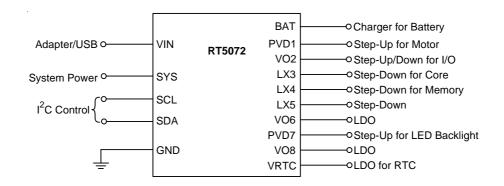


Multi-Channel PMU with Linear Battery Charger for CMOS DSC/DV

General Description

The RT5072 is a complete power supply solution for digital still cameras and other hand held devices. The RT5072 is composed of a multi-channel DC/DC power converter unit, a single-cell linear Li-ion battery charger, a charger type detector, and an I^2C control interface.

The power converter unit includes one synchronous step-up converter (CH1), one synchronous step-up/down converter (CH2), three synchronous step-down converters (CH3/4/5), two LDOs with input power as low as 1.5V (CH6/8), one WLED driver in synchronous high-voltage step-up mode or low-voltage current regulator mode (CH7), and a keep-alive LDO (CH9) for RTC application. All converters are internally frequency compensated and integrate power MOSFETs. The power converter unit provides complete protection functions: over-current, thermal shutdown, over-voltage, and under-voltage protection. The RT5072 has a WAKEUP impulse generation circuitry to monitor VIN or BAT installation event. To fulfill most of applications, the RT5072 has six preset power-on/off sequences.


The battery charger includes Auto Power Path Management (APPM). No external MOSFETs are required. The charger can enter sleep mode when power is removed.

Charging tasks are optimized by using a control algorithm to vary the charge rate, including pre-charge mode, fast charge mode and constant voltage mode. The charge current can also be programmed via the I²C control interface. The battery regulation voltage and current can be adjusted by JEITA standard temperature control or other schemes set via the I²C interface. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. The charging task will always be terminated in constant-voltage mode when the charging current reduces to the termination current of 10% x I_{CHG_FAST}. The charger includes undervoltage and over-voltage protection for the supply input voltage, VIN. The charger includes USB charger detection circuitry via D+ and D- pins of USB interface to detect USB standard downstream ports (SDP), USB charging downstream port (CDP), dedicated charger port (DCP), or Apple/Sony charger ports. RT5072 uses some indicators to show charger states: two open drain ports CHG and CHG2, and an interrupt (INT) to immediately notify the state change.

The RT5072 has I²C interface to control rich functions of Power Converter Unit and Charger Unit, and is available in the WQFN-40L 5x5 package.

Simplified Application Circuit

DS5072-00 March 2015

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

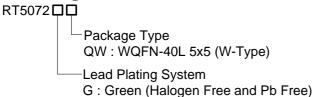
Features

Power Converter Unit

- CH1 LV Sync Step-Up
 - ► Support Up to 1A Loading, DVS (Dynamic Voltage Scaling), Load-Disconnect, Up to 95% Efficiency, PSM/PWM Selectable
- CH2 LV Sync Step-Up/Down
 - ▶ Support Up to 1A Loading, DVS, Up to 95% Efficiency, PSM/PWM Selectable
- CH3/4 LV Sync Step-Down
 - Support Up to 3A (CH3) / 2A (CH4) Loading, DVS,
 Up to 95% Efficiency, 100% (MAX) Duty Cycle, PSM/
 PWM Selectable
- CH5 LV Sync Step-Down
 - ➤ Support Up to 0.6A Loading, Up to 95% Efficiency, 100% (MAX) Duty Cycle
 - Output Voltage can be Selected from Preset List or Set by External Feedback Network
- CH6 Low Input Power LDO
 - ▶ V_{IN} Range 1.5V to 5.5V
 - ▶ Output Voltage Level Selectable in I²C Register
- CH7 WLED Driver in Either Sync Step-Up Operation or Current Regulator Operation
 - Step-Up Mode with LED Open Protection (OVP7 16V or 25V, Selectable in I²C Register)
 - ▶ Step-Up Mode Support Series 2 to 6 WLED and Load Disconnect Function
 - ▶ Current Regulator Mode for 1 WLED
 - ▶ 31 WLED Dimming Levels
 - Automatic Mode Selection by External Circuit Topology
- CH8 Generic LDO
 - ▶ V_{IN} Range 1.5V to 5.5V
 - ▶ Output Voltage Level Selectable in I²C Register
- CH9 Low Quiescent LDO with Reverse Leakage Prevention for RTC Power Supply
 - Fixed 3.05V Output
- Six Preset Power On/Off Sequences by One Pin SEQ
 - ▶ SEQ # 0 : CH2→CH3→CH4
 - ► SEQ #1: CH1→CH3→CH2→CH4
 - ightharpoonup SEQ # 2 : CH1ightharpoonupCH3ightharpoonupCH4ightharpoonupCH2
 - ► SEQ # 3 : CH1→CH2→CH4→CH3

- ► SEQ # 4 : CH1 → CH4 → CH3 → CH2
- ► SEQ # 5 : CH1→CH4→CH2→CH3
- All Power Switches Integrated with Internal Compensation
- Discharge Output of Every Channel when Turning Off
- Wake Up Impulse to Monitor BAT and VIN Plug-In
- Fixed 2MHz Switching Frequency for CH1/3/4/5,
 Fixed 1MHz Switching Frequency for CH2/7

Charger Unit


- 28V Maximum Rating for VIN Power
- Selectable Power Input Current Limit (0.1A / 0.5A / 1A / 1.5A)
- Auto Power Path Management (APPM) with Integrated Power MOSFETs
- Battery Charging Current Control and Regulation
 Voltage Control
- Programmable Charging Current and Safe Charge Timer
- Optimized Charge Rate via Thermal Feedback
- Under-Voltage Protection, Over-Voltage Protection
- Charger Status and VIN Power GOOD Indicators
- Interrupt Indicator to JEITA Temperature/Fault/ Status Events when PMU is Enabled
 - **▶** Battery Temperature Events
 - ▶ Battery Removing Event
 - ▶ Charger in Thermal Regulation Control
 - ▶ Safety Timer Timeout
 - ▶ End of Charging
 - **▶ VIN Power Good**
 - ▶ VIN < DPM Threshold 4.35V</p>
 - ▶ Charger Type Detection Finishing
- Charger Type Detection
 - Dedicated Charger : Support Apple and Sony Charger
 - ▶ Secondary Charger Detection to Distinguish CDP and DCP
- I²C Control Interface : Support Fast Mode up to 400kb/s
- RoHS Compliant and Halogen Free

Applications

- DSC Power Supply System
- CMOS-Sensor DV
- Portable Devices

Ordering Information

Note:

Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Pin Configurations

(TOP VIEW) VΡ WAKE PVD1 TS FB3 LX1 CHG₂ PVD2 FB7 LX2A **GND** PVD7 LX2B LX7 VO2 CHG FB2 VO₆ VO8 PVD6 SCL

WQFN-40L 5x5

Marking Information

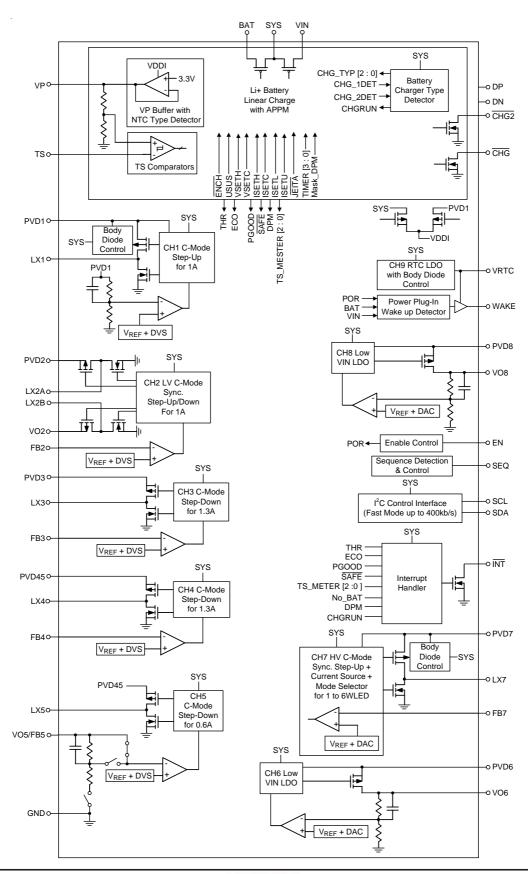
RT5072 **GQW YMDNN** RT5072GQW: Product Number

YMDNN: Date Code

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	WAKE	Wake-Up Impulse Push Pull Output. If VIN or BAT plug in, the WAKE pin generates one 90ms-width high pulse to notify micro processor.
2	PVD1	Power Output of CH1. To make CH1 stable, the power path from the PVD1 pin to its output capacitors must be as short (\leq 1mm is better) and wide as possible to reduce its parasitic inductance. The output capacitor must be ceramic capacitor (\geq 20 μ F).
3	LX1	Switch Node of CH1.
4	CHG2	2nd Charger Status Indicator (Open-Drain Output).
5	FB7	Feedback Input Pin of CH7 in Step-Up Mode or Current Regulator Mode
6	PVD7	Power Output Pin of CH7 in Step-Up or Power Input Pin of CH7 in Current Regulator Mode.
7	LX7	Switch Node of CH7 in Step-Up Mode. LX7 initial voltage determine CH7 operation mode.
8	CHG	Charger Status Indicator Output (Open-Drain Output).
9	VO6	Power Output of CH6.
10	PVD6	Power Input of CH6.
11	FB4	Feedback Voltage Input of CH4.
12	SEQ	Power Sequence Selection for CH1 to CH4.
13	LX4	Switch Node of CH4.
14	EN	Enable Control Input of Power Converter Unit.
15	PVD45	Power Input of CH4 and CH5. To avoid the crosstalk between CH4 and CH5, the power path from the PVD45 pin to its input capacitors must be as short (≤ 1 mm is better) and wide as possible to reduce its parasitic inductance. The input capacitance must be $\geq 10 \mu F$ with low ESR.
16	LX5	Switch Node of CH5.
17	ĪNT	Interrupt Indicator Open-Drain Output. If events of NoBAT, THR, EOC, Battery Temperature Change (TS_METER), PGOOD, SAFE, VIN DPM, or Charge Type Detection Finishing (CHGRUN) happen, the output INT goes low and the INT bit in I ² C register bank 0x9 is set to be "1". After INT bit is written to be "0", INT goes high.
18	VO5/FB5	Output Voltage Sense or Feedback Voltage Input of CH5. The function is selected by I ² C register.
19	PVD8	Power Input of CH8.
20	SDA	Data Signal of I ² C Interface.
21	SCL	Clock Signal of I ² C Interface.
22	VO8	Power Output of CH8.
23	FB2	Feedback Voltage Input of CH2.
24	VO2	Power Output of CH2.
25	LX2B	Switch Node B of CH2.
26	LX2A	Switch Node A of CH2.
27	PVD2	Power Input of CH2.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.



Pin No.	Pin Name	Pin Function
28	FB3	Feedback Voltage Input of CH3.
29	TS	Temperature Sense Input. The TS pin connects to a battery's thermistor to determine if the battery is too hot or too cold to charge. If the battery's temperature is out of range, charging is paused until it re-enters the valid range. TS also detects whether the battery (with NTC) is present or not.
30	VP	Power Output of 3.3V Buffer for Battery Temperature Sensing.
31	LX3	Switch Node of CH3.
32	PVD3	Power Input of CH3.
33, 34	BAT	Charger Output for Battery.
35, 36	SYS	Power Output for System. Connect this pin to System with a minimum $10\mu\text{F}$ ceramic capacitor to GND.
37	VIN	Supply Voltage Input.
38	DP	USB D+ Input for Charger Type Detection.
39	DN	USB D- Input for Charger Type Detection.
40	VRTC	RTC LDO Power Output.
41 (Exposed pad)	GND	Power Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Function Block Diagram

Operation

The RT5072 is an integrated power solution for digital still cameras and other small handheld devices. It includes six DC/DC converters, a WLED driver, a RTC LDO, and a fully integrated single-cell Li-ion battery charger.

CH1: Step-Up DC/DC Converter

CH1 is a step-up converter for motor driver power. The converter operates at PFM or PWM current mode which can be set by I²C interface.

CH2: Step-Up/Down DC/DC Converter

CH2 is a step-up/down converter for I/O power. The converter operates at PFM or PWM current mode which can be set by I²C interface.

CH3: Step-Down DC/DC Converter

CH3 is a step-down converter for core power. The converter operates at PFM or PWM current mode which can be set by I2C interface.

CH4: Step-Down DC/DC Converter

CH4 is a step-down converter for memory power. The converter operates at PFM or PWM current mode which can be set by I²C interface.

CH5: Step-Down DC/DC Converter

CH5 is a step-down converter. The converter operates at PFM/PWM current mode.

CH6: Generic LDO

CH6 is a generic low voltage LDO for multiple purpose power.

CH7: WLED Driver

CH7 is a WLED driver that can operate in either current source mode or synchronous step-up mode which is determined by I²C interface control signal.

CH8: Generic LDO

CH8 is a generic low voltage LDO for multiple purpose power.

CH9: Keep Alive LDO and RTC

CH9 is a LDO providing a 3.05V output for real time clock.

Charger Unit

A Li-ion battery charger with automatic power path management is designed to operate in below modes.

Pre-Charge Mode

When the output voltage is lower than 2.8V, the charging current will be reduced to a ratio of fast-charge current set by A8.ISETA [3:0] to protect the battery life-time.

Fast-Charge Mode

When the output voltage is higher than 3V, the charging current will be equal to the fast-charge current set by A8.ISETA [3:0].

Constant Voltage Mode

When the output voltage is near 4.2V and the charging current falls below the termination current for a deglitch time of 25ms, the charger will be turned off and CHG will go to high.

Re-Charge Mode

When the chip is in charge termination mode, the charging current gradually goes down to zero. Once the battery voltage drops to below 4.1V for 100ms, the charger will resume charging operation.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

7

Absolute M	aximum	Ratings	(Note 1)
------------	--------	---------	----------

• Supply Voltages, SYS	-0.3V to 6V
Supply Input Voltage, VIN	-0.3V to 28V
• Switch Node Voltage, LX1, LX2, LX3, LX4, LX5	-0.3V to 6V
• PVD7, LX7	-0.3V to 25V
• CHG	-0.3V to 28V
• CHG2	-0.3V to 6V
• Other Pins	-0.3V to 6V
• INT, CHG, CHG2 Continuous Current	20mA
BAT Continuous Current (Total in two pins)	2.5A
 Power Dissipation, P_D @ T_A = 25°C 	
WQFN-40L 5x5	3.63W
Package Thermal Resistance (Note 2)	
WQFN-40L 5x5, θ_{JA}	27.5°C/W
WQFN-40L 5x5, θ_{JC}	
• Junction Temperature	150°C
• Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	–65°C to 125°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
MM (Machine Model)	200V
Recommended Operating Conditions (Note 4)	

Recommended Operating Conditions (Note 4)

Supply Input Voltage, BAT	1.8V to 5.5V
• Supply Input Voltage Range, VIN (A7.ISETL = 1)	4.4V to 6V
• Supply Input Voltage Range, VIN (A7.ISETL = 0)	4.5V to 6V
Junction Temperature Range	40°C to 125°C
Ambient Temperature Range	40°C to 85°C

Electrical Characteristics

Power Converter Unit:

($V_{SYS} = 3.3V$, $T_A = 25$ °C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage						
PMU Startup Voltage at SYS	V _{ST}	For bootstrap	1.5			V
SYS Operating Voltage for PMU	V_{SYS}		2.7		5.5	V
VDDI Over Voltage Protection (OVP) (Hysteresis High)			5.82	6	6.18	٧
VDDI OVP Hysteresis (Gap)				-0.25		V
VDDI UVLO (Hysteresis High)		VDDI UVLO takes effect once CH2 soft-start finish	2.2	2.4	2.6	V
VDDI UVLO Hysteresis (Gap)				-0.3		V

Copyright ©2015 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Current						
Shutdown Supply Current into BAT (Include IDDQ of RTC LDO)	IOFF-BAT	EN = L, and PMU off, BAT = 4.2V		10	20	μА
CH1 + CH2 + CH3 + CH4 Supply Current	I _{Q1234}	Non switching, EN = 3.3V			2000	μА
CH5 Supply Current	I _{Q5}	Non switching, A2.EN5 = 1			500	μΑ
CH6 Supply Current	IQ6	A2.EN6 = 1			100	μΑ
CH7 in Step-Up Mode Supply Current	I _{Q7b}	Non switching, A2.EN7_DIM7 [4:0] = 5'b11111			500	μΑ
CH7 in Current Source mode Supply Current	I _{Q7c}	A2.EN7_DIM7 [4:0] = 5'b11111 PVD7 = 5V			400	μА
CH8 Supply Current	IQ8	A2.EN8 = 1			100	μΑ
Oscillator						
CH1, 3, 4, 5 Operation Frequency	fosc_1345		1800	2000	2200	kHz
CH2, 7 Operation Frequency	fosc_27	CH7 in Step-Up mode	900	1000	1100	kHz
CH1 LV Sync Step-Up						
Output Voltage Accuracy at PVD1		Target voltage defined at A4.VOUT1 [3:0]	-1.4		1.4	%
Minimum On-Time for PSM				100		ns
Soft-Start Time		PVD1 = 0 to 5V		4		ms
Maximum Duty Cycle (Step-Up)		PVD1 < Target defined in A4.VOUT1 [3:0]	80	83	86	%
On Desistance of MOCFET	R _{DS(ON)_P}	P-MOSFET, PVD1 = 3.3V		200	300	mΩ
On-Resistance of MOSFET	RDS(ON)_N	N-MOSFET, PVD1 = 3.3V		150	250	mΩ
Current Limit (Step-Up)	I _{LIM_1}		2.2	3	4	Α
Over-Voltage Protection at PVD1			5.82	6	6.18	V
Under-Voltage Protection -1 at PVD1				SYS - 0.8		٧
Under-Voltage Protection -2 at PVD1		Target Voltage is defined in A4.VOUT1 [3:0]		Target x 0.5		٧
Over-Load Protection at PVD1		Target Voltage is defined in A4.VOUT1 [3:0]		Target - 0.6		>
Off Discharge Current at PVD1		PVD1 = 5V, SYS = 3.3V	-	20		mΑ
Discharge Finishing Threshold at PVD1			1	0.6		V
CH2 LV Sync Step-Up/Down						
Feedback Regulation Voltage at FB2		A4.FB2 [2:0] = 3'b100	0.788	0.8	0.812	V
Soft-Start Time		FB2 = 0 to 0.8V		4		ms
Maximum Duty Cycle		LX2B		55		%
		LX2A			100	%
On-Resistance of MOSFET	R _{DS(ON)_2A}	LX2A – GND, N-MOSFET PVD2 = 3.3V		200	300	mΩ
	-50(014)_2A	PVD2 – LX2A, P-MOSFET PVD2 = 3.3V		150	250	mΩ

Copyright ©2015 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		VO2–LX2B,		200	300	mΩ
On-Resistance of MOSFET	R _{DS(ON)_2B}	P-MOSFET, VO2 = 3.3V				
	, ,=	N-MOSFET VO2 = 3.3V		150	250	mΩ
Current Limit	I _{LIM_2}	Both P-MOSFET (PVD2 – LX2A) and N-MOSFET (LX2B – GND)	2	2.5	3	Α
Over-Voltage Protection at VO2			5.82	6	6.18	V
Under-Voltage Protection at FB2		Target voltage is the chosen one in A4.FB2 [2:0]		0.4		V
Over-Load Protection at FB2				Target - 0.1	-	٧
Off Discharge Current at VO2		VO2 = 3.3V, SYS = 3.3V		20		mΑ
Discharge Finishing Threshold at VO2				0.1		V
CH3 LV Sync Step-Down						
Feedback Regulation Voltage at FB3		A5.FB3 [2:0] = 3'b100	0.788	0.8	0.812	V
Minimum On-Time for PSM				50		ns
Maximum Duty Cycle		FB3 = 0.75V			100	%
Soft-Start Time		FB3 = 0 to 0.8V		4		ms
On Besistance of MOSEET	R _{DS(ON)_P}	P-MOSFET, PVD3 = 3.3V		200	300	mΩ
On-Resistance of MOSFET	R _{DS(ON)_N}	N-MOSFET, PVD3 = 3.3V		150	250	mΩ
Current Limitation	I _{LIM_3}		3	3.5	4	Α
Under-Voltage Protection at FB3			0.35	0.4	0.45	V
Over-Load Protection at FB3		Target voltage is the chosen one in A5.FB3 [2:0]		Target - 0.1		V
Off Discharge Current at LX3		LX3 = 1V, SYS = 3.3V		20		mA
Discharge Finishing Threshold at FB3				0.1		٧
CH4 LV Sync Step-Down						
Feedback Regulation Voltage at FB4		A5.FB4 [2:0] = 3'b100	0.788	0.8	0.812	>
Minimum On-Time for PSM				50		ns
Maximum Duty Cycle		FB4 = 0.75V			100	%
Soft-Start Time		FB4 = 0 to 0.8V		4		ms
On-Resistance of MOSFET	R _{DS(ON)_P}	P-MOSFET, PVD4 = 3.3V	-	300	400	mΩ
On-Resistance of MOSFET	R _{DS(ON)_N}	N-MOSFET, PVD4 = 3.3V	-	200	300	mΩ
Current Limit	I _{LIM_4}		2	2.5	3	Α
Under-Voltage Protection at FB4			0.35	0.4	0.45	V
Over-Load Protection at FB4		Target voltage is the chosen one in A5.FB4 [2:0]		Target - 0.1		V
Off Discharge Current at LX4		LX4 = 1V, SYS = 3.3V		20		mA
Discharge Finishing Threshold at FB4				0.1		٧

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
CH5 LV Sync Step-Down						
Output Voltage Accuracy at		Target voltage defined at A6.VOUT5 [3:0] = 4'b1000 to 4'b1111	-1.4		1.4	%
VO5		Target voltage defined at A6.VOUT5 [3:0] = 4'b0001 to 4'b0111	-2		2	%
Feedback Regulation Voltage at FB5		A6.VOUT5 [3:0] = 4'b0000	0.788	0.8	0.812	V
Maximum Duty Cycle					100	%
Soft-Start Time		VO5 = 0V to Target		4		ms
On-Resistance of MOSFET	RDS(ON)_P	P-MOSFET, PVD5 = 3.3V		400	550	mΩ
On-Resistance of MOSFET	R _{DS(ON)_N}	N-MOSFET, PVD5 = 3.3V		250	400	mΩ
Current Limit	I _{LIM_5}		1	1.5	2	Α
Under-Voltage Protection at VO5				Target x 0.5		
		Target voltage is the chosen one in A6.VOUT5 [3:0] = 0000 (FB5 = 0.8)		Target – 0.1		V
Over-Load Protection at VO5		Target voltage is the chosen one in A6.VOUT5 [3:0] = 0001 to 0111		Target - 0.167		V
		Target voltage is the chosen one in A6.VOUT5 [3:0] = 0111 to 1111		Target - 0.25		
Off Discharge Current at VO5		VO5 = 1.8V, SYS = 3.3V		30		mA
Discharge Finishing Threshold at VO5				0.1		V
CH6 LDO						
Input Voltage Range (PVD6)			1.5		5.5	V
Quiescent Current into PVD6		$PVD6 = 3.3V$, $I_{OUT} = 0mA$			75	μΑ
Regulation Voltage Accuracy		A6.VOUT6 [3:0] = 4'b1000 to 4'b1111	-1.5		1.5	%
at VO6		A6.VOUT6 [3:0] = 4'b0000 to 4'b0111	-2		2	%
Drop Out Voltage (PVD6-VO6)		I _{OUT} = 300mA, VO6 = 1.3V			0.15	V
PSRR+		I _{OUT} = 10mA, PVD6 = 3.3V at 1kHz		-60		dB
Max Output Current (Current Limit)		PVD6 = 1.5V, VO6 = 1.3V	300	450	600	mA
Off Discharge Current at VO6		SYS = 3.3V			10	mA
CH7 WLED Driver						
Feedback Regulation Voltage at FB7 (Both Step-Up and Current)		A2.EN7_DIM7 [4:0] = 5'b11111	0.237	0.25	0.263	٧
Minimum On-Time for PSM (Step-Up)				300		ns
Maximum Duty Cycle (Step-Up mode)		FB7 = 0.15V	91	93	97	%

Copyright ©2015 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

Parame	ter	Symbol	Test Conditions	Min	Тур	Max	Unit
0.5	100557	R _{DS(ON)_P}	P-MOSFET, PVD7 = 10V		2	3	Ω
On-Resistance of MOSFET		R _{DS(ON)_N}	N-MOSFET, SYS = 3.3V		0.9	1.1	Ω
Current Limit (Step-	Up mode)		N-MOSFET, SYS = 3.3V	0.6	0.8	1	Α
Over-Voltage Prote	ction at PVD7		A0.OVP7 = 0	15	16	17	V
(Step-Up mode)			A0.OVP7 = 1	24	25	26	V
Off Discharge Curre (Step-Up mode)	ent at PVD7		PVD7 = 10V, SYS = 3.3V		20		mA
Discharge Finishing PVD7	Threshold at		(Step-Up Mode)		SYS - 0.4		V
CH8 LDO							
Input Voltage Range	e (PVD8)			1.5		5.5	٧
Quiescent Current i	nto PVD8	I _{Q_PVD8}	PVD8 = 3.3V, I _{OUT} = 0mA			75	μΑ
Regulation Voltage	Accuracy at		A3.VOUT8 [3:0] = 4'b1000 to 4'b1111	-1.5		1.5	%
VO8			A3.VOUT8 [3:0] = 4'b0000 to 4'b0111	-2		2	%
Drop Out Voltage (F	PVD8-VO8)		I _{OUT} = 300mA, VO8 = 2.5V			0.2	V
PSRR+			I _{OUT} = 10mA, PVD8 = 3.3V at 1kHz		-60		dB
Max Output Current (Current Limit)	Max Output Current (Current Limit)		PVD8 = 3V, VO8 = 2.5V	300	450	600	mA
Off Discharge Curre	ent at VO8		SYS = 3.3V			10	mA
CH9 RTC LDO							
Standby Quiescent	Current		BAT = 4.2V		3	6	μΑ
Lockout Current into	o VRTC	I _{LO-VRTC}	EN = L, and PMU off, BAT = 0V, VRTC = 3.05V, SYS = 0V			1	μА
Regulation Voltage	at VRTC		I _{OUT} = 0mA	3	3.05	3.1	V
Max Output Current Limit)	t (Current		BAT = 4.2V	60	130	200	mA
			I _{OUT} = 50mA			1000	mV
Dropout Voltage at	(BAT-VRTC)		I _{OUT} = 10mA			150	mV
			I _{OUT} = 3mA			60	mV
Wake Up Detector							
WAKE Impulse High	n Duration	t _{WAKEUP}	VIN or BAT plug in, VRTC = 3.05V	60	90	120	ms
WAKE Output	High-Level	V _{WAKE_H}	Source Current 0.5mA, VRTC = 3.05V		VRTC - 0.3V	VRTC	V
Voltage	Low-Level	Vwake_L	Sink Current 0.5mA, VRTC = 3.05V	0	0.3		V
WAKE Rising Time		t _{WAKE_R}	C _{LOAD} = 100pF at WAKE pin, 10% to 90% of VRTC, VRTC = 3.05V			1	μS
BAT Wake Up Thre	shold Voltage		VRTC = 3.05V	3	3.1	3.2	V
BAT Wake Up Thre Hysteresis	shold		VRTC = 3.05V		-0.28		V

DS5072-00 March 2015

Paramete	er	Symbol	Test Conditions	Min	Тур	Max	Unit
VIN Wake Up Threshold Voltage			VRTC = 3.05V	3.55	3.75	4	V
VIN Wake Up Thresh Hysteresis	nold		VRTC = 3.05V		-0.24		V
Control							
EN Input Threshold	High-Level			1.3		-	V
EN Input Threshold	Low-Level					0.4	V
EN Pull Down Currer	nt				1	3	μΑ
SEQ Pull High Thres Power Sequence #0	hold for			0.2			V
SEQ Pull Down Resi Power Sequence #1	SEQ Pull Down Resistance for Power Sequence #1		BAT = SYS = 2.7V	25	40	64	kΩ
SEQ Pull Down Resistance for Power Sequence #2			BAT = SYS = 2.7V	6.25	10	16	kΩ
SEQ Pull Down Resi Power Sequence #3	stance for		BAT = SYS = 2.7V	1.56	2.5	4	kΩ
SEQ Pull Down Resi Power Sequence #4	stance for		BAT = SYS = 2.7V		0.63	1	kΩ
SEQ Pull Low Threst Power Sequence #4	nold for					0.2	V
SEQ Pull Down Resi Power Sequence #5	stance for		BAT = SYS = 2.7V	100	160		kΩ
Power Sequence Time Gap			From previous channel starting to next channel starting	9	10	11	ms
Protection							
Protection Fault Dela	ay				100		ms
Thermal Shutdown		T _{SD}		125	155		°C
Thermal Shutdown F	lysteresis	ΔT_{SD}			20		°C

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

Charger Unit:

($V_{IN} = 5V$, $V_{BAT} = 4V$, $T_A = 25$ °C, unless otherwise specified)

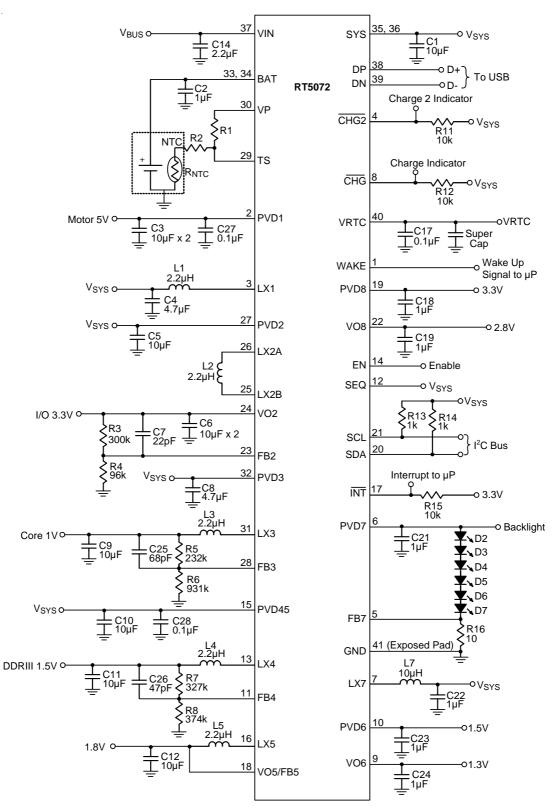
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Input						
VIN Under-Voltage Lockout Threshold	V _{UVLO}	V _{IN} = 0V to 4.5V	3.1	3.3	3.5	V
VIN Under-Voltage Lockout Hysteresis	$\Delta_{ m VUVLO}$	V _{IN} = 4.5V to 0V		240	1	mV
VIN Supply Current	1	$I_{SYS} = I_{BAT} = 0$ mA, A7. $\overline{ENCH} = 0$ ($V_{BAT} > V_{REGx}$)		1	2	mA
VIN Supply Current	ISUPPLY	$I_{SYS} = I_{BAT} = 0mA, A7.\overline{ENCH} = 1$ ($V_{BAT} > V_{REGx}$)		0.8	1.5	mA
VIN Suspend Current	lusus	V _{IN} = 5V, A7.USUS = 1		195	300	μΑ
VIN-BAT VOS Rising	V _{OS_H}			200	300	mV
VIN-BAT VOS Falling	V _{OS_L}		10	50		mV
Voltage Regulation	•					
System Regulation Voltage	V _{SYS}	I _{SYS} = 800mA, V _{IN} = 5.5V	4.9	5	5.1	V
Battery Regulation Voltage	V _{REG1}	0 to 85°C, Loading = 20mA, When A9. VSETH = 1 and A9.VSETC = 1	4.16	4.2	4.23	V
Battery Regulation Voltage	V _{REG2}	0 to 85°C, Loading = 20mA, When A9. VSETH = 0 and A9. VSETC = 0	4.01	4.05	4.08	V
APPM Regulation Voltage	V _{APPM}		4.05	4.15	4.25	V
DPM Regulation Voltage	V_{DPM}		4.25	4.35	4.45	V
VIN to VSYS MOSFET Ron	R _{DS(ON)}	I _{VIN} = 1000mA		0.2	0.35	Ω
BAT to VSYS MOSFET Ron	R _{DS(ON)}	V _{BAT} = 4.2V, I _{SYS} = 1A		0.05	0.1	Ω
Re-Charge Threshold	ΔV_{REGCHG}	Battery Regulation - Recharge level	60	100	140	mV
Current Regulation	•					
Charge Current Setting Range	I _{CHG}		100		1200	mΑ
Charge Current Accuracy1	I _{CHG1}	V _{BAT} = 4V, A8.ISETA [3 : 0] = 4'b0101	570	600	630	mA
Charge Current Accuracy2	I _{CHG2}	VBAT = 3.8V, A8.ISETA [3 : 0] = 4'b0010	285	300	315	mA
		A7.ISETL = 1, A7.ISETU = 1 (1.5A Mode)	1.5	1.8	2.1	Α
VIN Current Limit	Luna van	A7.ISETL = 1, A7.ISETU = 0 (1A Mode)	0.85	0.925	1.0	Α
VIIV Garrent Limit	ILIM_VIN	A7.ISETL = 0, A7.ISETU = 1 (500mA mode)	450	475	500	mA
		A7.ISETL = 0, A7.ISETU = 0 (100mA Mode)	80	85	90	mA
Pre-Charge		,				
BAT Pre-Charge Threshold	V _{PRECH}	BAT Falling	2.7	2.8	2.9	V
BAT Pre-Charge Threshold Hysteresis	ΔV_{PRECH}			200	I	mV
Pre-Charge Current	I _{CHG_PRE}	V _{BAT} = 2V	5	10	15	%

Copyright ©2015 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Charge Termination Detection	n				•	
Termination Current Ratio to Fast Charge (Except USB 100 Mode)	I _{TERM}	A7.ISETL = 0, A7.ISETU = 1 Or A7.ISETL = 1, A7.ISETU = X	5	10	15	%
Termination Current Ratio to Fast Charge (USB100 Mode)	I _{TERM2}	A7.ISETL = 0, A7.ISETU = 0		3.3		%
Login Input/Output						
CHG Pull Down Voltage	VCHG	ICHG = 5mA		200		mV
CHG2 Pull Down Voltage	V _{CHG2}	I _{CHG2} = 5mA		200		mV
INT Pull Down Voltage	VINT	$I_{\overline{INT}} = 5mA$		200		mV
Protection						
Thermal Regulation Point	T _{REG}			125		°C
Thermal Shutdown Temperature	T _{SD}			155		°C
Thermal Shutdown Hysteresis	ΔT_{SD}			20		°C
Over-Voltage Protection	V _{OVP}	V _{IN} Rising	6.25	6.5	6.75	V
Over-Voltage Protection Hysteresis	ΔV_{OVP}	$V_{IN} = 7V$ to 5V, $VOVP - \Delta VOVP$		100		mV
Output Short Circuit Detection Threshold	V _{SHORT}	VBAT – VSYS		300		mV
Battery Installation Detection Threshold at TS		EN = H (PMU enabled), report at A10. NoBAT bit		90		% of VP
Time						
Input Over-Voltage Blanking Time	t _{OVP}			50		μS
Pre-Charge to Fast-Charge Deglitch Time	t _{PF}			25		ms
Fast-Charge to Pre-Charge Deglitch Time	t _{FP}			25		ms
Termination Deglitch Time	t _{TERMI}			25		ms
Recharge Deglitch Time	t _{RECHG}			100		ms
Input Power Loss to SYS LDO Turn-Off Delay Time	t _{NO_IN}			25		ms
Pack Temperature Fault Detection Deglitch Time	t _{TS}			25		ms
Short-Circuit Deglitch Time	tshort			250		μS
Short-Circuit Recovery Time	t _{SHORT-R}			64		ms
Other						
VP Regulation Voltage	V_{VP}	V _{SYS} = 4.2V	3.234	3.3	3.366	V
VP Load Regulation	V_{VP}	VP source out 2mA			-0.1	V

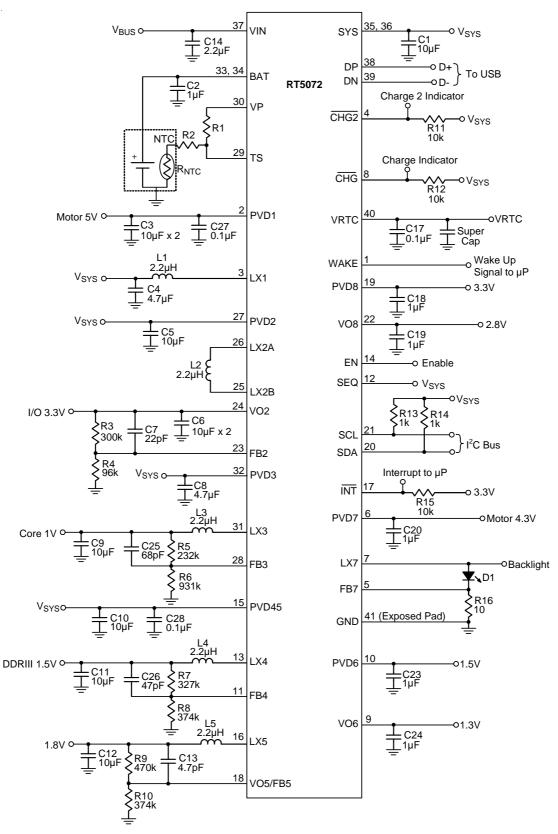
Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VP Under-Voltage Lockout Threshold		Falling Threshold		0.8		V
TS Battery Detect Threshold	V _{TS}		2.75	2.85	2.95	V
NTC Temperature Sense						
Low Temperature Trip Point	V _{TOO_COLD}	NTC = 100kΩ	73	74	75	% of VP
(0°C)	V _{TOO_COLD}	NTC = $10k\Omega$	59	60	61	% of VP
Low Temperature Trip Point	V _{COLD}	NTC = 100kΩ	63	64	65	% of VP
(10°C) for JEITA	V _{COLD}	NTC = $10k\Omega$	51	52	53	% of VP
High Temperature Trip Point	V _{HOT}	NTC = 100kΩ	34	35	36	% of VP
(45°C) for JEITA	V _{HOT}	NTC = 10kΩ	31	32	33	% of VP
High Temperature Trip Point	V _{TOO_HOT}	NTC = $100k\Omega$, A8.TSHT [1:0] = 2'b00	27	28	29	% of VP
(60°C)	Vтоо_нот	NTC = $10k\Omega$, A8.TSHT [1:0] = 2'b00	27	28	29	% of VP
High Temperature Trip Point Hysteresis for JEITA				1		% of VP
Charger Detection	•					
VDP_SRC Voltage	VDP_SRC	With IDAT_SRC = 0 to 200μA	0.5		0.7	V
VDAT_REF Voltage	VDAT_REF		0.25		0.4	V
VLGC Voltage	VLGC		0.8		2.0	V
IDP_SRC Current	IDP_SRC		6.6		11	μА
D+ and D- Sink Current	ICD+_SINK ICDSINK		50		150	μА
D- Pull down Resistor	RDDWN		14.25		24.8	kΩ
Data Contact Detect Debounce	TDCD_DBNC		10	15	20	ms
DCD Time OUT	TDCD_TO		150		450	ms
VDAT_SRC ON Time	TDP_SRC_ON		50		100	ms


(V_{SYS} = 3.3V, T_A = 25°C, unless otherwise specified)

Param	Parameter		Test Conditions	Min	Тур	Max	Unit
I ² C							
SDA, SCLK	High Level			1.4			V
Input Voltage	Low Level					0.6	V
SCLK Clock Rate	е	f _{SCL}				400	kHz
Hold Time (repeat Condition. After this period, pulse is generate	the first clock	t _{HD,STA}		0.6			μS
LOW Period of the	ne SCL Clock	t _{LOW}		1.3			μS
HIGH Period of t	he SCL Clock	tHIGH		0.6			μS
Set-Up Time for START Conditio		t _{SU,STA}		0.6			μS
Data Hold Time		t _{HD,DAT}		0		0.9	μS
Data Set-Up Tim		t _{SU,DAT}		100			ns
Set-Up Time for Condition	STOP	t _{SU,STO}		0.6			μS
Bus Free Time b		t _{BUF}		1.3			μS
Rise time of both SCL signals	SDA and	t _R		20		300	ns
Fall Time of Both SCL Signals	SDA and	t _F		20		300	ns
SDA and SCL O	utput Low Sink	I _{OL}	SDA or SCL voltage = 0.4V	2			mA

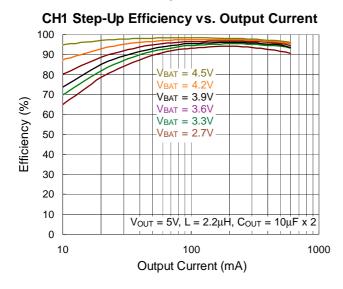
- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

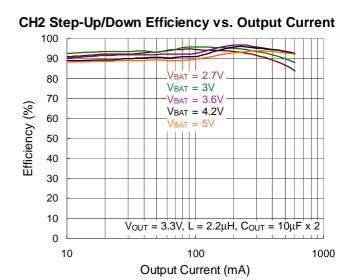

Typical Application Circuit

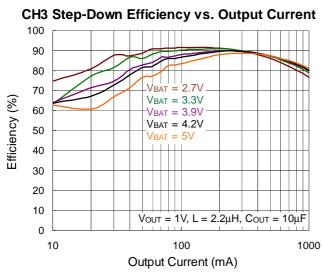
Note: To make CH1 stable, C27 must be close to PVD1. To make CH4 and CH5 stable, C28 must be close to PVD45.

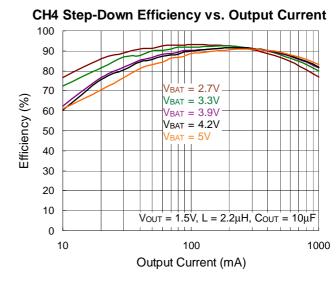
Figure 1. Typical Application Circuit for DSC with 6-LED Backlight

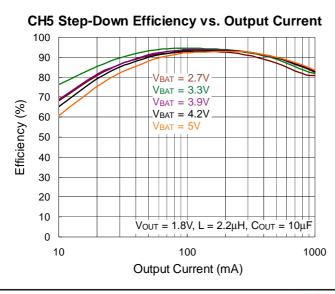
DS5072-00 March 2015

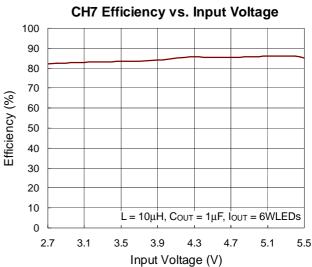

Note: To make CH1 stable, C27 must be close to PVD1. To make CH4 and CH5 stable, C28 must be close to PVD45.

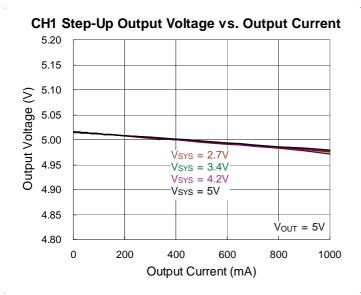

Figure 2. Typical Application Circuit for DSC with One LED Backlight

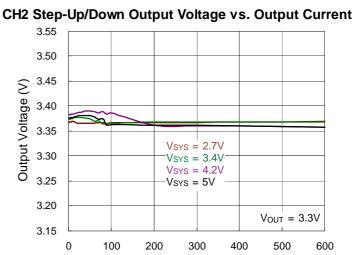


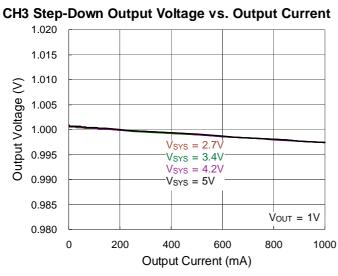

Typical Operating Characteristics

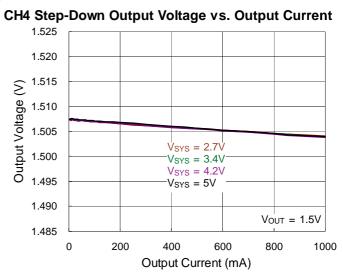

 $V_{IN} = 5V$, unless otherwise specified.

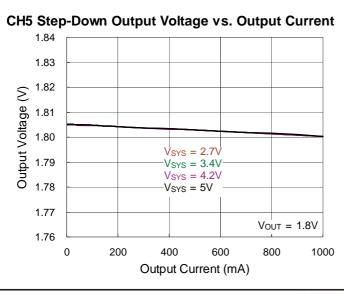


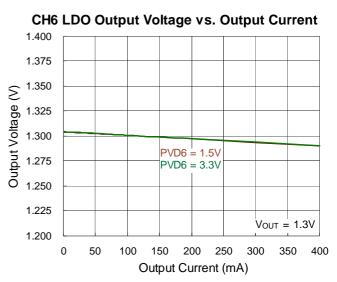




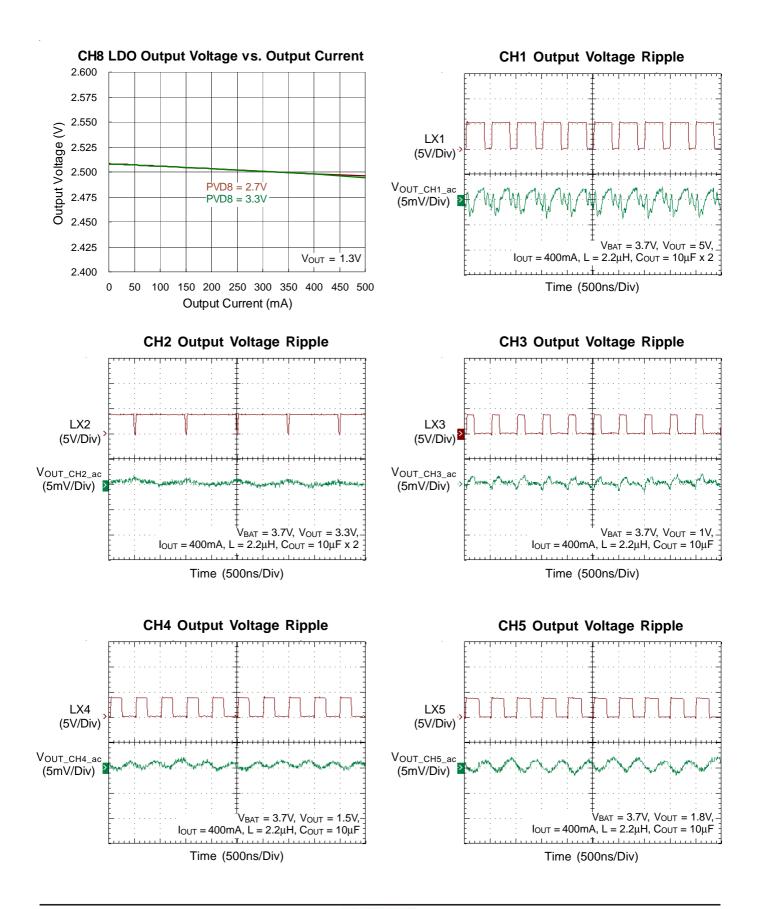


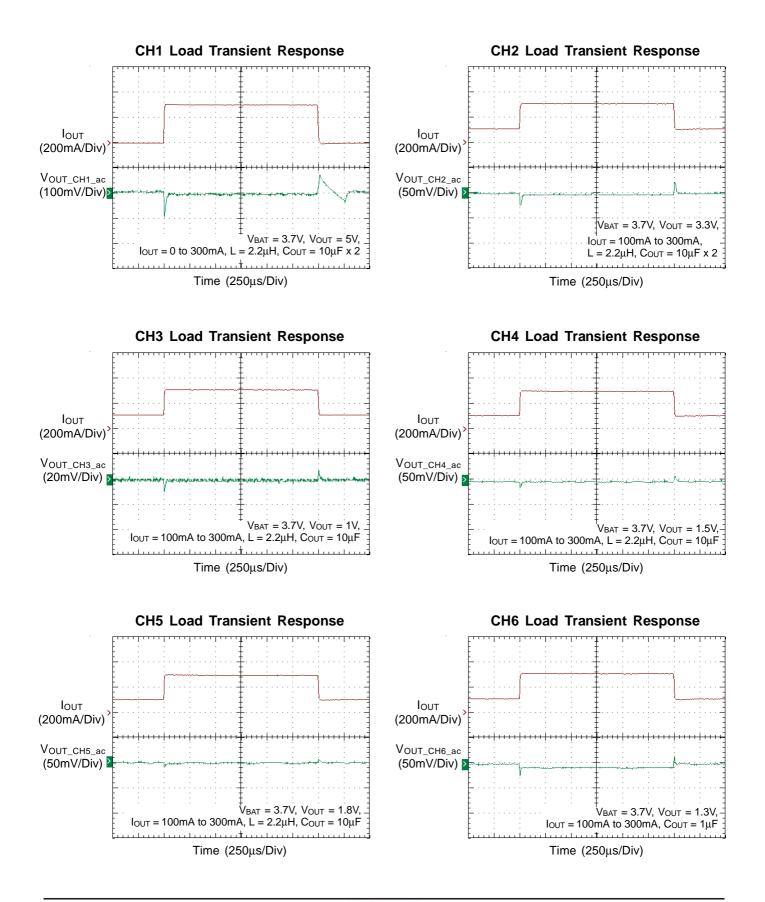




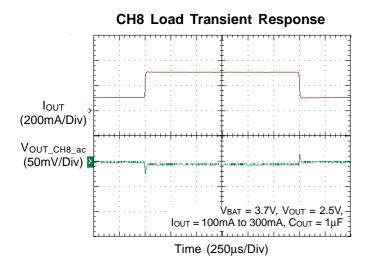


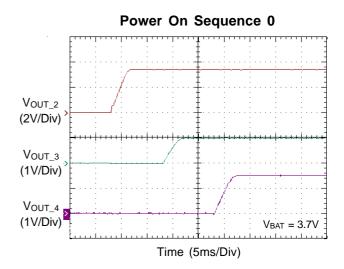
Output Current (mA)

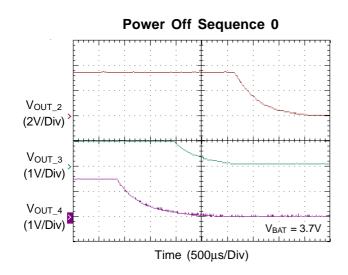


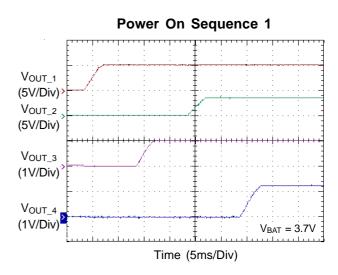

21

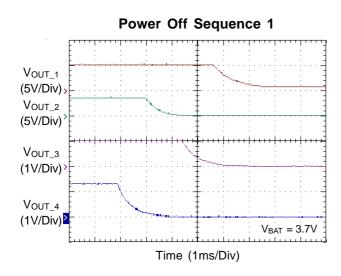
Copyright ©2015 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

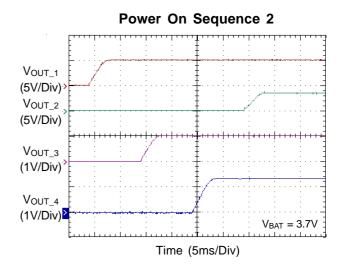


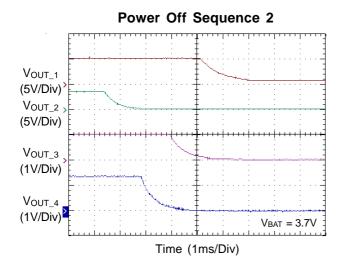


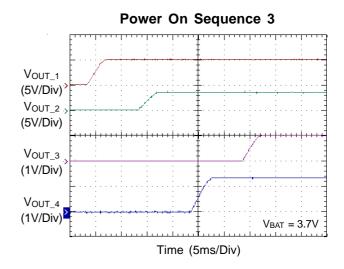


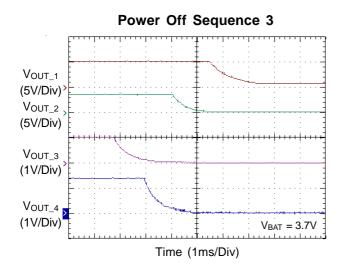

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

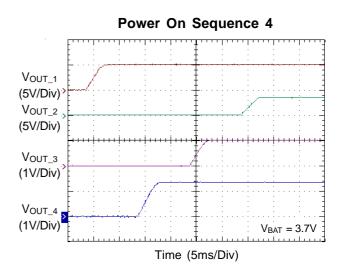


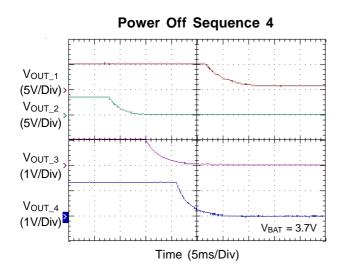


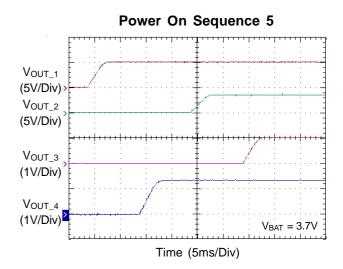


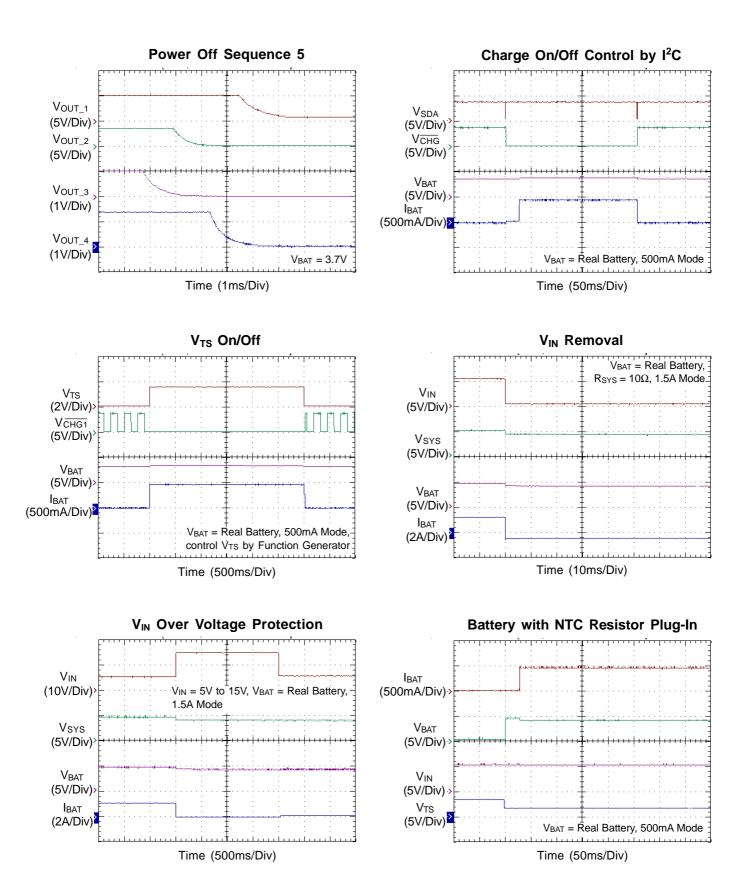


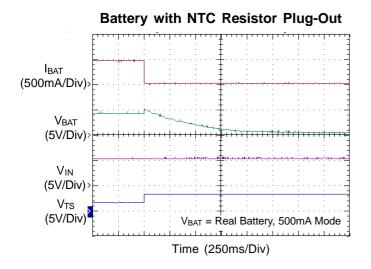




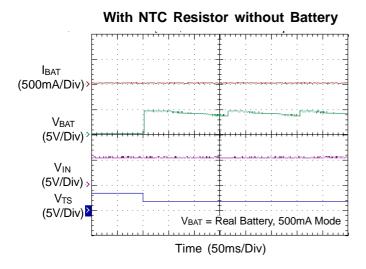


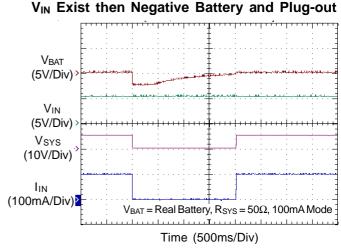


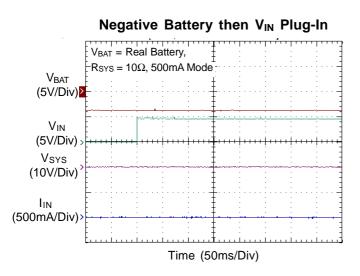


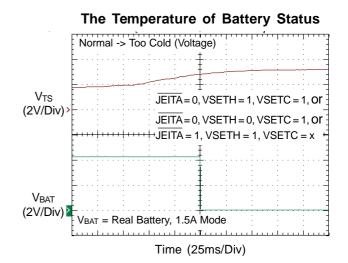


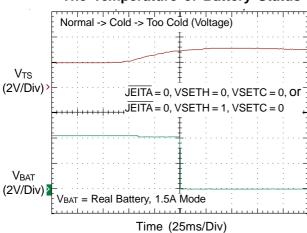




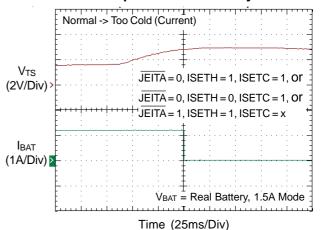


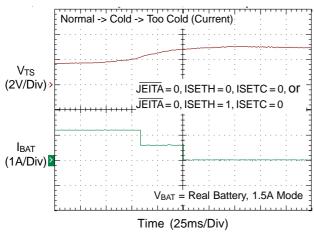


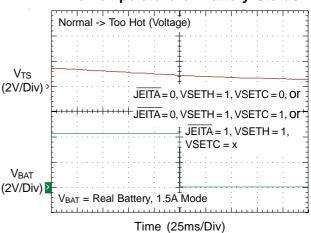


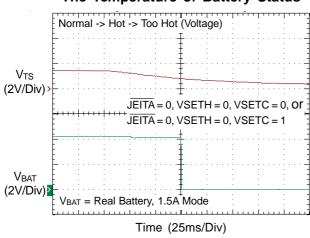


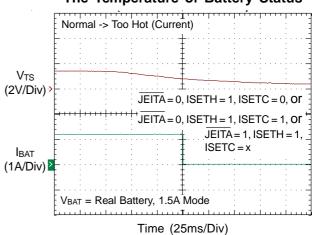
DS5072-00 March 2015 www.richtek.com

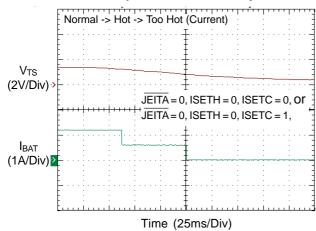

27

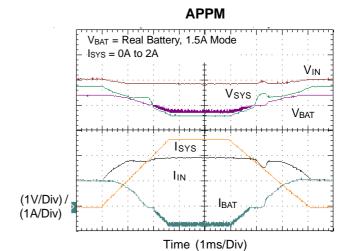

The Temperature of Battery Status


The Temperature of Battery Status

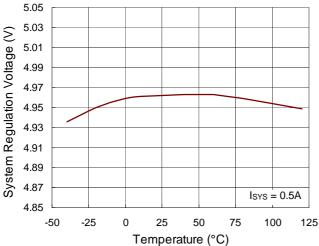

The Temperature of Battery Status

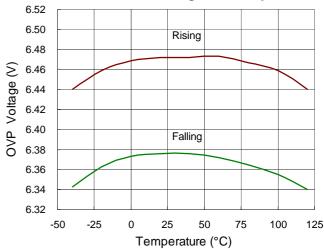

The Temperature of Battery Status

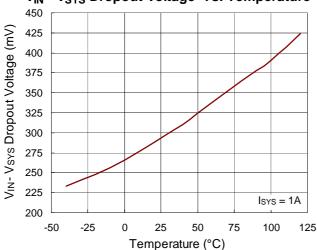

The Temperature of Battery Status

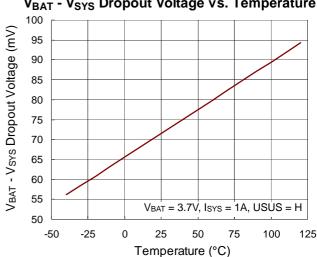


The Temperature of Battery Status

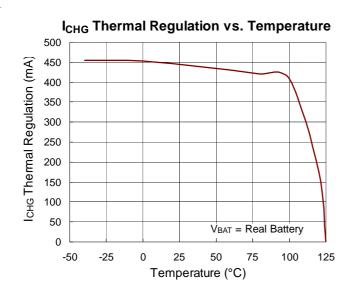


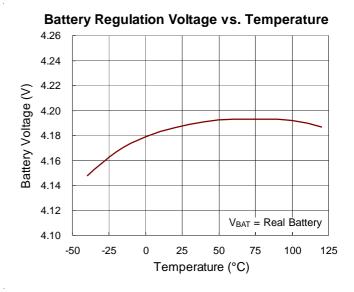


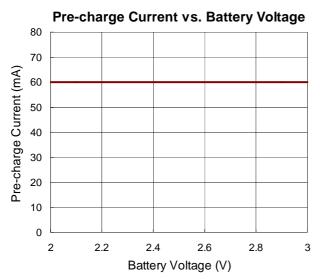

System Regulation Voltage vs. Temperature

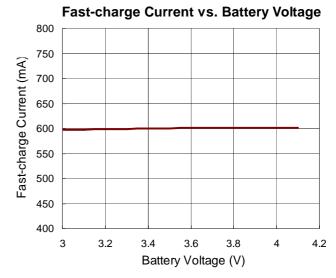


V_{IN} - V_{SYS} Dropout Voltage vs. Temperature


V_{BAT} - V_{SYS} Dropout Voltage vs. Temperature




Copyright ©2015 Richtek Technology Corporation. All rights reserved.


RICHTEK is a registered trademark of Richtek Technology Corporation.

Application Information

Power Converter Unit

The RT5072 is an integrated power solution for digital still cameras and other small handheld devices. It includes six DC/DC converters, a WLED driver, two low output LDO, a RTC LDO, and a fully integrated single-cell Li-ion battery charger that is ideal for portable applications.

CH1: Synchronous Step-Up DC/DC Converter

The synchronous step-up DC/DC converter can be operated in either PFM or Sync-PWM mode by setting I^2C . It includes internal power MOSFETs, compensation network and feedback resistors. The P-MOSFET can be controlled to disconnect output loading. It is suitable for providing power to the motor. The output voltage of CH1 can be adjusted by the I^2C interface in the range of 3.6V to 5.5V.

	CH1 regulation voltage can be selected by I ² C interface. The default voltage is 5V.							
	Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
VOUT1 [3:0]	0000	3.6V	0001	3.7V	0010	3.8V	0011	3.9V
V O O 1 1 [0.0]	0100	4V	0101	4.5V	0110	4.6V	0111	4.7V
	1000	4.8V	1001	4.9V	1010	5V	1011	5.1V
	1100	5.2V	1101	5.3V	1110	5.4V	1111	5.5V

CH2: Synchronous Step-Up/Down (Buck-Boost) DC/DC Converter

The synchronous step-up/down (Buck-Boost) DC/DC converter can be operated in either PFM or Sync-PWM mode by setting I²C. It includes internal power MOSFETs, compensation network and feedback resistors. This channel supplies the power for I/O. The FB voltage of CH2 can be adjusted by the I²C interface in the range of 0.72V to 0.86V.

	FB2 regulati	FB2 regulation voltage can be selected by I ² C interface. The default voltage is 0.8V.								
	Code	VREF	If Target = 1.8V	If Target = 1V	If Target = 3.3V					
	000	0.72V	1.62V	0.9V	2.97V					
	001	0.74V	1.665V	0.925V	3.0525V					
FB2 [2:0]	010	0.76V	1.71V	0.95V	3.135V					
1 52 [2.0]	011	0.78V	1.755V	0.975V	3.2175V					
	100	0.8V	1.8V	1V	3.3V					
	101	0.82V	1.845V	1.025V	3.3825V					
	110	0.84V	1.89V	1.05V	3.465V					
	111	0.86V	1.935V	1.075V	3.5475V					

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

CH3 to CH4: Step-Down Synchronous DC/ DC Converter

The step-down synchronous DC/DC converters include internal power MOSFETs and compensation network. It support PFM or Sync-PWM mode by setting I²C. These channels supply the power for core and DRAM. They can be operated at 100% maximum duty cycle to extend battery operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode with low output ripple. The FB voltage of CH3 and CH4 can be adjusted by the I²C interface in the range of 0.72V to 0.86V.

	FB3 regulation vo	FB3 regulation voltage can be selected by I ² C interface. The default voltage is 0.8V.							
	Code	VREF	If Target = 1.8V	If Target = 1V	If Target = 3.3V				
	000	0.72V	1.62V	0.9V	2.97V				
	001	0.74V	0.74V 1.665V 0.925V		3.0525V				
FB3 [2:0]	010	0.76V	1.71V	0.95V	3.135V				
1 03 [2.0]	011	0.78V	1.755V	0.975V	3.2175V				
	100	0.8V	1.8V	1V	3.3V				
	101	0.82V	1.845V	1.025V	3.3825V				
	110	0.84V	1.89V	1.05V	3.465V				
	111	0.86V	1.935V	1.075V	3.5475V				

	FB4 regulation voltage can be selected by I ² C interface. The default voltage is 0.8V								
	Code	VREF	If Target = 1.8V	If Target = 1V	If Target = 3.3V				
	000	0.72V	1.62V	0.9V	2.97V				
	001	0.74V 1.665V		0.925V	3.0525V				
FB4 [2:0]	010	0.76V	6V 1.71V 0.95V		3.135V				
1 54 [2.0]	011	0.78V	1.755V	0.975V	3.2175V				
	100	0.8V	1.8V	1V	3.3V				
	101	0.82V	1.845V	1.025V	3.3825V				
	110	0.84V	4V 1.89V 1.05V		3.465V				
	111	0.86V	1.935V	1.075V	3.5475V				

If CH3/CH4 input voltage (PVD3/PVD45) is higher than 4.2V and the output voltage is lower than 1.5V, a feed forward capacitor can be added to improve the transient response.

The capacitance can be estimated by the following equation:

$$C_{ff} = \frac{15.5 \times 10^{-6}}{R1}$$

For example, when R1 is $470k\Omega$, the available feed-forward capacitor is 33pF.

CH5: Step-Down Synchronous DC/ DC Converter

The step-down synchronous DC/DC converter includes internal power MOSFETs and compensation network. They can be operated at 100% maximum duty cycle to extend battery operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode with low output ripple. The output voltage can be selected as the following list or set by external feedback network.

	CH5 regulation voltage can be selected by I ² C interface. The default voltage is 1.8\								
	Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage	
	0000	REF	0001	1.1V	0010	1.2V	0011	1.3V	
VOUT5 [3:0]	0100	1.4V	0101	1.5V	0110	1.6V	0111	1.7V	
1 00 10 [0.0]	1000	1.8V	1001	2V	1010	2.2V	1011	2.3V	
	1100	2.5V	1101	2.6V	1110	2.7V	1111	2.8V	
		OUT5 [3:0] : target is 0.8	,	EF) means	using exte	rnal feedba	ck networ	and FB5	

CH6: Low Voltage LDO

CH6 is a low voltage LDO and its output voltage is controlled by I^2C interface. This supplies the multiple purpose power. The output voltage of CH6 can be adjusted by the I^2C interface in the range of 1.1V to 3.3V.

	CH6 regulation voltage can be selected by I ² C interface. The default voltage is 1.3V.								
	Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage	
VOUT6 [3:0]	0000	Switch	0001	1.1V	0010	1.2V	0011	1.3V	
VO016 [3.0]	0100	1.4V	0101	1.5V	0110	1.6V	0111	1.7V	
	1000	1.8V	1001	2V	1010	2.2V	1011	2.5V	
	1100	2.8V	1101	3.1V	1110	3.2V	1111	3.3V	

CH7: Current Source/Step-Up WLED Driver

The WLED drivers operating in either current source mode or synchronous step-up mode include internal power MOSFET and compensation network. The operation mode is determined by setting I²C. The P-MOSFET in step-up mode can be controlled to disconnect the output loading.

When CH7 works in current source mode, it likes a LDO and regulates the current by FB7 voltage. The LED current is defined by the FB7 voltage as well as the external resistor between FB7 and GND. The FB7 regulation voltage can be set in 31 steps from 8mV to 250mV. If CH7 works in synchronous step-up mode, it can support an output voltage up to 15V or 21V controlled by I²C interface. The LED current is also set via an external resistor and FB7 regulation voltage.

The WLED current can be set by the following equation:

ILED (mA) = $[250 \text{mV} / \text{R} (\Omega)] \times \text{EN7_DIM7} [4:0] / 31$

where R is the current sense resistor from FB7 to GND and for the EN7_DIM7 [4:0] / 31 ratio, refer to the I²C control register file.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

CH8: Low Voltage LDO

CH8 is a low voltage LDO and its output voltage is controlled by I^2C interface. It supplies for multiple purpose power. The output voltage of CH8 can be adjusted by the I^2C interface in the range of 1.1V to 3.3V.

	CH8 regulation voltage can be selected by I ² C interface. The default voltage is 2.8V.								
	Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage	
VOUT8 [3:0]	0000	Switch	0001	1.1V	0010	1.2V	0011	1.3V	
V 00 10 [0.0]	0100	1.4V	0101	1.5V	0110	1.6V	0111	1.7V	
	1000	1.8V	1001	2V	1010	2.2V	1011	2.5V	
	1100	2.8V	1101	3.1V	1110	3.2V	1111	3.3V	

RTC_LDO: Accuracy 3.05V LDO Output.

The RT5072 provides a 3.05V output LDO for real-time clock. The LDO features low quiescent current ($3\mu A$), reverse leakage prevention from output node and high output voltage accuracy. This LDO is always on, even when the system is shut down. For better stability, it is recommended to connect a 0.1 μF capacitor to the RTCPWR pin. The RTC LDO includes pass transistor body diode control to avoid the RTCPWR node from back-charging into the input node VDDI.

Switching Frequency

The converters of CH1, CH3, CH4 and CH5 operate in PWM mode with 2MHz switching frequency. The converters of CH2 and CH7 operates in PWM mode with 1MHz switching frequency.

Power-On/Off Sequence and deglitch function for CH1 to CH4

SEQ pull down resistance R_{SEQ} defines power on/off sequence.

SEQ#	R _{SEQ} (kΩ) Range						
JLQ#	Min	Тур	Max				
SEQ #0	Sho	rt to Power (>	0.2V)				
SEQ #1	25	40	64				
SEQ #2	6.25	10	16				
SEQ #3	1.56	2.5	4				
SEQ #4		0.63	1				
SEQ #5	100	160					

SEQ # 0 : CH2 CH3 CH4

(CH1 is decided by register A4 bit3.)

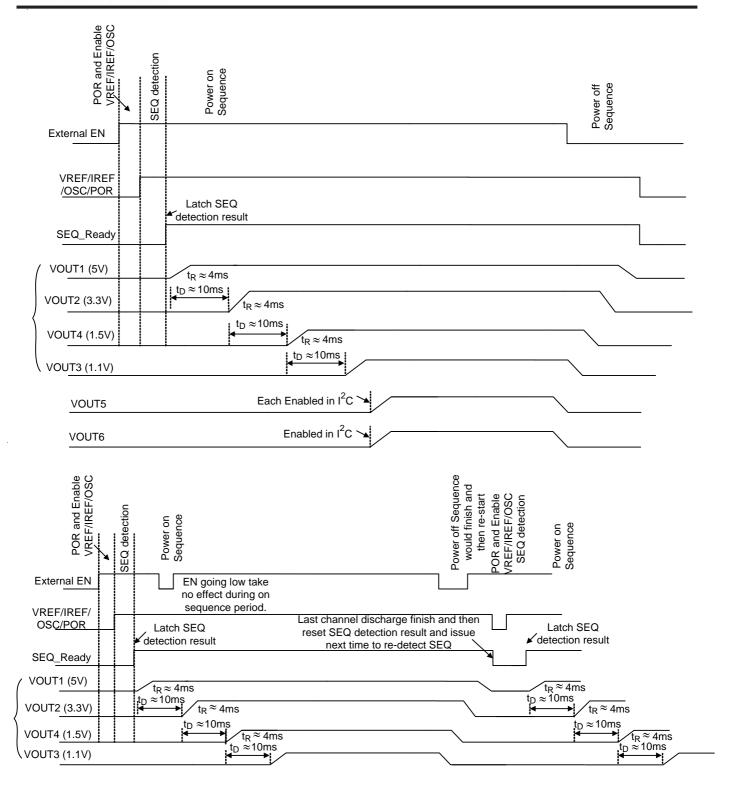
SEQ #1: CH1 \rightarrow CH3 \rightarrow CH2 \rightarrow CH4 SEQ #2: CH1 \rightarrow CH3 \rightarrow CH4 \rightarrow CH2 SEQ #3: CH1 \rightarrow CH2 \rightarrow CH4 \rightarrow CH3 SEQ #4: CH1 \rightarrow CH4 \rightarrow CH3 \rightarrow CH2 SEQ #5: CH1 \rightarrow CH4 \rightarrow CH2 \rightarrow CH3

Floating = resistance greater than $160k\Omega$ = SEQ#5

The power-on sequence of CH1 to CH4 is shown below:

(Using SEQ #3 : CH1 \rightarrow CH2 \rightarrow CH4 \rightarrow CH3 to explain)

When EN1234 goes high, CH1 will be turned on first then CH2 will be turned on after CH1 turn on for 10ms, likewise, CH4 will be turned on after CH2 turns on for 10ms. Finally, CH3 is turned on after CH4 turns on for 10ms. The soft-start time is 4ms for each channel.


The power-off sequence of CH1 to CH4 is:

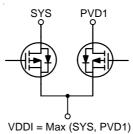
When EN1234 goes low, CH3 will turn off first and internally discharge output via LX3 pin. When FB3 < 0.1V, CH4 will turn off and also internally discharge output via the LX4 pin. When FB4 < 0.1V, CH2 will turn off and internally discharge output via the LX2 pin. Likewise, when FB2 < 0.1V, CH1 will turn off and discharge output. After FB1 < 0.1V, CH1 to CH4 shutdown sequence is completed.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS5072-00 March 2015

During On sequence period, EN goes low would not take effect. After the sequence finishes, the EN state would be re-checked and decide to keep on or start off sequence.

During Off sequence period, EN goes high would not take effect. After the sequence finishes, the EN state would be re-checked and decide to keep off or start on sequence.


Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

35

VDDM Bootstrap

To support bootstrap function, the RT5072 provides a power selection circuit which selects the maximum voltage between SYS and PVD1 to support the power requirement at node VDDI. The RT5072 includes UVLO circuits to monitor VDDI and SYS voltage status.

Charger Unit

The RT5072 includes a Li-ion battery charger with Automatic Power Path Management. The charger is designed to operate in below modes:

▶ Pre-Charge Mode

When the output voltage is lower than 2.8V, the charging current will be reduced to a ratio of the fast-charge current set by A8.ISETA [3:0] to protect the battery life-time. The timing diagram is showed in Figure 3.

▶ Fast-Charge Mode

When the output voltage is higher than 3V, the charging current will be equal to the fast-charge current set by A8.ISETA [3:0] shown as Figure 3.

▶ Constant Voltage Mode

When the output voltage is near 4.2V and the charging current falls below the termination current for a deglitch time of 25ms, the charger will be disabled and CHG will go high. The timing diagram is showed in Figure 3.

▶ Re-Charge Mode

When the chip is in charge termination mode, the charging current gradually goes down to zero. Once the battery voltage drops to below 4.1V for a deglitch time of 100ms, the charger will resume charging shown as Figure 3.

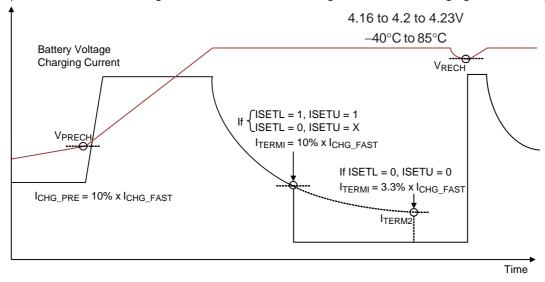
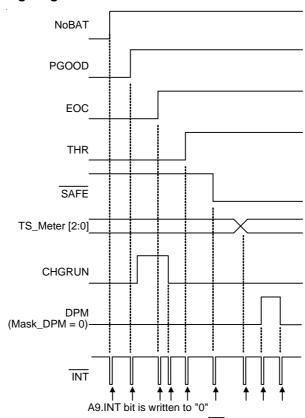


Figure 3

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.


Interrupt Indicator

The RT5072 provides an interrupt indicator output pin (INT). INT is an open-drain output which is controlled by A9.INT bit. When the PGOOD, TS_Meter [2:0], EOC, THR, SAFE, NoBAT, CHGRUN, DPM status bits toggle, the A9.INT bit will be set to high. In order to reset the interrupt status, a "0" must be written to the A9.INT bit or power on the PMU again. The timing diagram is shown below:

Interrupt vs. Events (I²C Status Bits)

INT assert		s on with event lition	ith event During PMU		
(Turn to low)	No Event (0)	Event has occurred (1)	Event appear (0 → 1)	Event disappear $(1 \rightarrow 0)$	
PGOOD	No	Yes	Yes	Yes	
NoBAT	No	Yes	Yes	Yes	
TS_METER [2:0] = 000 (Event may be cold or hot, VP UVLO, NoBAT)	No	Yes	Yes	Yes	
EOC	No	Yes	Yes	Yes	
THR	No	Yes	Yes	Yes	
SAFE	No	Yes	Yes	Yes	
DPM	No	Yes	Yes	Yes	
CHGRUN	No	No	No	Yes	

INT vs. Fault/Status Timing Diagram

When the A9.INT bit is written to "0", the INT will be set to high.

When Mask_DPM = 1 and DPM event change, the INT would not be asserted.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Battery Installation Detection

The RT5072 also detects TS voltage to monitor the battery status. If PMU is enabled but TS voltage > 90% of VP node voltage, the RT5072 sets the bit.

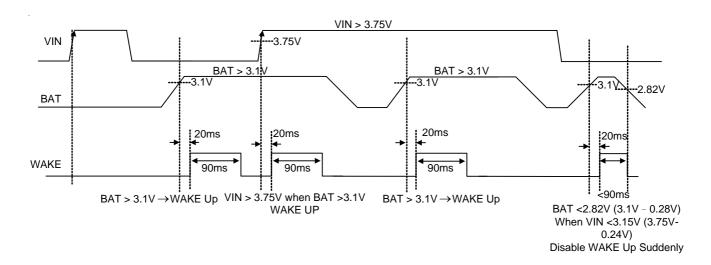
NoBAT = 1 an I^2 C register A10.NoBAT and sets A9.INT bit to "1".

NoBAT	1	No Battery Installed (TS > 90% of VP)
INODAT	0	BAT Installed

VIN Power Good Status

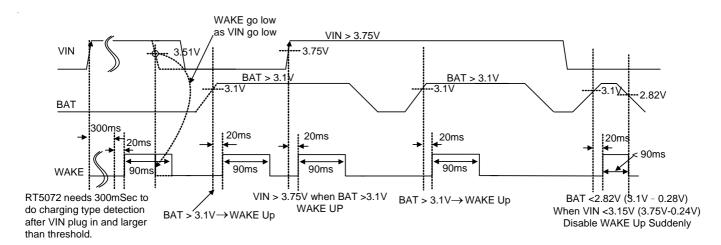
	0	VIN < VUVLO
PGOOD	0	VUVLO < VIN < VBAT + VOS_L
FGOOD	1	VBAT + VOS_H < VIN < VOVP
	0	VIN > VOVP

End_Of_Charge (EOC) Status

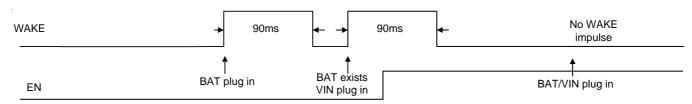

The bit EOC in I²C register A10.EOC can show the EOC status. If EOC = 1, the charger is in EOC state and A9.INT bit is set to "1"

EOC	1	Charging Done or Recharging after Termination
200	0	During Charging

Wake-Up Detector


Wake-Up Detector detects VIN or BAT plug-in events. Once BAT plugs in or VIN plugs in for a 19ms deglitch time, the WAKE pin will provide a 90ms width high pulse. The timing diagram is shown as below:

SDP



CDP/DCP

When external EN pin go high, WAKE UP impulse would be masked off. WAKE impulse width 90ms can not be cut by EN = H

Suspend Mode

When USUS = 1, the charger will enter Suspend Mode. In Suspend Mode, the \overline{CHG} pin is high impedance and IUSUS(MAX) < $300\mu A$.

Charging Current Decision

The charge current can be set according to the I²C register A8.ISETA [3:0] setting:

	RT5072 value is		set the	battery charge	current le	evel and the list	as belo	w. The default
	Code	BAT Charge Current	Code	BAT Charge Current	Code	BAT Charge Current	Code	BAT Charge Current
ISETA [3:0]	0000	0.1A	0001	0.2A	0010	0.3A	0011	0.4A
	0100	0.5A	0101	0.6A	0110	0.7A	0111	0.8A
	1000	0.9A	1001	1A	1010	1.1A	1011	1.2A
	1100	1.2A	1101	1.2A	1110	1.2A	1111	1.2A

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Fault-Time

During the fast charge phase, several events may increase the charging time.

For example, the system load current may have activated the APPM loop which reduces the available charging current or the device has entered thermal regulation because the IC junction temperature has exceeded TREG.

However, once the duration exceeds the fault-time, the CHG output pin will flash at approximately 4Hz to indicate a fault condition and the charge current will be reduced to about 1mA.

There are four methods to release the Fault-time:

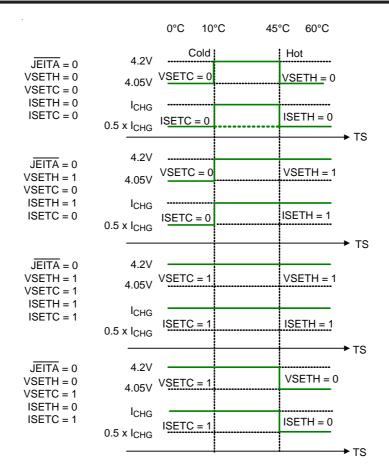
- ▶ Re-plug power
- ▶ Toggle EN
- Enter/exit suspend mode
- Remove Battery
- OVP

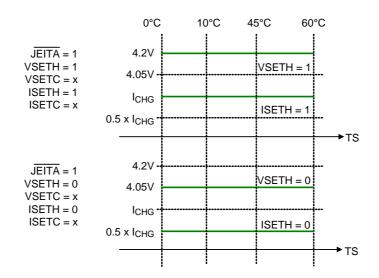
The fault-time is inverse proportional to the charger current.

Fault-Time
$$\alpha \frac{1}{\text{Icharge}}$$

Example:

If the sensing battery temperature is hot or cold, the charge current will reduce to half charge current. So, the fault-time will increase to be double.


JEITA Battery Temperature Standard


CV regulation voltage will be changed in the following battery temperature ranges: 0°C to 10°C and 45°C to 60°C.

This function can be disabled by A9.VSETH and A9.VSETC.

CC regulation current will be changed in the following battery temperature ranges: 0°C to 10°C and 45°C to 60°C.

This function can be disabled by A9.ISETH and A9.ISETC.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Battery Pack Temperature Monitoring

The battery pack temperature monitoring function can be realized by connecting the TS pin to an external Negative Temperature Coefficient (NTC) thermal resistor to prevent over temperature condition. Charging is suspended when the voltage at the TS pin is out of normal operating range. The internal timer is then paused, but the value is maintained.

When the TS pin voltage returns to normal operating range, charging will resume and the safe charge timer will continue to count down from the point where it was suspended. Note that although charging is suspended due to the battery pack temperature fault, the $\overline{\text{CHG}}$ pin will flash at 0.5Hz and indicate charging.

The 3.3V at the VP pin is buffered by the RT5072 once it is in charging state or its PMU part is enabled. If a $100k\Omega$ NTC thermal resistor is used, the A0.TSSEL bit should be set to "1". If a $10k\Omega$ NTC thermal resistor is used, the A0.TSSEL bit should be set to "0". The TSSEL bit determines the TS threshold levels for 0°C and 60°C. It also defines the TS threshold levels used in JEITA operation. The choosing method of R1 and R2 to meet battery temperature monitoring shows as below.

Case 1 : TSSEL = H (For $100k\Omega$ NTC) :

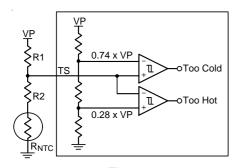


Figure 4

Case 2 : TSSEL = L (For $10k\Omega$ NTC) :

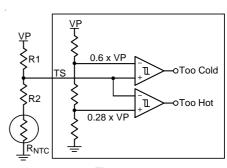


Figure 5

Too Cold Temperature

 $R_{COLD} = R_{NTC}$

Too Hot Temperature

 $R_{HOT} = R_{NTC}$

$$\frac{R2 + R_{COLD}}{R_{COLD} + R1 + R2} = 0.74 -----(1)$$

$$\frac{R2 + R_{HOT}}{R_{HOT} + R1 + R2} = 0.28 -----(2)$$

$$R1 = \frac{R_{COLD} - R_{HOT}}{2.457}$$

 $R2 = 0.389 \times R1 - R_{HOT}$

If R2 < 0

$$\frac{R_{COLD}}{R_{COLD} + R1} = 0.74$$
 -----(3)

Form (3)

$$R1 = \frac{R_{COLD}}{0.74} - R_{COLD}$$

Too Cold Temperature

 $R_{COLD} = R_{NTC}$

Too Hot Temperature

 $R_{HOT} = R_{NTC}$

$$\frac{R2 + R_{COLD}}{R_{COLD} + R1 + R2} = 0.6 -----(1)$$

$$\frac{R2 + R_{HOT}}{R_{HOT} + R1 + R2} = 0.28 -----(2$$

Form (1), (2)

$$R1 = 0.9 \times (R_{COLD} - R_{HOT})$$

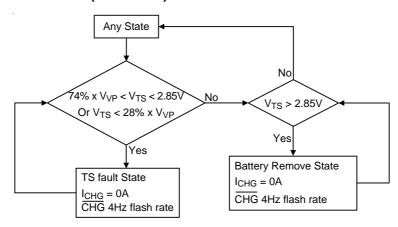
$$R2 = 0.388 \times R1 - R_{HOT}$$

If R2 < 0

$$\frac{R_{COLD}}{R_{COLD} + R1} = 0.6$$
 -----(3)

Form (3)

$$R1 = \frac{R_{COLD}}{0.6} - R_{COLD}$$


Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

The Control Temperature Used in JEITA Operation

The above calculation gives R1 and R2. JEITA control thresholds for full charging current and 4.2V regulation voltage are at TS/VP ratio = 32% and 52% (for TSSEL = L), 35% and 64% (for TSSEL = H). With the ratio, the corresponding NTC thermistor resistances from the resistors in the voltage divider circuit can be obtained. According to the NTC resistances, the corresponding temperatures can be found. The two temperatures are the control temperatures used in JEITA operation.

Operation State Diagram for TS Pin (TSSEL = H)

Power Switch

For the charger, there are three power scenarios:

- When a battery and an external power supply (USB or adapter) are connected simultaneously If the system required load exceeds the input current limit, the battery will be used to supplement the current to the load. However, if the system load is less than the input current limit, the excess power from the external power supply will be used to charge the battery.
- When only the battery is connected to the system The battery provides the power to the system.
- When only an external power supply is connected to the system.
 The external power supply provides the power to the system.

Input DPM Mode

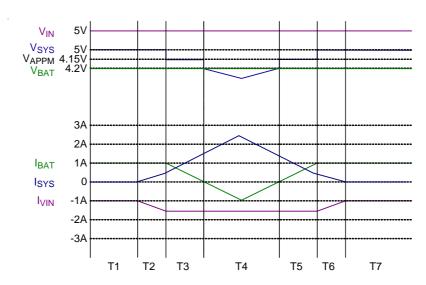
For the charger, the input voltage is monitored when USB100 or USB500 is selected. If the input voltage is lower than VDPM, the input current limit will be reduced to stop the input voltage from dropping further. This can prevent the IC from damaging improperly configured or inadequately designed USB sources.

If VIN charger type is detected as SDP, the DPM function always is enabled.

For other types, the DPM function always is disabled but user can set A0.ENDPM to turn on the DPM function.

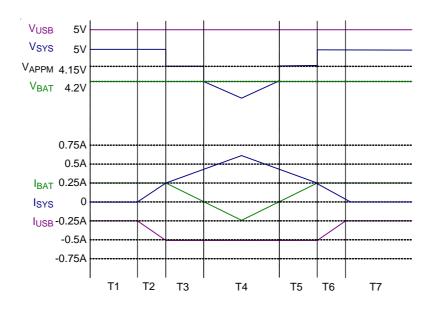
	Enable the charger VIN DPM function. But if VIN charger type is detected as SDP (CHG_TYP [2:0] = 000), the DPM function always is enabled.
ENDPM	0 : VIN DPM function disabled.
	1 : VIN DPM function enabled.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



APPM Mode

Once the sum of the charging current and system load current is higher than the maximum input current limit, the SYS pin voltage will be reduced. When the SYS pin voltage is reduced to VAPPM, the RT5072 will automatically operate in APPM mode. In this mode, the charging current is reduced while the SYS current is increased to maintain system output. In APPM mode, the battery termination function is disabled.


APPM Profile

1.5A Mode:

	I _{SYS}	V _{SYS}	I _{VIN}	I _{BAT}
T1, T7	0	SYS Regulation Voltage	CHG_MAX	CHG_MAX
T2, T6	< I _{VIN_OC} – CHG_MAX	SYS Regulation Voltage	I _{SYS} + CHG_MAX	CHG_MAX
T3, T5	$> I_{VIN_OC} - CHG_MAX < I_{VIN_OC}$	Auto Charge Voltage Threshold	V _{IN_OC}	V _{IN_OC} - I _{SYS}
T4	> I _{VIN_OC}	V _{BAT} – I _{BAT} x R _{DS(ON)}	V _{IN_OC}	I _{SYS} – I _{VIN_OC}

500mA Mode:

Copyright ©2015 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

DS5072-00 March 2015

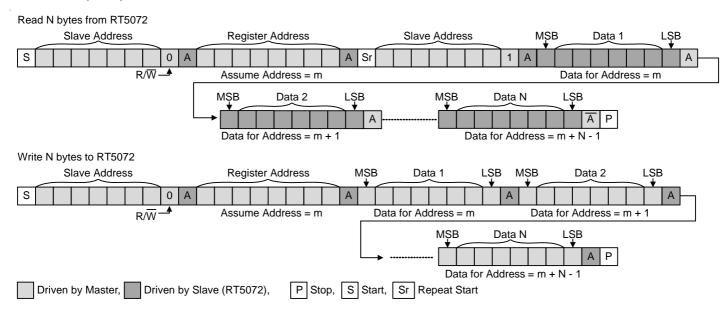
	I _{SYS}	V _{SYS}	I _{USB}	I _{BAT}
T1, T7	0	SYS Regulation Voltage	CHG_MAX	CHG_MAX
T2, T6	< I _{VIN_OC} (USB) - CHG_MAX	SYS Regulation Voltage	I _{SYS} + CHG_MAX	CHG_MAX
T3, T5	> I _{VIN_OC} (USB) - CHG_MAX < I _{VIN_OC} (USB)	Auto Charge Voltage Threshold	I _{VIN_OC} (USB)	I _{VIN_OC} (USB) – I _{SYS}
T4	> I _{VIN_OC} (USB)	V _{BAT} – I _{BAT} x R _{DS(ON)}	I _{VIN_OC} (USB)	I _{SYS} – I _{VIN_OC} (USB)

Battery Supplement Mode Short Circuit Protect

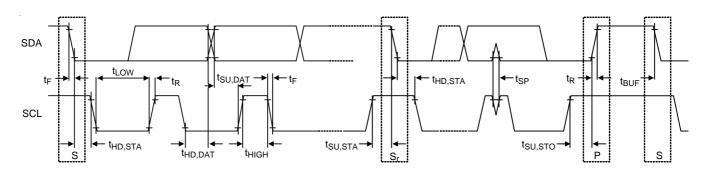
In APPM mode, the SYS voltage will continue to drop if the charge current is zero and the system load increases beyond the input current limit. When the SYS voltage decreases below the battery voltage, the battery will kick in to supplement the system load until the SYS voltage rises above the battery voltage.

While in supplement mode, there is no battery supplement current regulation. However, a built-in short-circuit protection feature is available to prevent any abnormal current situation. While the battery is supplementing the load, if the difference between the battery and SYS voltage exceeds the short-circuit threshold voltage, SYS will be disabled. After a short-circuit recovery time, t_{SHORT_R} , the counter will be restarted. In supplement mode, the battery termination function is disabled. Note that the battery supply mode exiting condition is $V_{BAT} - V_{SYS} < 0V$.

Thermal Regulation and Thermal Shutdown

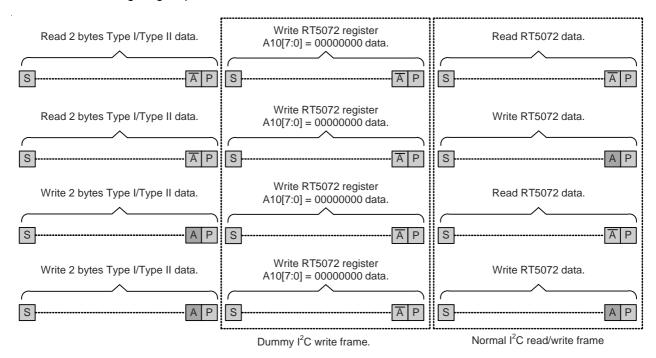

The charger provides a thermal regulation loop function to monitor the device temperature. If the die temperature rises above the regulation temperature, T_{REG} , the charge current will automatically be reduced to lower the die temperature. However, in certain circumstances (such as high VIN, heavy system load, etc) even with the thermal loop in place, the die temperature may still continue to increase. In this case, if the temperature rises above the thermal shutdown threshold, T_{SD} , the internal switch between VIN and SYS will be turned off. The switch between the battery and SYS will remain on however, to allow continuous battery power to the load. Once the die temperature decreases by ΔT_{SD} , the internal switch between VIN and SYS will be turned on again and the device returns to normal thermal regulation. The internal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

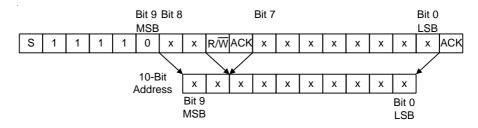


I²C Interface

RT5072 I²C slave address = 0010010 (7 bits). I²C interface supports fast mode (bit rate up to 400kb/s). The write or read bit stream (N 1) i≩shown below:



I²C Waveform Information


46

When the RT5072 and other I^2C devices with 10-bit slave addressing (type I) or two-byte register addressing (type II) coexist in one I^2C bus, the RT5072 needs one dummy I^2C write frame to reset the RT5072 internal I^2C operation state. The below shows a dummy write frame example, that is to write the RT5072 register A10 [7:0] = 00000000. Master should ignore the write operation (This operation is invalid). After the dummy frame, the master can read/write formal I^2C frame for the RT5072 to get right operation.

Type I: 10-bit slave address data format

In 10-bit addressing, the slave address is sent in the first two bytes. The first byte begins with the special reserved address of 11110XX which indicates that 10-bit addressing is being used.

Type II: 2-byte register address data format

DS5072-00 March 2015

The register address is combined with 2-byte as below.

Copyright © 2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

I²C Register File

Address Name	Regis	ter Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)	
		Meaning	RST_P	RST_C	OVP7	Reserved	ENDPM	TSD	MOD7	TSSEL	
A0	0x00	Default	1	0	0	X	0	0	0	1	
		Read/Write	R/W	R/W	R/W		R/W	R/W	R	R/W	
	RST_	P	RT5072 would reset PMU-related registers under any one of the below two conditions: 1) VDDI < 1.3V 2) (EN pin = low and A0.RST_P = 1) In the 2 nd condition, RT5072 uses the register bit A0.RST_P to decide whether the PMU-related registers are reset or not when EN pin goes low. 0: Don't reset register (0x3 to 0x6)								
	RST_	С	RT5072 wo conditions: 1) VIN < 4 2) VDDI < 3) (BAT < In the 3 rd co Charge-rela 0: Don't res	egister (0x3 to 0x6). Fould reset Charge-related register under any one of the below three of the below thr							
			CH7 allow user to select the OVP level by I ² C interface								
	OVP.	7	0 : 16V OVP								
			1 : 25V OVI	Р							
	ENDP	M	Enable the charger VIN DPM function. But if VIN charger type is detected as SDP (CHG_TYP [2:0] = 000), the DPM function always is enabled.								
	LINDI	IVI	0 : VIN DPN								
			1 : VIN DPN								
	TOD		Report whether thermal shutdown of PMU ever occurs. Reset it by writing 0 into the bit or (VDDI < 1.3V).								
	TSD		0 : Thermal								
			1 : Thermal	Shutdown	event ev	er occurs.					
			Report the	result of C	H7 mode	detection.					
	MOD	7	0 : Current	Source.							
			1 : Boost.								
			TS/VP ratio	setting for	battery te	emperature.					
	TSSE	EL	0 : TS/VP =	60% (0°C), 28% (60	O°C)					
			1 : TS/VP =	74% (0°C), 28% (60	O°C)		N pin goes low. under any one of the below three bit A0.RST_C to decide whether the BAT < 3.1V. interface IN charger type is detected as SD ays is enabled.			

Address Name	Regis	ster Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)
		Meaning	ERR1	ERR2	ERR3	ERR4	ERR5	ERR6	ERR7	ERR8
A1	0x01	Default	0	0	0	0	0	0	0	0
		Read/Write	RW	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	2544	-0.00	Report wh Reset it by					8 ever oc	curs resp	ectively.
E	ERR1 to ERR8			0 : No protection event occurs.						
			1 : Protection event ever occurs.							

Address Name Register Address		Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)	
		Meaning	EN5	EN6	EN8		Е	N7_DIM7	[4:0]	
A2	0x02	Default	0	0	0	0	0	0	0	0
		Read/Write	RW	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Enable/disa	ble CH5						
	EN	15	0 : Disable							
			1 : Enable							
			Enable/disable CH6							
	EN	16	0 : Disable							
			1 : Enable							
			Enable/disa	ble CH8						
	EN	18	0 : Disable							
			1 : Enable							
			Enable CH7 and define FB7 regulation voltage							
E	N7 DIN	Л7 [4:0]	00000 : CH7 turn off							
	_		00001 to11 31 x 0.25V	111 : CH7	turn on a	and dimm	ing ratio	: VFB7 = E	N7_DIM7	7 [4:0]/

Address Name	Regis	ster Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Rit3 Rit2 Rit1			Bit0 (LSB)
		Meaning	PSM1	PSM2	2 PSM3 PSM4 VOUT8 [3:0]					
A3	0x03	Default	1	1	1	1	1	1	0	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Define the	e CH1/2/3/	4 CCM or	PWM/PSM	switching c	peration.		
PS	PSM1 to PSM4		0 : Force	0 : Force PWM						
			1 : Autom	atic PWM/	PSM switc	h operation	1			
			CH8 regu 2.8V.	ulation volt	age can b	e selected	by I ² C inte	rface. The	default	voltage is
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
\	/OUT8	[3:0]	0000	Switch	0001	1.1V	0010	1.2V	0011	1.3V
	· ·		0100	1.4V	0101	1.5V	0110	1.6V	0111	1.7V
			1000	1.8V	1001	2V	1010	2.2V	1011	2.5V
			1100	2.8V	1101	3.1V	1110	3.2V	1111	3.3V

Address Name	Regis	ster Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit	Bit0 (LSB)	
		Meaning		VOUT	1 [3:0]		EN1		FB2 [2:0]		
A4	0x04	Default	1	0	1	0	0	1	0	0	
		Read/Write	R/W	R/W	R/W	R/W	R/W	RW	RW	R/W	
			CH1 regu	lation volta	age can be	selected b	y I ² C interfa	ace. The d	default voltage is 5V.		
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage	
	OUT1	เส・บา	0000	3.6V	0001	3.7V	0010	3.8V	0011	3.9V	
v	0011	[5.0]	0100	4V	0101	4.5V	0110	4.6V	0111	4.7V	
			1000	4.8V	1001	4.9V	1010	5V	1011	5.1V	
			1100	5.2V	1101	5.3V	1110	5.4V	1111	5.5V	
	EN1			equence. (it EN1.		er on/off se equence co	equence. ontrol and o	n/off by th	e pin EN,	not by the	
			1 : Enable	Э							
			FB2 regu 0.8V.	lation volta	age can be	e selected	by I ² C inte	erface. The	e default	voltage is	
			Code	VREF	If Targe	t = 1.8V	If Targe	et = 1V	If Targe	et = 3.3V	
			000	0.72V	1.6	2V	0.9	V	2.9	97V	
			001	0.74V	1.66	65V	0.92	:5V	3.05	525V	
	FB2 [2	::0]	010	0.76V	1.7	'1V	0.9	5V	3.1	35V	
			011	0.78V	1.7	55V	0.975V 3.2175V			175V	
			100	0.8V	1.8	3V	1\	/	3.	3V	
		101	0.82V	1.84	45V	1.025V		3.3825V			
			110	0.84V					65V		
			111	0.86V	1.93	35V	1.07	'5V	3.54	475V	

DS5072-00 March 2015

Address Name	Regis	ter Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)				
		Meaning	FLST	ı	FB3 [2:0]		FLST2		FB4 [2:0]					
A5	0x05	Default	1	1	0	0	1	1	0	0				
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
			Used to control the CHG pin status when the register bit A9. CHGSTEN = 0.											
	FLST	_	1 : CHG = Hi	gh impeda	nce.									
			0 : CHG = Lo	W.										
			FB3 regulation 0.8V.	on voltage	can be se	elected b	by I ² C inter	face. The	e default v	oltage is				
			Code	VREF	If Target = 1.8V If Tar			t = 1V	If Targe	t = 3.3V				
			000	0.72V	1.62V 0.9V			V	2.9	7V				
			001	0.74V	1.66	5V	0.92	5V	3.05	25V				
	FB3 [2	:0]	010	0.76V	1.71	V	0.95	5V	3.10	35V				
			011	0.78V	1.75	55V 0.975V			3.21	75V				
			100	0.8V	1.8V		1V		3.3	3V				
			101	0.82V	1.845V 1.025V			5V	3.38	25V				
			110	0.84V	1.89)V	1.05	5V	3.46	65V				
			111	0.86V	1.935V 1.075V				3.54	75V				
			Used to control the CHG2 pin status when the register bit A8. CHG2STEN = 0.											
	FLST	2	1 : CHG2 = High impedance.											
			0 : CHG2 = Low.											
			FB4 regulation 0.8V.	on voltage	can be se	elected b	oy I ² C inter	face. The	e default v	oltage is				
			Code	VREF	If Target	= 1.8V	If Targe	t = 1V	If Targe	t = 3.3V				
			000	0.72V	1.62	2V	0.9	V	2.9	7V				
			001	0.74V	1.66	5V	0.92	5V	3.05	25V				
	FB4 [2:0]		010	0.76V	1.71	V	0.95	5V	3.13	35V				
			011	0.78V	1.75	5V	0.97	5V	3.21	75V				
				0.8V	1.8	V	1V	′	3.3	3V				
			101	0.82V	1.84	5V	1.02	5V	3.3825V					
			110	0.84V	1.89V 1.05V		3.465V							
			111	0.86V	1.93	5V	1.07	5V	3.54	75V				

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Address Name	Regis	ter Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)			
		Meaning		VOUT	5 [3:0]	•	VOUT6 [3:0]						
A6	0x06	Default	1	0	0	0	0	0	1	1			
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
			CH5 regulation 1.8V.	ulation volt	age can b	e selected	l by I ² C in	terface. Th	ne default	voltage is			
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage			
			0000	REF	0001	1.1V	0010	1.2V	0011	1.3V			
V	OUT5 [3:0]	0100	1.4V	0101	1.5V	0110	1.6V	0111	1.7V			
			1000	1.8V	1001	2V	1010	2.2V	1011	2.3V			
			1100	2.5V	1101	2.6V	1110	2.7V	1111	2.8V			
				Note : VOUT5 [3:0] = 0000 (REF) means using external feedback network and FB5 regulation target is $0.8V \pm 1.5\%$									
			CH6 regulation	ulation volt	age can b	e selected	l by I ² C in	terface. Th	ne default	voltage is			
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage			
V	OUT6 [3:0]	0000	Switch	0001	1.1V	0010	1.2V	0011	1.3V			
			0100	1.4V	0101	1.5V	0110	1.6V	0111	1.7V			
				1.8V	1001	2V	1010	2.2V	1011	2.5V			
				2.8V	1101	3.1V	1110	3.2V	1111	3.3V			

Address Name	Regis	ster Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)		
		Meaning		TIMER	R [3:0]		ENCH	USUS	ISETU	ISETL		
A7	0x07	Default	0	1	0	0	0	0	0	0		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Т	IMER	[3:0]	hours. Note : pre-	ging timeo charge tim	ut time =	(TIMER [3:0] + 1) h		default vo	ltage is 5		
		_	Enable charger									
	ENC	Н	0 : Enable	0 : Enable charger								
			1 : Disable	charger								
			VIN Suspe	end control								
	USU	S	0 : No sus	pend								
			1 : Susper	nd								
			VIN Curre	nt limit sett	ing:		_					
			ISETL	ISETU		Input It Limit						
			0	0	85mA (default)						
ISF.	TU and	ISETL	0	1	475	imΑ						
IOL	. 5 4.10		1 0 1A									
			1	1	1.	5A						
Note: When Charger Type Detection finds the charger is Dedicated Charging P (Sony or Apple Charger), ISETU/ISETL would set to be 475mA automatically.								rging Port				

Address Name		egister ddress	Bit7 (MSB)	Bit6	Bits	5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)
		Meaning	TSH	T[1:0]	Mask_[DPM	CHG2STEN	1	ISE	TA [3:0]	
A8	0x08	Default	0	0	0		1	0	1	0	0
		Read/Write	R/W	R/W	R/W	/	R/W	R/W	R/W	R/W	R/W
			Set TS/\	/P thresho	ld to mo	nitor	battery tempo	erature fo	or HOT bo	oundary.	
			On de	TS/VP	Eq	uiva	lent Battery	Tempera	ature		
			Code	ratio	10k NTC			100k	NTC		
Т	SHT [1	:0]	00	28%		60°	°C	60)°C		
			01	28.5%		58°	C.	59)°C		
			10	29%		56°	C.	57	°C		
			11	29.5%		54°	C.	56	°C		
			Mask DI	PM functio	n						
M	ask_D	PM	0 : Whe	: When DPM event change, INT would be asserted.							
			1 : Whe	: When DPM event change, INT would not be asserted.							
			Used to	Used to control CHG2 pin status.							
			0 : See	FLSH2 set	-						
			1 : Base	on chargi	ng status	S .					
						СП	G2STEN = 1	CHG2	STEN = () (A8.bit4 =	0)
			C	harging St	atus		48.bit4 = 1		72 = 1	FLST2 =	
0.1				Na Obassi	/	111		,	t3 = 1)	(A5.bit3 =	0)
CI	HG2ST	EN		No Chargiı harging Fi			h impedance lo flashing)				
				Pre-Charg	je/		Low				
			l	Fast Char			LOW		gh	Low	
				ormal (Fau eout, in the				Impe	dance		
				lation, batt		4	Hz (0.25s)				
				old or too	-						
						the b	attery charge	current	level and	the list as I	oelow.
			The defa	ault value i	s 0.5A.		DAT		DAT		DAT
			Code	BAT Charge	Cod	е	BAT Charge	Code	BAT Charge	Code	BAT Charge
ıc	SETA [R·∩1		Current			Current		Current		Current
10	,⊏ 1 \ [‹	ره.ی	0000	0.1A	000	1	0.2A	0010	0.3A	0011	0.4A
			0100	0.5A	010	1	0.6A	0110	0.7A	0111	0.8A
			1000	0.9A	100	1	1A	1010	1.1A	1011	1.2A
			1100	1.2A	110	1	1.2A	1110	1.2A	1111	1.2A

Address Name	Regis	ter Address	Bit7 (MSB)	Bit6	Bit5	5	Bit4	В	it3	Bit2	2	Bit1	Bit0 (LSB)	
		Meaning	JEITA	VSETH	VSET	ГС	ISETH	ISI	ETC	CHGST	ΓEN	INT	DPM	
A9	0x09	Default	0	0	0		0		0	1		0	0	
		Read/Write	R/W	R/W	R/W	/	R/W	R	/W	R/W	1	R/W	R	
			BAT char	ge current	and re	gula	tion voltag	je co	ntrols	scheme.				
	ĪTĀ, VS	ГТЦ	JEITA = (), it means	the cha	arge	r operatio	n is a	autom	atic (JE⊓	ΓA rul	le).		
		H, ISETC	and set	I, User car ISETH/ISE s listed as	TC to									
			Used to control CHG pin status.											
			0 : See FLSH set.											
			1 : Base	on chargin	g status	3.								
						СН	IGSTEN =	. 1	CHG	STEN =	0 (A9	.bit2 = 0))	
			Charging Status $(A9 \text{ bit } 2 = 1)$ FLST = 1 Fl									ST = 0 .bit7 = 0)	
	CHGST	EN	No Charging/ Charging Finish			_	h impedar Io flashing							
				re-Charge/ ast Charge		C).5Hz (2s)			High		Low		
			timed regula	mal (Fault out, in then tion, batter do not too he	mal y too	4	Hz (0.25s)	Impe	edance				
			Control th	ne output o	f INT o	pen	drain port	. The	e bit va	alue is in	verte	d of INT	output.	
	INT		When into	errupt ever	nts hap	pen,	, INT port	goes	s low a	and this b	oit A9	. I <u>NT_</u> w	ould be	
			0 : INT =	High										
			1 : INT =	Low										
				bit is the o	-					neans the	e cha	rger DP	M (VIN	
			0 : VIN DPM not activated.											
	DPM		1 : VIN DPM activated (working).											
			Note: when PMU turns on, it would check the bit DPM and compare to the value 0. If it is different, INT would be asserted. After PMU is on, once DPM bit toggles INT also asserts again.											

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Address Name	Regis	ter Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)
		Meaning	TS	_METER [2	2:0]	NoBAT	EOC	PGOOD	THR	SAFE
A10	0x0A	Default	0	0	0	0	0	0	0	0
		Read/Write	R	R	R	R	R	R	R	R
TS	_METE	R [2:0]	Note: w value 000 of TS_Me	TS Meter [2:0] = 110 hen PMU to D. If it is differer [2:0] too e battery in	o°C 1 TS Meter [2:0] = 100 urns on, it erent, INT	TS Meter [2 0°C TS Meter [2:0] = 00 t would che would be also asser	45°C TS Mete 0 [2:0] = 00 eck TS_M asserted.	60°C TS Mete [2:0] = 0	VP (VF TS M	< 0.8V (UVLO) (leter [2:0] = 010 TS
	NoBA	Т	Note: wh	nstalled httery Installe hen PMU tur different, in NT also ass	rns on, it w	ould check	k the bit No			
	EOC	;	in EOC s 0 : During 1 : Charg Note: who	narge (EOC) tatus. g Charging ing Done or en PMU turn erent, INT w	r Rechargi ns on, it w	ing after Te	ermination the bit EO	C and com	pare to th	e value 0.
			also asse	erts again. bit means th				_		'
				Input Statu	ıs	PGOOD	Bit Status			
				VIN < VUVI	LO		0			
	PGOC)D		O < VIN < ' VOS_L T + VOS_H			0			
				VOVP			1			
			value 0. <u>I</u>	VIN > VOV nen PMU to f it is differe NT also ass	urns on, it ent, INT wo	ould be ass				

	THR bit can be let user to monitor the thermal regulation function is working or not.
	0 : thermal Regulation is not working
THR	1 : thermal Regulation is working
	Note: when PMU turn on, it would check the bit THR and compare to the value <u>0. If</u> it is different, INT would be asserted. After PMU is on, once THR bit toggles, INT also asserts again.
	Charger safety timer status.
SAFE	0 : charger in charging or suspended by thermal loop
	1 : safety timer expired
	Note: when PMU turn on, it would check the bit SAFE and compare to the value 0. If it is different, INT would be asserted. After PMU is on, once SAFE bit toggles, INT also asserts again.

Address Names	Regis	ster Address	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)		
		Meaning	CHG_	TYP [2:0]	Reserved	Reserved	CHG_2DET	CHG_1DET	CHGRUN		
A11	0x0B	Default	0	0	0	Х	Х	1	1	0		
		Read/Write	R	R	R		-	R/W	R/W	R		
			The CH	G_TYF	P [2:0] i	s used to re	code the ch	narger type.				
	Code Charger Type Code Charger Type											
			000		tandar ARGE	d USB R (SDP)	100	APPLI	E CHARGER	(1A)		
CH	IG_TYI	P [2:0]	001	Son	y CHA	RGER -1	101	Nik	on CHARGE	7		
			010	Son	y CHA	RGER -2	110		ownstream Post/F			
			011	APPLE CHARGER (0.5A) 111 DEDICATED CHARGER (D					R (DCP)			
(CHG_2	DET		sh CD	P and	DCP). Defa			charger de it value to 1			
	,,,o		0 : Seco	: Secondary CHARGER DETECTION DISABLED								
			1 : Seco	ndary	CHAR	GER DETE	CTION ENA	ABLE.				
(CHG_1	DET	is 1 (aut	o-dete	ct char		en VIN plug		detection. De nis bit value (s			
			0 : Prima	ary CH	ARGE	R DETECT	ION DISAB	LED.				
			1 : Prima	ary CH	ARGE	R DETECT	ION ENABL	.E.				
			The CHGRUN bit is the charger detector status bit. It means the charger detection is running or not.									
			0 : CHA	RGER	DETE	CTION NO	T RUNING.					
	CHGR	UN	1 : CHA	RGER	DETE	CTION RUI	NNING.					
Note: when PMU turn on, it would check the bit CHGRUN and compare to value 1. If it is different, INT would be asserted. After PMU is on, once CHGRU bit change from 1 to 0, INT also asserts again.												

Copyright ©2015 Richtek Technology Corporation. All rights reserved.

Address Name		legister address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Meaning	RST_P	RST_C	OVP7	Reserved	ENDPM	TSD	MOD7	TSSEL
		Default	1	0	0	х	0	0	0	1
A0	0x00	Read/Write	R/W	R/W	R/W		R/W	R/W	R	R/W
		Reset Condition	А	А	Α	G	А	Α	Н	А
		Meaning	ERR1	ERR2	ERR3	ERR4	ERR5	ERR6	ERR7	ERR8
		Default	0	0	0	0	0	0	0	0
A1	0x01	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	Α	А	Α	А	Α	Α	А	Α
		Meaning	EN5	EN6	EN8		EN7	_DIM7 [4:0]	
		Default	0	0	0	0	0	0	0	0
A2	0x02	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	В	В	В	В	В	В	В	В
		Meaning	PSM1	PSM2	PSM3	PSM4		VOUT	[3:0]	
		Default	1	1	1	1	1	1	0	0
A3	0x03	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	С	С	С	С	С	С	С	С
		Meaning		VO	UT1 [3:0]		EN1		FB2 [2:0]	
		Default	1	0	1	0	0	1	0	0
A4	0x04	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	С	С	С	С	В	С	С	С
		Meaning	FLST		FB3[2:0]		FLST2		FB4[2:0]	
		Default	1	1	0	0	1	1	0	0
A5	0x05	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	С	С	С	С	С	С	С	С
		Meaning		VO	UT5 [3:0]			VOUT	[3:0]	
		Default	1	0	0	0	0	0	1	1
A6	0x06	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	С	С	С	С	С	С	С	С
		Meaning		TIM	1ER [3:0]		ENCH	USUS	ISETU	ISETL
		Default	0	1	0	0	0	0	0	0
A7	0x07	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	D	D	D	D	D	D	D	D

DS5072-00 March 2015

Address Name		egister ddress	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Meaning	TSHT	[1:0]	Mask_DPM	CHG2STEN		ISETA	[3:0]	
		Default	0	0	0	1	0	1	0	0
A8	0x08	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Reset Condition	D	D	D	D	D	D	D	D
		Meaning	<u>JEITA</u>	VSETH	VSETC	ISETH	ISETC	CHGSTEN	INT	DPM
		Default	0	0	0	0	0	1	0	0
A9	0x09	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
		Reset Condition	D	D	D	D	D	D	Е	D
		Meaning	TS	S_METER	[2:0]	NoBAT	EOC	PGOOD	THR	SAFE
		Default	0	0	0	0	0	0	0	0
A10	0x0A	Read/Write	R	R	R	R	R	R	R	R
		Reset Condition	I	ı	I	I	J	J	J	J
		Meaning	С	HG_TYP	[2:0]	Reserved	Reserved	CHG_ 2DET	CHG_ 1DET	CHGRUN
A11	0x0B	Default	0	0	0	Х	х	0	1	0
AII	UXUD	Read/Write	R	R	R			R/W	R/W	R
		Reset Condition	К	K	K	G	G	F	F	L

I²C register reset condition:

- A. In addition to A0.bit 1 and A0.bit4, the bits of A0 and A1 (register 0x0, 0x1) reset only when (VRTC < 1.6V).
- B. The bits of A2 (register 0x2) and A4.bit3 reset when (EN pin = low) or (VDDI < 2.4V) or (BAT < 1.3V) or (Temperature > 125° C)
- C. In addition to A4.bit3, PMU settings (A3 to A6, register 0x3 to 0x6) reset when (EN pin = low and A0.RST_P = 1) or (VDDI < 1.3V)

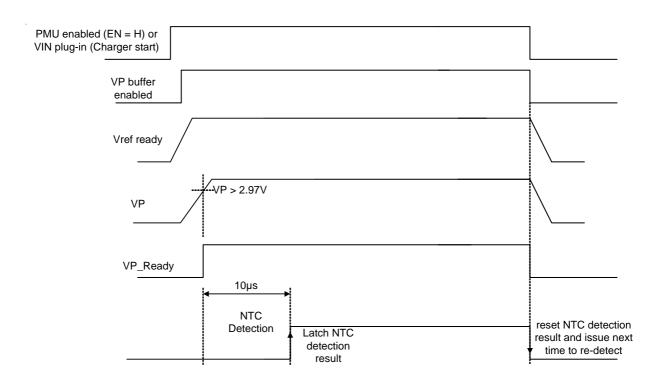
VDDI < 1.3V	EN pin	A0.RST_P bit	==>	Reset PMU Setting
TRUE	х	x (don't care)		Reset
	Low	1		Reset
Folos (\/DDL = 4.2\/)	High	1		Not reset
False (VDDI > 1.3V)	Low	0		Not reset
	High	0		Not reset

D. In addition to A9.bit 1, charger settings (A7 to A9, registers (0x7 to 0x9) reset when (VIN < 4V) or (VDDI < 1.3V) or ((BAT < 3.1V) and (A0.RST_C = 1))

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

VDDI < 1.3V	VIN > 4V	A0.RST_C bit	(BAT < 3.1V)	==>	Reset Charger Setting
true (VDDI < 1.3V)	Х	х	х		Reset
false (VDDI > 1.3V)	False (VIN < 4V)	х	х		Reset
false (VDDI > 1.3V)	True (VIN > 4V)	1	TRUE		Reset
false (VDDI > 1.3V)	True (VIN > 4V)	1	FALSE		Not reset
false (VDDI > 1.3V)	True (VIN > 4V)	0	TRUE		Not reset
false (VDDI > 1.3V)	True (VIN > 4V)	0	FALSE		Not reset

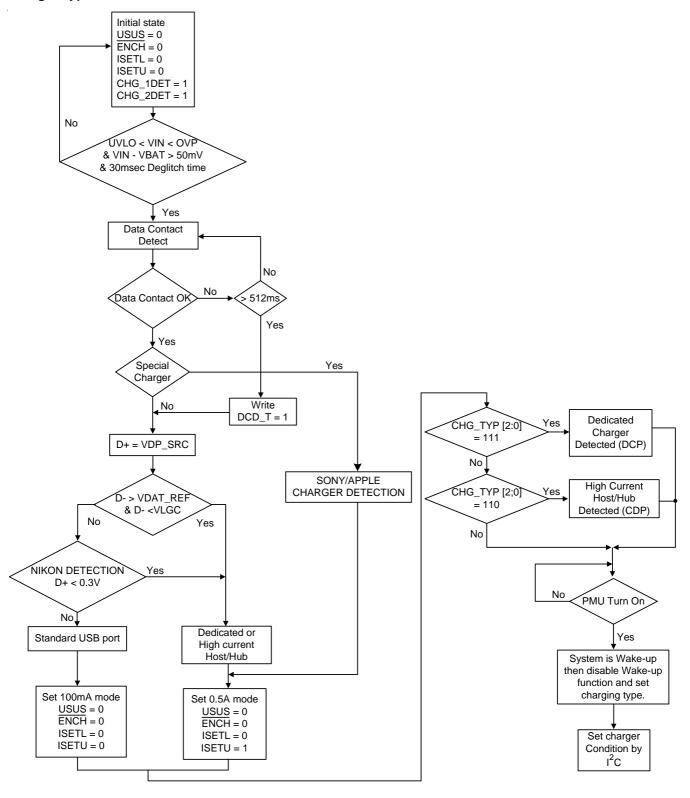
- E. (EN pin = low) or (VDDI < 1.3V)
- F. Charger type detection A11 (registers 0xB) reset when (VIN < 4V) or (VDDI < 1.3V)
- G. Always reset.
- H. A0.bit1 will be reset when (EN pin = low) or (VDDI < 2.4V) or (BAT < 1.3V) or (PMU protection occur) or (Temperature < 125°C).
- I. A0.bit1 will be reset when (EN pin = low) or (VDDI < 2.4V) or (BAT < 1.3V) or (In addition to CH7 OVP, PMU protection occur) or (Temperature < 125°C).
- J. Reference page-54 A10 explanation.
- K. A11.bit7 to bit5 will be rewritten after charging type detects finish.
- L. A11.bit0 keeps high during charging type detecting.


CHG Signal Status

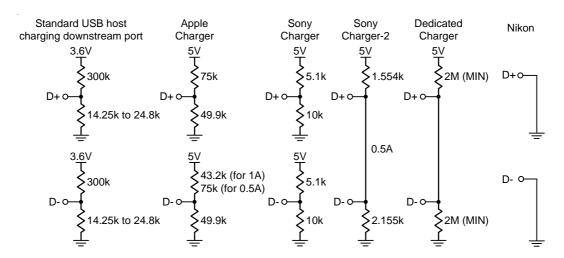
		CHG		CHG2		
Charging Status	CHGSTEN = 1	CHGSTEN = 0		CHG2STEN = 1	CHG2STEN = 0	
	CHOSTEN	A5. bit7 = 1	A5. $bit7 = 0$	CHG251LIV = 1	A5. bit3 = 1	A5. $bit3 = 0$
No Charging/Charging Finish	High impedance (No flashing)	High		High impedance (No flashing)		
Pre-Charge/Fast Charge	0.5Hz (2s)			Low	High	
Abnormal (Fault timer timeout, in thermal regulation, battery too cold or too hot)	4Hz (0.25s)	impedance	Low	4Hz(0.25s)	impedance	Low

DS5072-00 March 2015

NTC Thermistor Order Detection


Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com


USB Charger Detection

Charger Type Detection : Detection Time ≤ 600ms

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

D+/D- impedance of Standard USB Host/Charging Downstream Port. Apple Charger, Sony Charger, and Dedicated Charger:

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

where T_{J(MAX)} is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WQFN-40L 5x5 package, the thermal resistance, θ_{JA} , is 27.5°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated by the following formula:

$$P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (27.5^{\circ}C/W) = 3.63W$$
 for WQFN-40L 5x5 package

The maximum power dissipation depends on the operating ambient temperature for fixed T_{J(MAX)} and thermal resistance, θ_{JA} . The derating curve in Figure 6 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

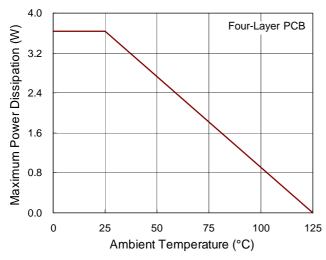


Figure 6. Derating Curve of Maximum Power Dissipation

Layout Consideration

For the best performance of the RT5072, the following PCB layout guidelines must be strictly followed.

- > Place the input and output capacitors as close as possible to the input and output pins respectively for good filtering.
- Keep the main power traces as wide and short as possible.
- The switching node area connected to LX and inductor should be minimized for lower EMI.
- Place the feedback components as close as possible to the FB pin and keep these components away from the noisy devices.
- Connect the GND and Exposed Pad to a strong ground plane for maximum thermal dissipation and noise protection.
- ▶ To make CH1 and whole chip stable, the power path from the PVD1 pin to its output capacitors must be as short (≤ 1mm is better) and wide as possible.
- ▶ To make CH4 and CH5 stable, the power path from the PVD45 pin to its input capacitors must be as short (≤ 1mm is better) and wide as possible.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

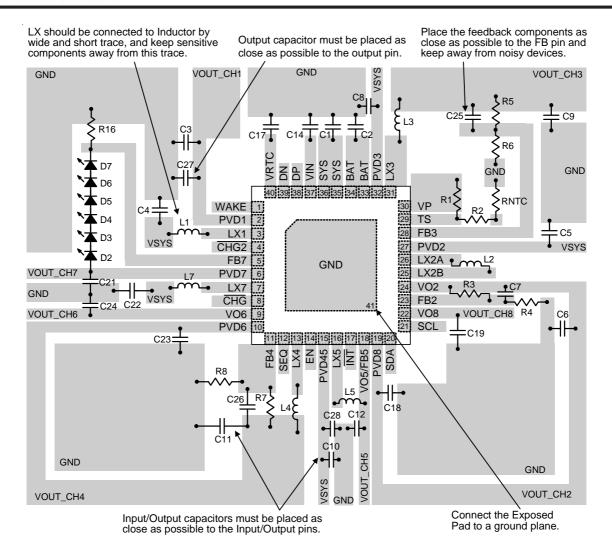
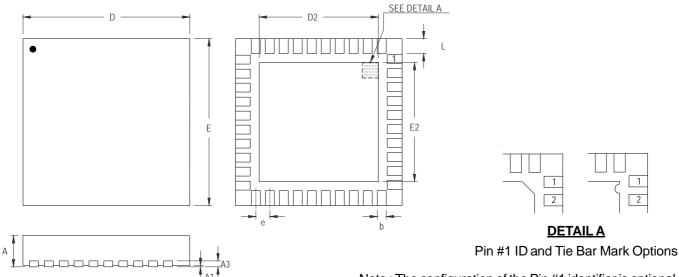


Figure 7. PCB Layout Guide

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

	Protection Type	Threshold (Typical) Refer to Electrical Spec.	Protection Methods	PMU Shutdown Delay Time	Reset Method
SYS	UVLO	SYS < 1.5V	PMU Shutdown.	No-delay	EN1234 pin set to low or SYS > 2.1V
VDDI	OVP	VDDM > 6V	Automatic reset at VDDM < 5.85V	100ms	VDDI power reset or EN1234 pin set to low
	UVLO	VDDM < 2.4V	PMU Shutdown.	No-delay	VDDI power reset or EN1234 pin set to low
	Current Limit	N-MOSFET peak current > 3A	N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle.	100ms	VDDI power reset or EN1234 pin set to low
	PVD1 OVP	PVDD1 > 6V	N-MOSFET off, P-MOSFET off.	No-delay	VDDI power reset or EN1234 pin set to low
CH1 Step-Up	PVD1 UVP1	PVDD1 < (VSYS – 0.8V) or PVDD1 < 1.28V after soft-start end.	N-MOSFET off, P-MOSFET off.	100ms	VDDI power reset or EN1234 pin set to low
	PVD1 UVP2	After pre-charge (PVD1 UVP-2 : FB1 < 0.4V after pre-charge)	N-MOSFET off, P-MOSFET off	No-delay	VDDI power reset or EN1234 pin set to low
	PVD1 Over Load (OL)	Target – 0.6V Target Voltage is defined in A4.VOUT1 [3:0]	PMU Shutdown when OL occur each cycle until 100ms.	100ms	VDDI power reset or EN1234 pin set to low
CH2	Current limit	Both P-MOSFET (PVD2 – LX2A) and N-MOSFET (LX2B – GND) peak current > 2A	N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle.	100ms	VDDI power reset or EN1234 pin set to low
	VO2 OVP	PVDD1 > 6V	N-MOSFET off, P-MOSFET off.	No-delay	VDDI power reset or EN1234 pin set to low
Step-Up/Down	FB2 UVP	FB2 < 0.4V after soft-start end.	N-MOSFET off, P-MOSFET off.	No-delay	VDDI power reset or EN1234 pin set to low
	FB2 Over Load	Target – 0.1V (Target voltage is the chosen one in A4.FB2 [2:0])	PMU Shutdown when OL occur each cycle until 100ms.	100ms	VDDI power reset or EN1234 pin set to low
	Current limit	P-MOSFET peak current > 1.8A	N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle.	100ms	VDDI power reset or EN1234 pin set to low
CH3 Step-Down	FB3 UVP	FB3 < 0.4V after soft-start end.	N-MOSFET off, P-MOSFET off.	No-delay	VDDI power reset or EN1234 pin set to low
	FB3 Over Load	Target – 0.1V (Target voltage is the chosen one in A5.FB3 [2:0])	PMU Shutdown when OL occur each cycle until 100ms.	100ms	VDDI power reset or EN1234 pin set to low


DS5072-00 March 2015

	Protection Type	Threshold (Typical) Refer to Electrical Spec.	Protection Methods	PMU Shutdown Delay Time	Reset Method
CH4 Step-Down	Current limit	P-MOSFET peak current > 1.8A	N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle.	100ms	VDDI power reset or EN1234 pin set to low
	FB4 UVP	FB4 < 0.4V after soft-start end.	N-MOSFET off, P-MOSFET off.	No-delay	VDDI power reset or EN1234 pin set to low
	FB4 Over Load	Target – 0.1V (Target voltage is the chosen one in A5.FB4 [2:0])	PMU Shutdown when OL occur each cycle until 100ms.	100ms	VDDI power reset or EN1234 pin set to low
	Current limit	P-MOSFET peak current > 1.5A	N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle.	100ms	VDDI power reset or EN1234 pin set to low
	VO5 UVP	FB5 < 0.4V after soft-start end	N-MOSFET off, P-MOSFET off.	No-delay	VDDI power reset or EN1234 pin set to low
CH5 Step-Down	VO5 Over Load	Target voltage is the chosen one in A6.VOUT5 [3:0] = 0000 (FB5 = 0.8V) Target voltage is the chosen one in A6.VOUT5 [3:0] = 0001 to 0111 Target voltage is the chosen one in A6.VOUT5 [3:0] = 0111 to 1111	PMU Shutdown when OL occur each cycle until 100ms.	100ms	VDDI power reset or EN1234 pin set to low
CH6 LDO	Max. output current (current limit)	P-MOSFET current > 0.45A (PVD6 = 1.5V, VO6 = 1.3V)	P-MOSFET off.	100ms	VDDI power reset or EN1234 pin set to low
CH7 WLED	Current limit (Step-Up mode)	N-MOSFET current > 0.8A	N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle.	100ms	VDDI power reset or EN1234 pin set to low
	PVDD7 OVP	PVDD7 > 16V (A0.OVP7 = 0)	N-MOSFET off, P-MOSFET off.	Ma dala	VDDI power reset and A2.EN7_DIM7 [4:0]
		PVDD7 > 25V (A0.OVP7 = 1)	Shutdown CH7 by self	No-delay	reset or EN1234 pin set to low
CH8 LDO	Max. output current (current limit)	P-MOSFET current > 0.45A (PVD6 = 3V, VO6 = 2.5V)	P-MOSFET off.	100ms	VDDI power reset or EN1234 pin set to low
Thermal	Thermal shutdown	Temperature > 155°C	All channels stop switching	No-delay	Temperature < (155 – 20)°C
VIN	VIN UVLO	VIN < 3.3V	No-charge	No-delay	No latch
V 11 4	VIN OVP	VIN > 6.5V	No-charge	No-delay	No latch

Outline Dimension

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.175	0.250	0.007	0.010	
b	0.150	0.250	0.006	0.010	
D	4.950	5.050	0.195	0.199	
D2	3.250	3.500	0.128	0.138	
Е	4.950	5.050	0.195	0.199	
E2	3.250	3.500	0.128	0.138	
е	0.400		0.016		
L	0.350	0.450	0.014	0.018	

W-Type 40L QFN 5x5 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

www.richtek.com DS5072-00 March 2015

单击下面可查看定价,库存,交付和生命周期等信息

>>Richtek(台湾立锜)