3A, 1MHz, 6V CMCOT Synchronous Step-Down Converter

General Description

The RT5797A is a high efficiency synchronous stepdown DC-DC converter. Its input voltage range is from 2.7V to 6V and provides an adjustable regulated output voltage from 0.6V to 3.4V while delivering up to 3A of output current.

The internal synchronous low on-resistance power switches increase efficiency and eliminate the need for an external Schottky diode. The Current Mode Constant-On-time (CMCOT) operation with internal compensation allows the transient response to be optimized over a wide range of loads and output capacitors. The RT5797A is available in the WDFN-8L 2x2 and WDFN-8SL 2x2 packages.

Package Type

UVP Option

L : Latched-Off

H: Hiccup

Lead Plating System

G : Green (Halogen Free and Pb Free)


Ordering Information

Features

- Efficiency Up to 95%
- RDS(ON) 100mΩ HS / 70mΩ LS
- VIN Range 2.7V to 6V
- VREF 0.6V with ±1% Accuracy at 25°C
- CMCOT[™] Control Loop Design for Best Transient Response, Robust Loop Stability with Low-ESR (MLCC) COUT
- Soft-Start 1.2ms
- Power Saving in Light Load

Applications

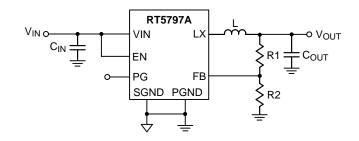
- STB, Cable Modem, & xDSL Platforms
- LCD TV Power Supply & Metering Platforms
- General Purpose Point of Load (POL)

QWA : WDFN-8SL 2x2 (W-Type) (Exposed Pad-Option 2)

Lead Plating System G : Green (Halogen Free and Pb Free)

1

UVP Option H: Hiccup


Note :

Richtek products are :

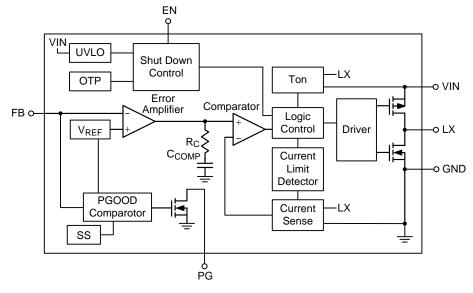
RT5797A

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Simplified Application Circuit

Pin Configuration

FB PG VIN PGND	1 2 3 4	[∞] PGND	7	SGND EN LX NC
-------------------------	------------------	-------------------	---	------------------------


WDFN-8L 2x2 / WDFN-8SL 2x2

Marking Information RT5797ALGQW 2U : Product Code 2UW 2U : Date Code RT5797AHGQW 2V : Product Code 2VW 2V : Product Code W : Date Code W : Date Code RT5797AHGQWA 4A : Product Code W : Date Code 4AW

Functional Pin Description

Pin No.	D . M	
WDFN-8L 2x2 WDFN-8SL 2x2	Pin Name	Pin Function
1	FB	Feedback voltage input. An external resistor divider from the output to GND, tapped to the FB pin, sets the output voltage.
2	PG	Power good indicator. The output of this pin is an open-drain with external pull-up resistor. PG is pulled up when the FB voltage is within 90%, otherwise it is LOW.
3	VIN	Supply voltage input. The RT5797A operates from a 2.7V to 6V input.
4, 9 (Exposed Pad)	PGND	Power ground. The exposed pad must be soldered to a large PCB and connected to PGND for maximum power dissipation.
5	NC	No internal connection.
6	LX	Switch node.
7	EN	Enable control input.
8	SGND	Signal GND.

Functional Block Diagram

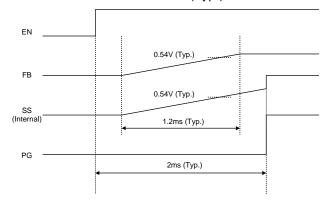
Operation

The RT5797A is a synchronous low voltage step-down converter that can support the input voltage range from 2.7V to 6V and the output current can be up to 3A. The RT5797A uses a constant on-time, current mode architecture. In normal operation, the high side P-MOSFET is turned on when the switch controller is set by the comparator and is turned off when the Ton comparator resets the switch controller.

Low side MOSFET peak current is measured by internal RSENSE. The error amplifier EA adjusts COMP voltage by comparing the feedback signal (V_{FB}) from the output voltage with the internal 0.6V reference. When the load current increases, it causes a drop in the feedback voltage relative to the reference, then the COMP voltage rises to allow higher inductor current to match the load current.

UV Comparator

If the feedback voltage (VFB) is lower than threshold voltage 0.2V, the UV comparator's output will go high and the switch controller will turn off the high side MOSFET. The output under voltage protection is designed to operate in Hiccup mode for the RT5797AH, Latch mode for the RT5797AL.


Soft-Start (SS)

An internal current source charges an internal capacitor to build the soft-start ramp voltage. The VFB voltage will

track the internal ramp voltage during soft-start interval. The typical soft-start time is 1.2ms.

PGOOD Comparator

When the feedback voltage (VFB) is higher than threshold voltage 0.54V and the internal soft-start function has been finished, the PGOOD open drain output will be high impedance. The internal PG MOSFET is typical 100Ω . The PGOOD signal delay time is defined from EN high to the internal soft-start function end which is about 2ms (Typ.).

Enable Comparator

A logic-high enables the converter; a logic-low forces the IC into shutdown mode.

Over-Current Protection (OCP)

The RT5797A provides over-current protection by detecting low side MOSFET valley inductor current. If

RT5797A

the sensed valley inductor current is over the current limit threshold (3.7A typ.), the OCP will be triggered. When OCP is tripped, the RT5797A will keep the over current threshold level then cause the UV protection.

Thermal Shutdown (OTP)

The device implements an internal thermal shutdown function when the junction temperature exceeds 150°C. The thermal shutdown forces the device to stop switching when the junction temperature exceeds the thermal shutdown threshold. Once the die temperature decreases below the hysteresis of 20°C, the device reinstates the power up sequence.

Absolute Maximum Ratings (Note 1)

Supply Input Voltage	-0.3V to 6.5V
LX Pin Switch Voltage	–0.3V to (VIN + 0.3V)
<20ns	-4.5V to 7.5V
 Power Dissipation, PD @ TA = 25°C 	
WDFN-8L 2x2	· 2.19W
WDFN-8SL 2x2	· 2.19W
Package Thermal Resistance (Note 2)	
WDFN-8L 2x2, θJA	- 45.5°C/W
WDFN-8L 2x2, θJA	
	- 45.6°C/W
WDFN-8SL 2x2, θJA	- 45.6°C/W - 260°C
 WDFN-8SL 2x2, θJA Lead Temperature (Soldering, 10 sec.) 	- 45.6°C/W - 260°C - –40°C to 150°C
 WDFN-8SL 2x2, θJA Lead Temperature (Soldering, 10 sec.) Junction Temperature 	- 45.6°C/W - 260°C - –40°C to 150°C

Recommended Operating Conditions (Note 4)

•	Supply Input Voltage	2.7V to 6V	
•	Ambient Temperature Range	-40°C to 8	5°C
•	Junction Temperature Range	-40°C to 1	25°C

Electrical Characteristics

$(V_{IN} = 3.6V, T_A = 25^{\circ}C, unless otherwise specification of the specific term of ter$	ied)
--	------

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Input Voltage	Vin		2.7		6	V
Feedback Reference Voltage	Vref		0.594	0.6	0.606	V
Feedback Leakage Current	IFB	VFB = 0.6V			0.1	μA
DC Bias Current		Active ,V _{FB} = 0.63V, not switching		22	36	μA
		Shutdown			1	
Switching Leakage Current					1	μA
Switching Frequency			0.8	1	1.2	MHz
Switch On Resistance, Low	RNMOS	I _{SW} = 0.3A		70	85	mΩ
Switch On Resistance, High	Rpmos	Isw = 0.3A		100	125	mΩ
Valley Current Limit	ILIM		3.03	3.7	4.6	А
	Manag	VDD rising		2.25	2.5	V
Under-Voltage Lockout Threshold	Vuvlo	VDD falling		2		V
Over-Temperature Threshold				150		°C

 Copyright © 2019 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 DS5797A-09
 December
 2019
 www.richtek.com

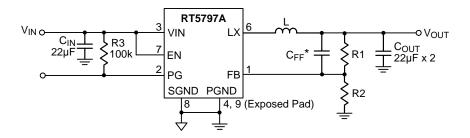
RT5797A

RICHTEK

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
Enable Threshold Voltage	H-Level	Venh	EN rising	0.7	0.85	1.05	V	
Enable Threshold Voltage	L-Level	Venl	EN falling	0.5	0.75	0.95	V	
PG Pin Threshold			Rising	85	90	95	0/	
(relative to VOUT)			Falling	80	85	90	%	
PG Open-Drain Impedance low)	e (PG =					20	Ω	
Soft-Start Time		tss		0.5	1.2	2	ms	
Minimum Off Time		toff_min		70	120	180	ns	
Output Discharge Switch C Resistance)n			1.2	1.8	2.4	kΩ	
Over-Voltage Protection (relative to Vout)		Vovp	Rising	115	120	125	%	

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

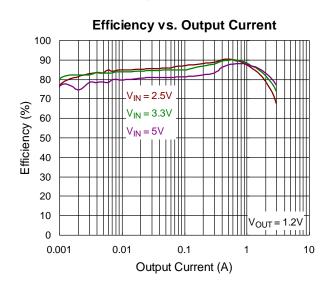
Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.

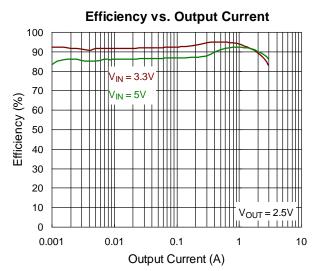

Note 3. Devices are ESD sensitive. Handling precaution recommended.

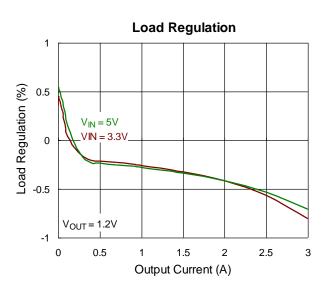
Note 4. The device is not guaranteed to function outside its operating conditions.

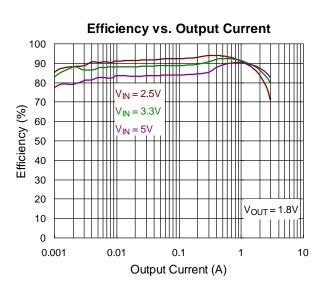
Typical Application Circuit

*CFF : Optional for performance fine-tune

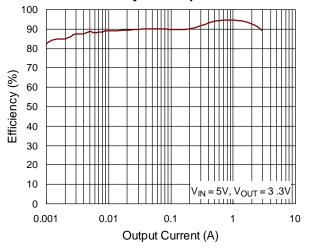

Vout (V)	R1 (k Ω)	R2 (k Ω)	Cin (μ F)	L (μ H)	Coυτ (μ F)
3.3	90	20	22	1.5	22 x2
1.8	100	50	22	1.5	22 x2
1.5	100	66.6	22	1.5	22 x2
1.2	100	100	22	1.5	22 x2
1.05	100	133	22	1.5	22 x2
1	100	148	22	1.5	22 x2

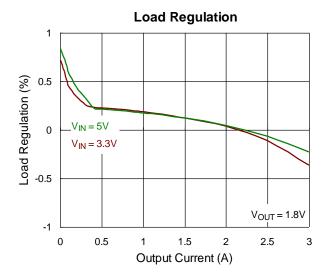

Downloaded From Oneyac.com




Typical Operating Characteristics

RT5797A





Efficiency vs. Output Current

 Copyright © 2019 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

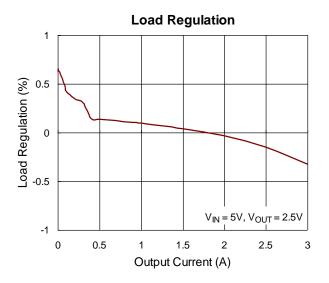
 www.richtek.com
 DS5797A-09
 December
 2019

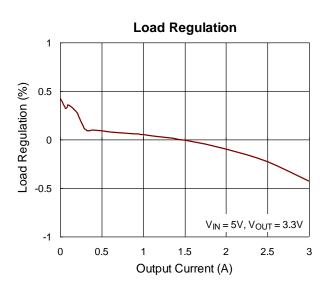
1

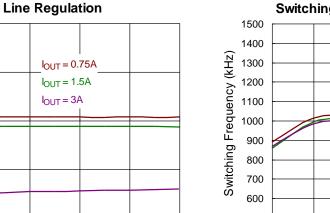
0.5

0

-0.5

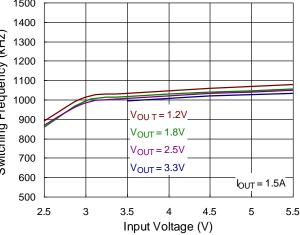

-1 -1 4.5

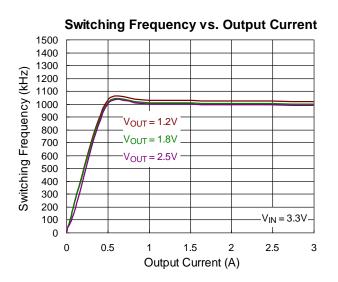

Line Regulation (%)


V_{OUT} = 3.3V

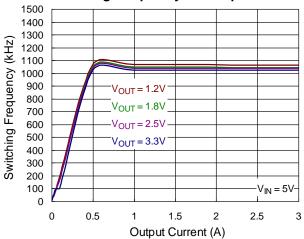
4.7

RT5797A





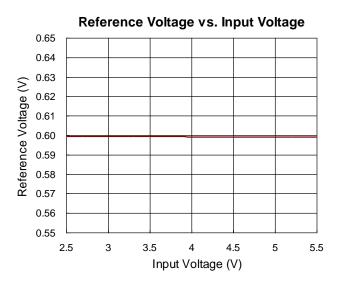
5.5

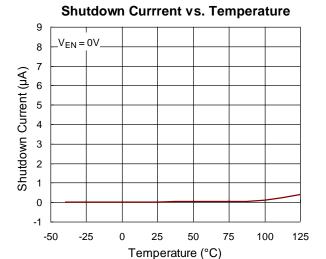

4.9

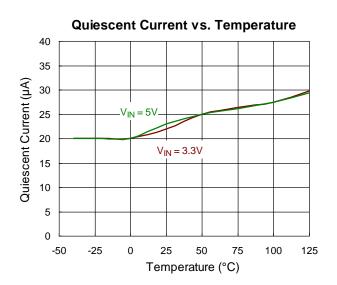
5.1

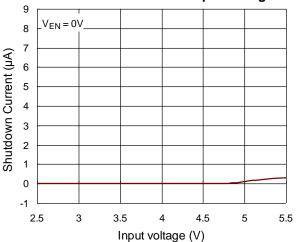
Input Voltage (V)

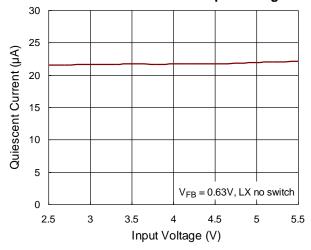
5.3

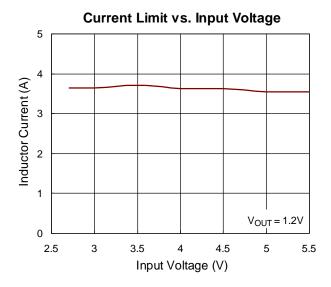

Switching Frequency vs. Output Current




Copyright © 2019 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. DS5797A-09 December 2019 www.richtek.c

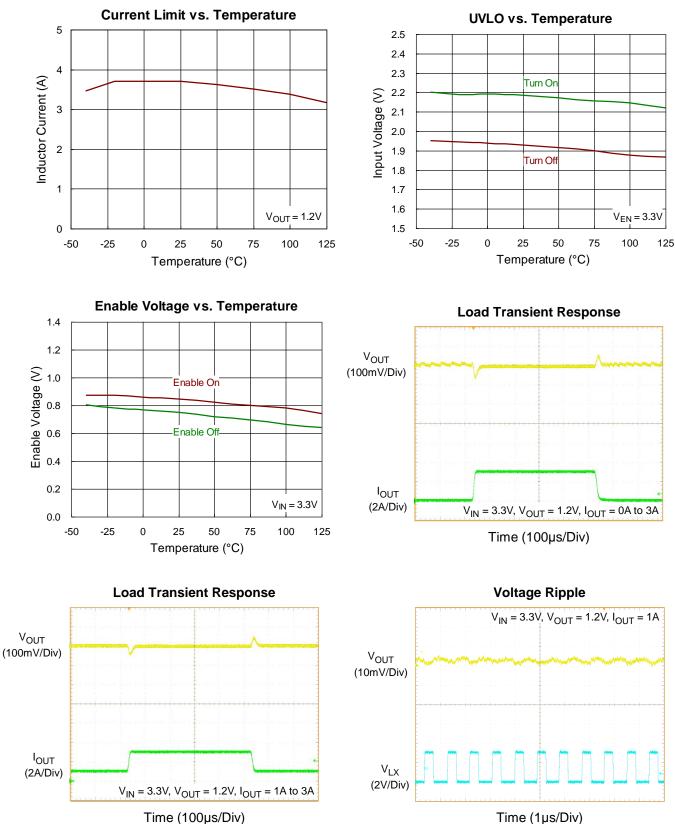






Shutdown Current vs. Input Voltage

Quiescent Current vs. Input Voltage



 Copyright © 2019 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS5797A-09
 December
 2019

Downloaded From Oneyac.com

Time (1µs/Div)

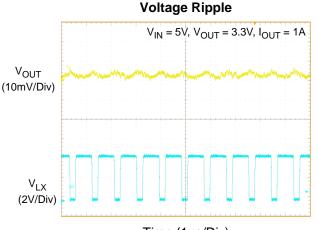
11

RT5797A

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS5797A-09 December 2019 www.richtek.com

 V_{EN} (2V/Div)

V_{PGOOD}

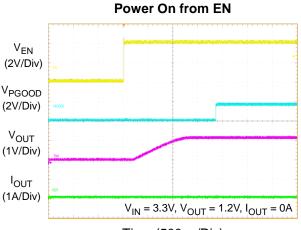

(2V/Div)

VOUT

(1V/Div)

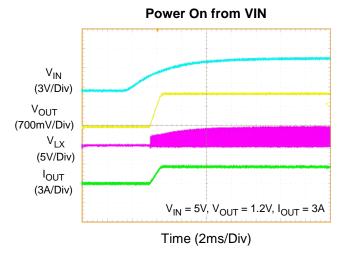
IOUT

(1A/Div)

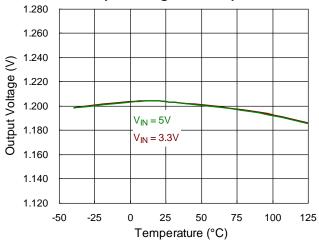


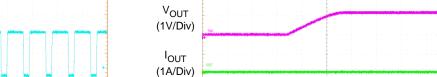
Time (1µs/Div)

Power Off from EN


V_{IN} = 3.3V, V_{OUT} = 1.2V, I_{OUT} = 0A

Time (10ms/Div)


RICHTEK


Time (500µs/Div)

Power Off from VIN V_{IN} (3V/Div) VOUT (700mV/Div) V_{LX} (5V/Div) IOUT (3A/Div) $V_{IN} = 5V$, $V_{OUT} = 1.2V$, $I_{OUT} = 3A$ Time (2ms/Div)

Output Voltage vs. Temperature

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com DS5797A-09 December 2019

Application Information

The RT5797A is a single-phase step-down converter. It provides single feedback loop constant on-time, current mode control with fast transient response. An internal 0.6V reference allows the output voltage to be precisely regulated for low output voltage applications. A fixed switching frequency (1MHz) oscillator and internal compensation are integrated to minimize external component count. Protection features include over current protection, under voltage protection and over temperature protection.

Output Voltage Setting

Connect a resistive voltage divider at the FB between Vout and GND to adjust the output voltage. The output voltage is set according to the following equation :

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right)$$

where VREF is the feedback reference voltage 0.6V (typ.).

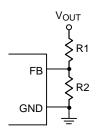


Figure 1. Setting VOUT with a Voltage Divider

Chip Enable and Disable

The EN pin allows for power sequencing between the controller bias voltage and another voltage rail. The RT5797A remains in shutdown if the EN pin is lower than 400mV. When the EN pin rises above the V_{EN} trip point, the RT5797A begins a new initialization and softstart cycle.

Enable disable falling time slew rate should be large than $1mV/\mu s.$

Internal Soft-Start

The RT5797A provides an internal soft-start function to prevent large inrush current and output voltage overshoot when the converter starts up. The soft-start (SS) automatically begins once the chip is enabled. During soft-start, the internal soft-start capacitor becomes charged and generates a linear ramping up voltage across the capacitor. This voltage clamps the voltage at the FB pin, causing PWM pulse width to increase slowly and in turn reduce the input surge current. The internal 0.6V reference takes over the loop control once the internal ramping-up voltage becomes higher than 0.6V.

Over-Voltage Protection (OVP)

The RT5797AL provide Over-Voltage Protection function when output voltage over 120%. The IC will be into Latch-off mode.

UVLO Protection

The RT5797A has input Under-Voltage Lockout protection (UVLO). If the input voltage exceeds the UVLO rising threshold voltage (2.25V typ.), the converter resets and prepares the PWM for operation. If the input voltage falls below the UVLO falling threshold voltage during normal operation, the device will stop switching. The UVLO rising and falling threshold voltage has a hysteresis to prevent noisecaused reset.

Input Capacitor Selection

High quality ceramic input decoupling capacitor, such as X5R or X7R, with values greater than 22μ F are recommended for the input capacitor. The X5R and X7R ceramic capacitors are usually selected for power regulator capacitors because the dielectric material has less capacitance variation and more temperature stability.

Voltage rating and current rating are the key parameters when selecting an input capacitor. Generally, selecting an input capacitor with voltage rating 1.5 times greater than the maximum input voltage is a conservatively safe design.

The input capacitor is used to supply the input RMS current, which can be approximately calculated using the following equation :

$$I_{IN_RMS} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)}$$

Copyright © 2019 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 DS5797A-09
 December
 2019
 www.richtek.com

RT5797A

The next step is selecting a proper capacitor for RMS current rating. One good design uses more than one capacitor with low equivalent series resistance (ESR) in parallel to form a capacitor bank.

The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be approximately calculated using the following equation :

$$\Delta V_{IN} = \frac{I_{OUT}(\text{MAX})}{C_{IN} \times f_{SW}} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Output Capacitor Selection

The output capacitor and the inductor form a low pass filter in the Buck topology. In steady state condition, the ripple current flowing into/out of the capacitor results in ripple voltage. The output voltage ripple (VP-P) can be calculated by the following equation :

$$V_{P_P} = LIR \times I_{LOAD(MAX)} \times \left(ESR + \frac{1}{8 \times C_{OUT} \times f_{SW}}\right)$$

When load transient occurs, the output capacitor supplies the load current before the controller can respond. Therefore, the ESR will dominate the output voltage sag during load transient. The output voltage undershoot (V_{SAG}) can be calculated by the following equation :

 $V_{SAG} = \Delta I_{LOAD} \times ESR$

For a given output voltage sag specification, the ESR value can be determined.

Another parameter that has influence on the output voltage sag is the equivalent series inductance (ESL). The rapid change in load current results in di/dt during transient. Therefore, the ESL contributes to part of the voltage sag. Using a capacitor with low ESL can obtain better transient performance. Generally, using several capacitors connected in parallel can have better transient performance than using a single capacitor for the same total ESR.

Inductor Selection

The switching frequency (on-time) and operating point (% ripple or LIR) determine the inductor value as shown below :

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{f_{SW} \times LIR \times I_{LOAD(MAX)} \times V_{IN}}$$

where LIR is the ratio of the peak-to-peak ripple current to the average inductor current.

Find a low loss inductor having the lowest possible DC resistance that fits in the allotted dimensions. The core must be large enough not to saturate at the peak inductor current (IPEAK) :

$$I_{PEAK} = I_{LOAD(MAX)} + \left(\frac{LIR}{2} \times I_{LOAD(MAX)}\right)$$

The calculation above serves as a general reference. To further improve transient response, the output inductor can be further reduced. This relation should be considered along with the selection of the output capacitor.

Inductor saturation current should be chosen over IC's current limit.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

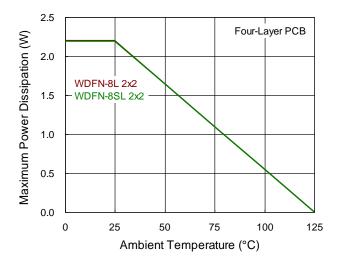
$\mathsf{P}\mathsf{D}(\mathsf{M}\mathsf{A}\mathsf{X}) = (\mathsf{T}\mathsf{J}(\mathsf{M}\mathsf{A}\mathsf{X}) - \mathsf{T}\mathsf{A}) / \theta \mathsf{J}\mathsf{A}$

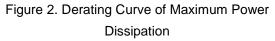
where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WDFN-8L 2x2 package, the thermal resistance, θ_{JA} , is 45.5°C /W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. For a WDFN-8SL 2x2 package, the thermal resistance, θ_{JA} , is 45.6°C /W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (45.5^{\circ}C /W) = 2.19W$ for a WDFN-8L 2x2 package.

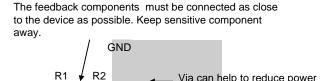
Copyright © 2019 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.


 www.richtek.com
 DS5797A-09
 December
 2019


 14
 14
 14
 14

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (45.6^{\circ}C /W) = 2.19W$ for a WDFN-8SL 2x2 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.



Layout Considerations

For best performance of the RT5797A, the following layout guidelines must be strictly followed.

- Input capacitor must be placed as close to the IC as possible.
- LX should be connected to inductor by wide and short trace. Keep sensitive components away from this trace.
- Keep every trace connected to pin as wide as possible for improving thermal dissipation.
- The feedback components must be connected as close to the device as possible. Keep sensitive component away.
- ► Via can help to reduce power trace and improve thermal dissipation.

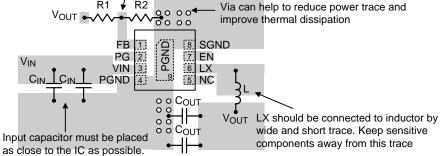
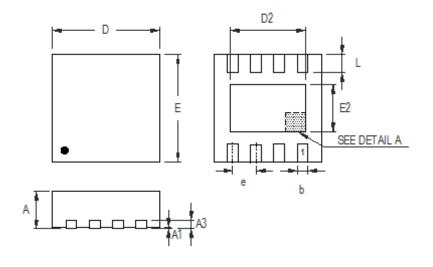
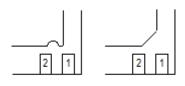
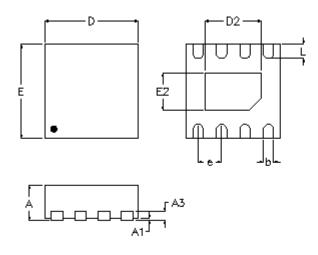
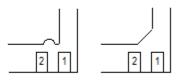




Figure 3. PCB Layout Guide

Outline Dimension




DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Мах	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.175	0.250	0.007	0.010	
b	0.200	0.300	0.008	0.012	
D	1.950	2.050	0.077	0.081	
D2	1.000	1.250	0.039	0.049	
E	1.950	2.050	0.077	0.081	
E2	0.400	0.650	0.016	0.026	
е	0.500		0.0)20	
L	0.300	0.400	0.012	0.016	

W-Type 8L DFN 2x2 Package

DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol		Dimensions I	n Millimeters	Dimensions In Inches		
		Min.	Max.	Min.	Max.	
	А	0.700	0.800	0.028	0.031	
	A1	0.000	0.050	0.000	0.002	
	A3	0.175	0.250	0.007	0.010	
	b	0.200	0.300	0.008	0.012	
	D	1.900	2.100	0.075	0.083	
D2	Option1	1.150	1.250	0.045	0.049	
DZ	Option2	1.550	1.650	0.061	0.065	
	Е	1.900	2.100	0.075	0.083	
E2	Option1	0.750	0.850	0.030	0.033	
E2	Option2	0.850	0.950	0.033	0.037	
	e 0.500 0.		0.0	020		
	L 0.250 0.350 0.010		0.014			

W-Type 8SL DFN 2x2 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

DS5797A-09 December 2019

单击下面可查看定价,库存,交付和生命周期等信息

>>Richtek(台湾立锜)