0	Resistor, Chip, 1/10W, 1%	0603	WALSIN			
RT	1	RTT032323FTP	232k	Resistor, Chip, 1/10W, 1%	0603	RALEC			

Typical Applications


EVB Schematic Diagram

- 1. The capacitance values of the input and output capacitors will influence the input and output voltage ripple.
- 2. MLCC capacitors have degrading capacitance at DC bias voltage, and especially smaller size MLCC capacitors will have much lower capacitance.


RTQ6360GQW Evaluation Board

Measure Result

RTQ6360GQW Evaluation Board

Note : When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip directly across the output capacitor.

Evaluation Board Layout

Figure 1 to Figure 4 are RTQ6360GQW Evaluation Board layout. This board size is 70mm x 50mm and is

constructed on four-layer PCB, outer layers with 2 oz. Cu and inner layers with 1 oz. Cu.

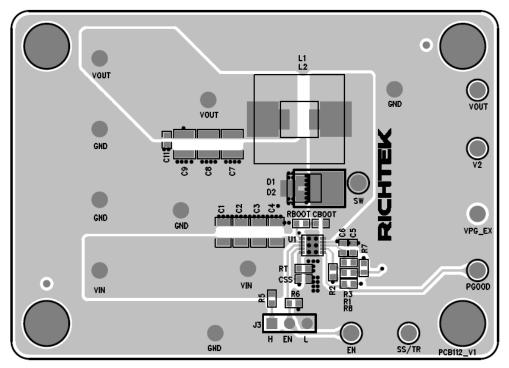


Figure 1. Top View (1st layer)

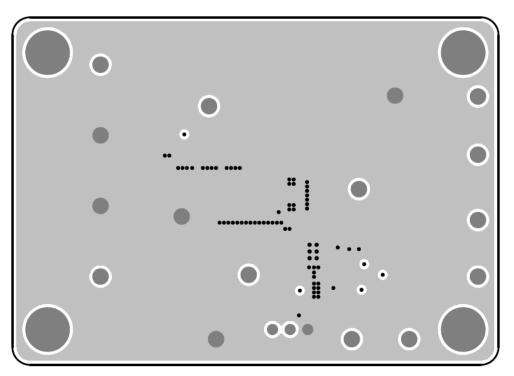


Figure 2. PCB Layout—Inner Side (2nd Layer)

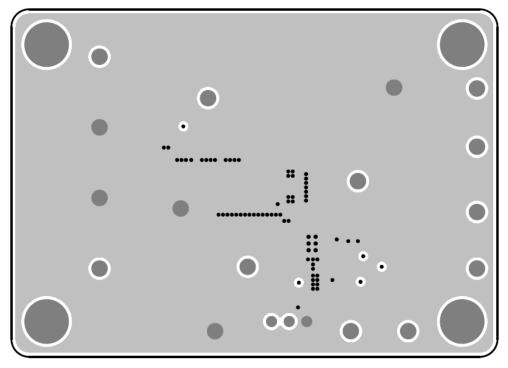


Figure 3. PCB Layout—Inner Side (3rd Layer)

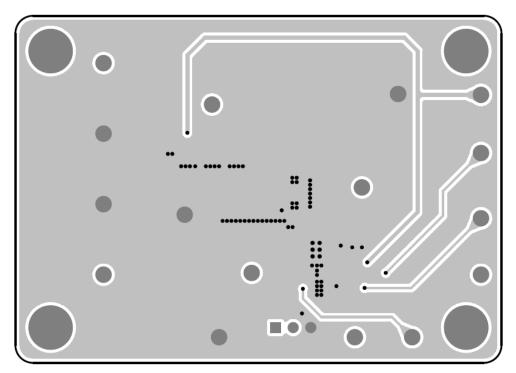


Figure 4. Bottom View (4th Layer)

More Information

For more information, please find the related datasheet or application notes from Richtek website <u>http://www.richtek.com</u>.

Important Notice for Richtek Evaluation Board

THIS DOCUMENT IS FOR REFERENCE ONLY, NOTHING CONTAINED IN THIS DOCUMENT SHALL BE CONSTRUED AS RICHTEK'S WARRANTY, EXPRESS OR IMPLIED, UNDER CONTRACT, TORT OR STATUTORY, WITH RESPECT TO THE PRESENTATION HEREIN. IN NO EVENT SHALL RICHTEK BE LIABLE TO BUYER OR USER FOR ANY AND ALL DAMAGES INCLUDING WITHOUT LIMITATION TO DIRECT, INDIRECT, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES. 单击下面可查看定价,库存,交付和生命周期等信息

>>Richtek(台湾立锜)